DWSCNN Online Signature Verification Algorithm Based on CAE-MV Feature Dimensionality Reduction
In recent years, with the rapid advancements in deep learning technologies, particularly deep neural networks, signature verification has seen significant improvements in accuracy. Despite the significant progress made in using deep learning technologies, there remains several challenges that affect...
Saved in:
| Published in | IEEE access Vol. 12; pp. 22144 - 22157 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3355449 |
Cover
| Abstract | In recent years, with the rapid advancements in deep learning technologies, particularly deep neural networks, signature verification has seen significant improvements in accuracy. Despite the significant progress made in using deep learning technologies, there remains several challenges that affect their practical application, such as insufficient feature extraction, long neural network computation time, and high resource consumption. In this paper, an online handwritten signature verification algorithm is proposed, which mainly uses the CAE-MV-based feature dimensionality reduction method to compress and select features of the original signature data to construct a signature feature set. The Depth-wise Separable Convolutional Neural Network(DWSCNN) based on Depth-wise separable convolution is used to classify and verify the signature feature set. Compared with CNN, the DWSCNN can significantly reduce the number of neural network parameters while the classification effect is not much different, thus greatly shortening the running time and resource occupation. Through the analysis of the verification results on two publicly available signature databases, MCYT-100 and SVC-2004, the proposed algorithm improves the accuracy, reduces the False Acceptance Rate (FAR) and False Rejection Rate (FRR). The average verification accuracy reaches 98.92%, which is superior to the current mainstream online signature verification frameworks, demonstrating the effectiveness and efficiency of the proposed framework. |
|---|---|
| AbstractList | In recent years, with the rapid advancements in deep learning technologies, particularly deep neural networks, signature verification has seen significant improvements in accuracy. Despite the significant progress made in using deep learning technologies, there remains several challenges that affect their practical application, such as insufficient feature extraction, long neural network computation time, and high resource consumption. In this paper, an online handwritten signature verification algorithm is proposed, which mainly uses the CAE-MV-based feature dimensionality reduction method to compress and select features of the original signature data to construct a signature feature set. The Depth-wise Separable Convolutional Neural Network(DWSCNN) based on Depth-wise separable convolution is used to classify and verify the signature feature set. Compared with CNN, the DWSCNN can significantly reduce the number of neural network parameters while the classification effect is not much different, thus greatly shortening the running time and resource occupation. Through the analysis of the verification results on two publicly available signature databases, MCYT-100 and SVC-2004, the proposed algorithm improves the accuracy, reduces the False Acceptance Rate (FAR) and False Rejection Rate (FRR). The average verification accuracy reaches 98.92%, which is superior to the current mainstream online signature verification frameworks, demonstrating the effectiveness and efficiency of the proposed framework. |
| Author | Huang, Liping Chen, Ziyao Wang, Yu Wang, Hui Gao, Yifan Yu, Xiangxiang Yang, Jiamei Zheng, Jianbin |
| Author_xml | – sequence: 1 givenname: Jianbin orcidid: 0000-0002-5714-1969 surname: Zheng fullname: Zheng, Jianbin organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 2 givenname: Ziyao orcidid: 0009-0001-5641-4988 surname: Chen fullname: Chen, Ziyao organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Liping orcidid: 0000-0001-7314-0379 surname: Huang fullname: Huang, Liping organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 4 givenname: Yifan surname: Gao fullname: Gao, Yifan organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 5 givenname: Xiangxiang surname: Yu fullname: Yu, Xiangxiang organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 6 givenname: Hui surname: Wang fullname: Wang, Hui organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 7 givenname: Jiamei surname: Yang fullname: Yang, Jiamei organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 8 givenname: Yu orcidid: 0000-0001-8544-7634 surname: Wang fullname: Wang, Yu email: wangyu@whut.edu.cn organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China |
| BookMark | eNplkUFv0zAYhi00pI2xXzAOkTin2LETx8eSdTBpbNI6xtH67HwprtK42Imm_ntcMqEJfLH16n2ew-t35GTwAxJyyeiCMao-LZtmtV4vClqIBedlKYR6Q84KVqmcl7w6efU-JRcxbmk6dYpKeUb01Y91c3eX3Q-9GzBbu80A4xQwe8LgOmdhdH7Ilv3GBzf-3GWfIWKbpahZrvJvT9k1zvUrt8Mhpi70bjxkD9hO9oi-J2876CNevNzn5Pv16rH5mt_ef7lplre55aUa88KWoutqA8hV3XZgWmGBsZpBZYyx1CgDYGxR2pqzOiHAgDIsRFdjjW3Jz8nN7G09bPU-uB2Eg_bg9J_Ah42GMDrbo65UwWhLJbdYCZ4MwLmwUnDaGSmtTC4xu6ZhD4dn6Pu_Qkb1cXMN1mKM-ri5ftk8YR9nbB_8rwnjqLd-CmmQ1FOFlIxyWaQWn1s2-BgDdv-55__81_1hphwiviIE5Yoq_hsDi5wY |
| CODEN | IAECCG |
| Cites_doi | 10.1007/s00521-018-3844-z 10.1109/AISP.2015.7123528 10.1007/s00500-018-3477-2 10.1007/s11042-019-08022-0 10.1007/s12652-020-02872-5 10.1016/j.neucom.2020.05.072 10.1016/j.patrec.2016.07.015 10.1109/TIFS.2014.2316472 10.1007/s00500-017-2782-5 10.1016/j.ndteint.2020.102218 10.1609/aaai.v34i01.5416 10.1016/j.neucom.2018.08.034 10.1016/j.patcog.2020.107227 10.1007/s10489-022-03318-5 10.1007/s10032-012-0193-9 10.1109/ICDAR.2009.38 10.1016/j.patcog.2020.107699 10.1016/j.neucom.2019.12.083 10.1145/3274658 10.1007/11527923_54 10.1109/TCYB.2017.2647826 10.1109/ICSMC.1991.169685 10.1109/ICDAR.2019.00179 10.1007/s00521-019-04669-w 10.1016/j.neucom.2019.01.041 10.1007/s11042-019-7264-6 10.1016/j.ins.2018.05.049 10.1109/TIM.2017.2755898 10.1142/S0218001494000395 10.1016/j.neucom.2018.11.028 10.1109/TII.2018.2884211 10.1109/TIP.2015.2487860 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3355449 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 22157 |
| ExternalDocumentID | oai_doaj_org_article_69210d073ce6434f8a334c7430fb77c7 10.1109/access.2024.3355449 10_1109_ACCESS_2024_3355449 10403909 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China “the Study on Load-Bearing and Moving Support Exoskeleton Robot Key Technology and Typical Application” grantid: 2017YFB1300502 funderid: 10.13039/501100012166 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c359t-2c54ff8bae398dfabd4ca1181a6bbbc0b9baabc25c8318359a1a01e24f8e8ed53 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:40:42 EDT 2025 Tue Aug 19 16:16:28 EDT 2025 Mon Jun 30 04:39:24 EDT 2025 Wed Oct 01 04:52:15 EDT 2025 Wed Aug 27 02:17:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-2c54ff8bae398dfabd4ca1181a6bbbc0b9baabc25c8318359a1a01e24f8e8ed53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-5641-4988 0000-0002-5714-1969 0000-0001-8544-7634 0000-0001-7314-0379 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/10403909.pdf |
| PQID | 2927710372 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2024_3355449 doaj_primary_oai_doaj_org_article_69210d073ce6434f8a334c7430fb77c7 ieee_primary_10403909 proquest_journals_2927710372 crossref_primary_10_1109_ACCESS_2024_3355449 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref7 doi: 10.1007/s00521-018-3844-z – ident: ref16 doi: 10.1109/AISP.2015.7123528 – ident: ref30 doi: 10.1007/s00500-018-3477-2 – ident: ref1 doi: 10.1007/s11042-019-08022-0 – ident: ref4 doi: 10.1007/s12652-020-02872-5 – ident: ref3 doi: 10.1016/j.neucom.2020.05.072 – ident: ref26 doi: 10.1016/j.patrec.2016.07.015 – ident: ref29 doi: 10.1109/TIFS.2014.2316472 – ident: ref21 doi: 10.1007/s00500-017-2782-5 – ident: ref13 doi: 10.1016/j.ndteint.2020.102218 – ident: ref20 doi: 10.1609/aaai.v34i01.5416 – ident: ref10 doi: 10.1016/j.neucom.2018.08.034 – ident: ref5 doi: 10.1016/j.patcog.2020.107227 – ident: ref19 doi: 10.1007/s10489-022-03318-5 – ident: ref31 doi: 10.1007/s10032-012-0193-9 – ident: ref25 doi: 10.1109/ICDAR.2009.38 – ident: ref32 doi: 10.1016/j.patcog.2020.107699 – ident: ref12 doi: 10.1016/j.neucom.2019.12.083 – ident: ref2 doi: 10.1145/3274658 – ident: ref15 doi: 10.1007/11527923_54 – ident: ref28 doi: 10.1109/TCYB.2017.2647826 – ident: ref17 doi: 10.1109/ICSMC.1991.169685 – ident: ref24 doi: 10.1109/ICDAR.2019.00179 – ident: ref6 doi: 10.1007/s00521-019-04669-w – ident: ref14 doi: 10.1016/j.neucom.2019.01.041 – ident: ref27 doi: 10.1007/s11042-019-7264-6 – ident: ref23 doi: 10.1016/j.ins.2018.05.049 – ident: ref22 doi: 10.1109/TIM.2017.2755898 – ident: ref18 doi: 10.1142/S0218001494000395 – ident: ref9 doi: 10.1016/j.neucom.2018.11.028 – ident: ref8 doi: 10.1109/TII.2018.2884211 – ident: ref11 doi: 10.1109/TIP.2015.2487860 |
| SSID | ssj0000816957 |
| Score | 2.3288314 |
| Snippet | In recent years, with the rapid advancements in deep learning technologies, particularly deep neural networks, signature verification has seen significant... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 22144 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Classification algorithms convolutional autoencoder-model verification Convolutional neural networks Deep learning depth-wise separable convolution neural network Feature extraction Forgery Handwritten signature verification Machine learning Neural networks Online signature verification Reduction Rejection rate Run time (computers) Signatures Training |
| SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLi2HilIqFijygWNdvP5I7OMSQAiJPUCh3CzbsSnSsiBYhPj3nYkDCuLQS6-W40zm2X4zVuaZkB3fatgWM2e6zpKhYBcDlqvYOIlko5HKG6xGPplWR-fq-FJfDq76wn_CijxwcdxuZSEpaWEixgTkqbLxUqoIvMdzqOvY1ZFzYwfJVLcHm3Fldd3LDI253Z00DXwRJIRC_ZRIsqieOaCiTrG_v2LlTbT58XF-55-f_Gw2IJ7DFfK5jxjppFj6hXxI81WyPNAR_Erc_u-zZjqlRTeUnl1fFb1OegEdcn8qRyezq9v768WfG7oH1NVSaGomB-zkgmIciN33Ueq_yHRAcE5PUdYVH10j54cHv5oj1t-cwKLUdsFE1CpnE3yS1rTZh1ZFjyWmvgohRB5s8D5EoQENWNPa-rHnAA-4N5kE8H0jS_PbeVonVAopeTKS21ipzKPXIgSgtQBxhmwzH5EfL050d0Ugw3WJBbeu-Nyhz13v8xHZQ0e_dkV1664BMHc95u5fmI_IGsI0eJ_i0nIYfOsFN9cvxQcnrKhrrIYUI8JesXxnq-_up3xj68b_sHWTfMIxy6nNFlla3D-m7xDHLMJ2N2X_AgJH6mI priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoL8CBzyJSCvKBI168sZ3Ex23aqkLqHigtvVm2Y7cVy27VZoXg1zMTe1dbEBK3yJrIdt7YM-N43hDy3nYKtsXImaqjYEjYxcDKVWwcyqB9I6RtMBv5ZFodn8lPF-oiJ6sPuTAhhOHyWRjh4_Avv1v4JR6VwQqXHGJ0vUW26qZKyVrrAxWsIKFVnZmFxlx_nLQtTAJiwFKOBNpVJMzcsD4DSX-uqnLPwXy4nN_Ynz_sbLZha46ekulqlOmKybfRsncj_-sPAsf_nsYz8iR7nXSS1OQ5eRDmL8jjDS7Cl8QcfD1tp1OauEfp6fVl4vyk5yAQ88kencwuF7fX_dV3ug_mr6PQ1E4O2ck5RV8SxQ-wXECi-gAHn35Galh8dYecHR1-aY9Zrr7AvFC6Z6VXMsbG2SB000XrOuktpqnayjnnudPOWudLBYjCvqC0HVsOEMvYhCaACrwi2_PFPLwmVJRC8NAIrn0lI_dWlc6BaXTgq4gu8oJ8WKFibhLJhhmCE65NAtEgiCaDWJB9RG4tigzZQwN8ZZMXnKk0BLMdbGA-gNMFg7JCSA_-Eo-urn1dkB1EZqO_BEpB9laKYPJyvjOlLusaMyrLgrC1cvw1VjvUuLw31t1_dPOGPEKxdJizR7b722V4C-5N794Nav0bvkz1Xw priority: 102 providerName: IEEE |
| Title | DWSCNN Online Signature Verification Algorithm Based on CAE-MV Feature Dimensionality Reduction |
| URI | https://ieeexplore.ieee.org/document/10403909 https://www.proquest.com/docview/2927710372 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10403909.pdf https://doaj.org/article/69210d073ce6434f8a334c7430fb77c7 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AcWh5FhJaVDxxx1mvn5WOatqqQukKULeVk2Y5dVizbVZsVLb-eseOttnCCWxRNlEnms2fG9nyD0DvV5jAtOkry0nHiCbsIeLmCjC2zwlQ8U5WvRj6dFCfT7MNFfhEX3EItjLU2HD6zqb8Me_kzO78tRwXz5GliVICLhyQBhntGIWEX6bJ1j9FWkUMsPkBb08nH-qvvKDcuBOFhb3IvEmuOVOhBCEkhy1LuHa1n0NxwR4G1P7ZZeRBxPlktlurup5rPN5zP8Q6Sa7X7Myff01WnU_PrD0bH__-uZ2g7xqW47oH0HD2yixfo6QZb4UskD7-cNZMJ7tlJ8dnssmcFxecg4OLaH67nl1fXs-7bD3wADrLFcKupj8jpOfbRphc_9A0FejIQSAHwJ08e6x_dRdPjo8_NCYn9GYjhuegIM3nmXKWV5aJqndJtZpQvZFWF1tpQLbRS2rAcbA4zRy7UWFEAQeYqW1kAySs0WFwt7GuEOeOc2opTYYrMUaNypjU4Tw3RDG8dTdD7tZnksqfhkCF9oULWTQNYld6qMlo1QQfelPeinkM73IDfLuOQlIWAdLeFKc5YCMtAKcV5ZiCiok6XpSkTtOtNtfG-3jAJ2l8jQ8YBfyOZYGXpay5Zgsg9Wv7StUfgA13f_KP8Php01yv7FmKhTg_DGsIwlC0OI_h_A4a_BRc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORQOlEcRgbb4wJEs3thO4uM2bbVANwf6oDfLduxSsexWJSsEv55xnF1tqZC4RZYtT_KNPeOJ5xuAt7oRuC16morCszQQdqVo5fJ06DInbcm4LkM28qTOx2f844W46JPVu1wY51x3-cwNwmP3L7-Z20UIleEK5xTP6PI-PBCccxHTtVYhlVBDQoqi5xYaUvl-VFX4GngKzPiABcsaKDPX7E9H09_XVbnlYm4uZtf61089na5Zm6MtqJdyxksm3waL1gzs778oHP_7RZ7A497vJKOoKE_hnps9g0drbITPQR18OanqmkT2UXJydRlZP8k5dvB9bI-Mppfzm6v263eyjwawIdhUjQ7TyTkJ3mTofhAKBkSyD3TxyedADhuGbsPZ0eFpNU77-gupZUK2aWYF97402jFZNl6bhlsdElV1boyx1EijtbGZQExxZxBSDzVFkLkvXelQCV7Axmw-cy-BsIwx6kpGpc25p1aLzBg0jga9FdZ4msC7JSrqOtJsqO54QqWKIKoAoupBTGA_ILfqGjiyuwb8yqpfciqXeJxtcAuzDt0uFEozxi16TNSborBFAtsBmbX5IigJ7CwVQfUL-ofKZFYUIacySyBdKccdWXVX5fKWrK_-Mc0b2ByfTo7V8Yf602t4GIbE0M4ObLQ3C7eLzk5r9joV_wO5y_is |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBYRKMgHjjjrtWMnPqZpqwqpK0TZUk6W7djtimW7Klnx-PWME2-1hRPcomiiTDKfPTO25xuE3phWwLQYKBFl4CQSdhHwcpJMPPPKVbwwVaxGPpnK41nx7lycpwW3vhbGe98fPvN5vOz38ud-8aMcSxbJ09RYgouHJAGGe0EhYVf5qg130Y4UEIuP0M5s-r7-HDvKTaQivN-bfJmINcem70EISSErch4dbWTQ3HJHPWt_arNyK-K8t16uzM_vZrHYcj5HD5HeqD2cOfmSrzubu19_MDr-_3c9Qg9SXIrrAUiP0R2_fILub7EVPkX64NNpM53igZ0Un84vBlZQfAYCIa394XpxcXU97y6_4n1wkC2GW019SE7OcIw2o_hBbCgwkIFACoA_RPLY-Ogumh0dfmyOSerPQBwXqiPMiSKEyhrPVdUGY9vCmVjIaqS11lGrrDHWMQE2h5lDKDMxFEBQhMpXHkDyDI2WV0v_HGHOOKe-4lQ5WQTqjGDWgvO0EM3wNtAMvd2YSa8GGg7dpy9U6bppAKs6WlUnq2ZoP5ryRjRyaPc34LfrNCS1VJDutjDFOQ9hGShlOC8cRFQ02LJ0ZYZ2o6m23jcYJkN7G2ToNOC_aaZYWcaaS5YhcoOWv3QdEHhL1xf_KL-HRt312r-CWKizrxPgfwNbDQMh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DWSCNN+Online+Signature+Verification+Algorithm+Based+on+CAE-MV+Feature+Dimensionality+Reduction&rft.jtitle=IEEE+access&rft.au=Zheng%2C+Jianbin&rft.au=Chen%2C+Ziyao&rft.au=Huang%2C+Liping&rft.au=Gao%2C+Yifan&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=22144&rft.epage=22157&rft_id=info:doi/10.1109%2FACCESS.2024.3355449&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3355449 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |