EECO: An AI-Based Algorithm for Energy-Efficient Comfort Optimisation
Environmental comfort takes a central role in the well-being and health of people. In modern industrial, commercial, and residential buildings, passive energy sources (such as solar irradiance and heat exchangers) and heating, ventilation, and air conditioning (HVAC) systems are usually employed to...
Saved in:
| Published in | Energies (Basel) Vol. 16; no. 21; p. 7334 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1996-1073 1996-1073 |
| DOI | 10.3390/en16217334 |
Cover
| Abstract | Environmental comfort takes a central role in the well-being and health of people. In modern industrial, commercial, and residential buildings, passive energy sources (such as solar irradiance and heat exchangers) and heating, ventilation, and air conditioning (HVAC) systems are usually employed to achieve the required comfort. While passive strategies can effectively enhance the livability of indoor spaces with limited or no energy cost, active strategies based on HVAC machines are often preferred to have direct control over the environment. Commonly, the working parameters of such machines are manually tuned to a fixed set point during working hours or throughout the whole day, leading to inefficiencies in terms of comfort and energy consumption. Albeit effective, previous works that tackle the comfort–energy tradeoff are tailored to the specific environment under study (in terms of geometry, characteristics of the building, etc.) and thus cannot be applied on a large industrial scale. We address the problem from a different angle and propose an adaptive and practical solution for comfort optimisation. It does not require the intervention of expert personnel or any customisations around the environment while it implicitly analyses the influence of different agents (e.g., passive phenomena) on the monitored parameters. A convolutional neural network (CNN) predicts the long-term impact on thermal comfort and energy consumption of a range of possible actuation strategies for the HVAC system. The decision on the best HVAC settings is taken by choosing the combination of ON/OFF and set point (SP), which optimises thermal comfort and, at the same time, minimises energy consumption. We validate our solution in a real-world scenario and through software simulations, providing a performance comparison against the fixed set point strategy and a greedy approach. The evaluation results show that our solution achieves the desired thermal comfort while reducing the energy footprint by up to approximately 16% in a real environment. |
|---|---|
| AbstractList | Environmental comfort takes a central role in the well-being and health of people. In modern industrial, commercial, and residential buildings, passive energy sources (such as solar irradiance and heat exchangers) and heating, ventilation, and air conditioning (HVAC) systems are usually employed to achieve the required comfort. While passive strategies can effectively enhance the livability of indoor spaces with limited or no energy cost, active strategies based on HVAC machines are often preferred to have direct control over the environment. Commonly, the working parameters of such machines are manually tuned to a fixed set point during working hours or throughout the whole day, leading to inefficiencies in terms of comfort and energy consumption. Albeit effective, previous works that tackle the comfort–energy tradeoff are tailored to the specific environment under study (in terms of geometry, characteristics of the building, etc.) and thus cannot be applied on a large industrial scale. We address the problem from a different angle and propose an adaptive and practical solution for comfort optimisation. It does not require the intervention of expert personnel or any customisations around the environment while it implicitly analyses the influence of different agents (e.g., passive phenomena) on the monitored parameters. A convolutional neural network (CNN) predicts the long-term impact on thermal comfort and energy consumption of a range of possible actuation strategies for the HVAC system. The decision on the best HVAC settings is taken by choosing the combination of ON/OFF and set point (SP), which optimises thermal comfort and, at the same time, minimises energy consumption. We validate our solution in a real-world scenario and through software simulations, providing a performance comparison against the fixed set point strategy and a greedy approach. The evaluation results show that our solution achieves the desired thermal comfort while reducing the energy footprint by up to approximately 16% in a real environment. |
| Audience | Academic |
| Author | Segala, Giacomo Gerola, Matteo Siracusa, Domenico Doriguzzi-Corin, Roberto Peroni, Claudio |
| Author_xml | – sequence: 1 givenname: Giacomo orcidid: 0000-0001-9380-2384 surname: Segala fullname: Segala, Giacomo – sequence: 2 givenname: Roberto orcidid: 0000-0002-8001-7835 surname: Doriguzzi-Corin fullname: Doriguzzi-Corin, Roberto – sequence: 3 givenname: Claudio surname: Peroni fullname: Peroni, Claudio – sequence: 4 givenname: Matteo orcidid: 0000-0002-1001-8242 surname: Gerola fullname: Gerola, Matteo – sequence: 5 givenname: Domenico orcidid: 0000-0002-5640-6507 surname: Siracusa fullname: Siracusa, Domenico |
| BookMark | eNp9UU1v1DAQtVArUZZe-gsicQOl2J7EjrmFVSgrVdpLe7YcfyxeJfbieIX232MIKpyYOczo6c3Tm5k36CrEYBG6I_geQOCPNhBGCQdoXqEbIgSrCeZw9U__Gt0uyxGXACAAcIOGYdjuP1V9qPpd_Vkt1lT9dIjJ529z5WKqhmDT4VIPznntbcjVNs4Fz9X-lP3sF5V9DG_RtVPTYm__1A16_jI8bb_Wj_uH3bZ_rDW0IteUN1RYpzHjMIIQQIxm1DbagqGi6zi34zgS6zjHLaEUG2IwAy26RjmGCWzQbtU1UR3lKflZpYuMysvfQEwHqVL2erJSUW4NI9QwrhvaqlETwpnVQDTWtBjYoA-r1jmc1OWHmqYXQYLlr4PKvwct7Hcr-5Ti97NdsjzGcwplWUm7riO0Y9AW1v3KOqhiwQcXc1K6pLGz1-Vbzhe855y2QKERZeD9OqBTXJZk3f88_ATp8ZBz |
| Cites_doi | 10.1016/j.egypro.2015.07.218 10.1016/j.apenergy.2020.115147 10.1016/j.buildenv.2020.106863 10.1016/j.buildenv.2012.08.024 10.3390/app112210771 10.1016/j.enbuild.2015.11.033 10.1016/j.jobe.2021.103678 10.1016/j.enbuild.2023.112848 10.1109/CCDC.2014.6852646 10.3390/en13174363 10.1016/j.enbuild.2020.109807 10.1016/j.enbuild.2020.110469 10.1016/j.softx.2020.100563 10.1016/j.enconman.2022.116573 10.1109/JIOT.2020.2992117 10.1016/j.rser.2019.06.014 10.3390/su12020482 10.1016/j.enbuild.2015.06.002 10.1016/j.isatra.2019.10.006 10.1109/ICASSP.2019.8682194 10.1016/j.rser.2021.110969 10.1016/j.buildenv.2019.03.038 10.1016/j.enbuild.2017.07.056 10.1016/j.scs.2011.09.001 10.1177/0143624412465200 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/en16217334 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_a27ed612d67c425abc1176ec31c0c267 10.3390/en16217334 A772532349 10_3390_en16217334 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c359t-27429efc0673b39931dc62e4ce3d298877ebbb1ef77051220d1d063c984af6013 |
| IEDL.DBID | DOA |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 19:06:01 EDT 2025 Wed Oct 29 07:03:32 EDT 2025 Mon Jun 30 06:32:03 EDT 2025 Mon Oct 20 16:54:50 EDT 2025 Thu Oct 16 04:41:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-27429efc0673b39931dc62e4ce3d298877ebbb1ef77051220d1d063c984af6013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5640-6507 0000-0002-1001-8242 0000-0001-9380-2384 0000-0002-8001-7835 |
| OpenAccessLink | https://doaj.org/article/a27ed612d67c425abc1176ec31c0c267 |
| PQID | 2888128635 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a27ed612d67c425abc1176ec31c0c267 unpaywall_primary_10_3390_en16217334 proquest_journals_2888128635 gale_infotracacademiconefile_A772532349 crossref_primary_10_3390_en16217334 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_9) 2023; 284 Liu (ref_4) 2020; 228 Tartarini (ref_27) 2020; 12 Guo (ref_29) 2020; 117 Essaaidi (ref_15) 2021; 144 ref_35 ref_34 ref_33 ref_31 Khan (ref_21) 2015; 75 ref_30 Chen (ref_8) 2015; 102 Yang (ref_16) 2012; 2 ref_18 Valladares (ref_11) 2019; 155 Gao (ref_12) 2020; 7 ref_17 Yau (ref_20) 2014; 35 Manjarres (ref_13) 2017; 152 Radi (ref_32) 2022; 46 Ascione (ref_10) 2016; 111 ref_25 ref_24 ref_23 Schiavon (ref_36) 2013; 59 Martell (ref_14) 2020; 99 ref_22 ref_1 ref_3 Yang (ref_6) 2020; 271 ref_2 Wu (ref_7) 2020; 177 ref_28 ref_26 Ngarambe (ref_19) 2020; 211 Baldi (ref_5) 2023; 276 |
| References_xml | – ident: ref_28 – ident: ref_30 – ident: ref_3 – ident: ref_24 – ident: ref_26 – ident: ref_34 – volume: 75 start-page: 1373 year: 2015 ident: ref_21 article-title: Thermal Comfort Analysis of PMV Model Prediction in Air Conditioned and Naturally Ventilated Buildings publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.218 – volume: 271 start-page: 115147 year: 2020 ident: ref_6 article-title: Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115147 – volume: 177 start-page: 106863 year: 2020 ident: ref_7 article-title: A PMV-based HVAC control strategy for office rooms subjected to solar radiation publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.106863 – volume: 59 start-page: 250 year: 2013 ident: ref_36 article-title: Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.08.024 – ident: ref_25 doi: 10.3390/app112210771 – volume: 111 start-page: 131 year: 2016 ident: ref_10 article-title: Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.11.033 – volume: 46 start-page: 103678 year: 2022 ident: ref_32 article-title: Data-driven based HVAC optimisation approaches: A Systematic Literature Review publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.103678 – volume: 284 start-page: 112848 year: 2023 ident: ref_9 article-title: The impact of personal preference-based thermal control on energy use and thermal comfort: Field implementation publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.112848 – ident: ref_1 – ident: ref_23 – ident: ref_17 doi: 10.1109/CCDC.2014.6852646 – ident: ref_18 doi: 10.3390/en13174363 – volume: 211 start-page: 109807 year: 2020 ident: ref_19 article-title: The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.109807 – volume: 228 start-page: 110469 year: 2020 ident: ref_4 article-title: Effectiveness of passive design strategies in responding to future climate change for residential buildings in hot and humid Hong Kong publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110469 – volume: 12 start-page: 100563 year: 2020 ident: ref_27 article-title: CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations publication-title: SoftwareX doi: 10.1016/j.softx.2020.100563 – ident: ref_31 – ident: ref_33 – ident: ref_2 – volume: 276 start-page: 116573 year: 2023 ident: ref_5 article-title: Dynamic optimization for minimal HVAC demand with latent heat storage, heat recovery, natural ventilation, and solar shadings publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.116573 – volume: 7 start-page: 8472 year: 2020 ident: ref_12 article-title: DeepComfort: Energy-Efficient Thermal Comfort Control in Buildings Via Reinforcement Learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2992117 – volume: 117 start-page: 109207 year: 2020 ident: ref_29 article-title: On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.06.014 – ident: ref_35 doi: 10.3390/su12020482 – volume: 102 start-page: 357 year: 2015 ident: ref_8 article-title: Model predictive control for indoor thermal comfort and energy optimization using occupant feedback publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.06.002 – volume: 99 start-page: 454 year: 2020 ident: ref_14 article-title: Multiobjective control architecture to estimate optimal set points for user comfort and energy saving in buildings publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.10.006 – ident: ref_22 doi: 10.1109/ICASSP.2019.8682194 – volume: 144 start-page: 110969 year: 2021 ident: ref_15 article-title: Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110969 – volume: 155 start-page: 105 year: 2019 ident: ref_11 article-title: Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.03.038 – volume: 152 start-page: 409 year: 2017 ident: ref_13 article-title: An energy-efficient predictive control for HVAC systems applied to tertiary buildings based on regression techniques publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.07.056 – volume: 2 start-page: 1 year: 2012 ident: ref_16 article-title: Multi-objective optimization for decision-making of energy and comfort management in building automation and control publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2011.09.001 – volume: 35 start-page: 23 year: 2014 ident: ref_20 article-title: A review on predicted mean vote and adaptive thermal comfort models publication-title: Build. Serv. Eng. Res. Technol. doi: 10.1177/0143624412465200 |
| SSID | ssj0000331333 |
| Score | 2.353699 |
| Snippet | Environmental comfort takes a central role in the well-being and health of people. In modern industrial, commercial, and residential buildings, passive energy... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 7334 |
| SubjectTerms | Algorithms automated HVAC configuration Automation deep learning Energy consumption Energy efficiency Energy use Green buildings HVAC Implements, utensils, etc Indoor air quality Internet of Things Mathematical models Neural networks Simulation methods Software thermal comfort Work hours |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UH7IH5iapUFCz4tzX4mEURy5UoVvIpY6NuyX6kP19x5phT_e2dzybUi9DWEsJnd-c1vdnd-A3DIgmo8F4GWXudUNrKkjlWWRt8ggZUq-l5I--tcn57LLxfqYgfmYy1MulY5YmIP1GHp0x75EcdUDbEU4-On1S-aukal09WxhYYdWiuEj73E2APY5UkZawK709n82_ftrksuBCZlYqNTKjDfP4ot00jLhZD_RKZewP9_mN6Dh9ftyv65sYvFnTh08gQeDwSS1JsZfwo7sX0Ge3dkBZ8D5m_HZx9I3ZL6M51imAqkXlziz3Q_rwiSVDLrC_7orJePwKhDEBXweUfOEECuhgs-L-D8ZPbj-JQO7RKoF6rqaDp0rWLjU-sZl3gHC17zKH0UgVcIJkV0zrHYFAV6Iud5YAEJiq9KaRvMy8RLmLTLNr4CorTQTarSdUJjSmRdFa0qGyGVK3NhVQbvRlOZ1UYVw2A2kQxqbg2awTRZcftGUrLuHyzXl2ZwDGN5EQPSrKALj_hhnWes0NEL5nPPdZHB-zQHJvlbt7beDmUDONCkXGVqTA-U4EJWGRyM02QGR_xtbpdNBofbqbtn0Pv3f-U1PEoN5zfViAcw6dbX8Q3Sks69HdbaX6Xz3oA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7o9kH74F2MVglY8CnNzjUTXyQtW6pg64ML9SnMtRa32WWbreiv90ySrauCCL4OE5hwbt-XnPMNwC5xIljKXKasHGc8cJUZUurM24AAlgtvOyHt98fyaMrfnYrTjSn-2FaJVPy8S9JdhyzyE5YTmVOSF4zxfOHCm6vhWxKRpRIKIb24CVtSIBofwdb0-EP1qfuZPDzdq5IyZPe5b4hEEM4Y_6UOdXL9fyblbbi1ahb621c9m21UncO7oNfn7ZtNvuytWrNnv_8m5fg_L3QP7gyQNK16H7oPN3zzALY3hAofAjLCg5PXadWk1dtsHwufS6vZ2Xx53n6-SBH2ppNuhDCbdIIUWMdSzDO43qYnmJIuhpahRzA9nHw8OMqGCxgyy0TZZvE3bumDjZfZmIhkiLOSem49c7TE9FR4YwzxoSgwtikdO-IQ8thScR2Q6bHHMGrmjX8CqZBMhjj3a5hEkqVN6bVQgXFh1JhpkcDLtTnqRa-zUSM_iUarfxotgf1oqesdURu7W5gvz-oh1GpNC-8QuDlZWMxI2lhCCuktI3ZsqSwSeBXtXMcIbpfa6mEQAQ8atbDqCgmHYJTxMoGdtSvUQ2hf1lQpBEUKgVoCu9fu8ZdDP_23bc_gdrzKvp9z3IFRu1z55wh4WvNi8OkfZKv2Aw priority: 102 providerName: Unpaywall |
| Title | EECO: An AI-Based Algorithm for Energy-Efficient Comfort Optimisation |
| URI | https://www.proquest.com/docview/2888128635 https://www.mdpi.com/1996-1073/16/21/7334/pdf?version=1698581145 https://doaj.org/article/a27ed612d67c425abc1176ec31c0c267 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RQEB-0HrSH4ifG1uWBBU-P5n0m8ZYtu62C2yIurKfH-0o9bNNSU8T_3nlJWleE9uIlh0cOw0xm5vcjb34DsM-CajwXgZZe51Q2sqSOVZZG3yCAlSr6Xkj780IfL-WnlVptrPpKd8IGeeDBcQeWFzFgGw668Ph9WecZK3T0gvncc93PkedltUGm-hosBJIvMeiRCuT1B7FlGuG3EPKvDtQL9f9bjrfh8XV7aX_9tOv1Rr-ZP4WdESiSejDwGTyI7XPY3pAPfAHI0w5PPpC6JfVHOsV2FEi9PrtAuv_9nCAYJbN-sI_OepkI7C4Esx_PO3KCheJ8vMjzEpbz2dfDYzquRaBeqKqj6edqFRufVsy4hC9Y8JpH6aMIvMKiUUTnHItNUWDGcZ4HFhCI-KqUtkH-JV7BVnvRxtdAlBa6SdO4TmikPtZV0aqyEVK5MhdWZfDuxlXmclC_MMgakkPNH4dmME1evH0jKVb3BxhHM8bR3BfHDN6nGJiUV92V9XYcD0BDk0KVqZEGKMGFrDLYuwmTGRPuh-HI5LHVInzKYP82dHcY_eZ_GL0LT9L6-WE2cQ-2uqvr-BZBSucm8LCcH03g0XS2OP0y6b9OfB6tGJ4tF6f1t9-flOWE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ9qWtpaKlVPFontOJtKqMrSRbsFlqoCiZvxK_SwZLdLEOLP9bd1nE0WqkrcuFpRZM3rm8_2zABsJS4tLeOO9qyMqShFj5ok19TbEhNYkXrbNNI-HMvhifh-mp6uwJ-uFiY8q-xiYhOo3dSGM_JthlQNYyni49fZbxqmRoXb1W6Ehm5HK7idpsVYW9ix72-ukcJd7oy-ob4_MbY3ON4d0nbKALU8zWsa7ipzX9owscUEuE6clcwL67ljOfpg5o0xiS-zDA2YsdglDnHd5j2hS6QzHP_7CNYEFzmSv7X-YPzj5_KUJ-YcSSBf9EXlPI-3fZVIpAGci3-QsBkY8D8sbMD6VTXTN9d6MrmDe3tP4UmbsJJiYWHPYMVXz2HjThvDF4B8cffoCykqUoxoH2HRkWJyjsKrf10QTIrJoCkwpIOmXQWiHMEohOs1OcKAddE-KHoJJw8iuFewWk0r_xpIKrksQ1Ww4RIpmDa512mv5CI1vZjrNIKPnajUbNGFQyF7CQJVtwKNoB-kuPwidM5uFqbzc9U6otIs8w7TOiczi_FKG5skmfSWJza2TGYRfA46UMG_67m2ui1TwI2GTlmqQDqScobajmCzU5NqHf9S3ZppBFtL1d2z6Tf3_-UDrA-PDw_UwWi8_xYeh2H3i0rITVit51f-HaZEtXnf2h2Bs4c29b9mUBo9 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BlUo5VH2qobS1VBAnaxM7cZJKVRVgt2xpoYcicTN-hR6W7LIEIf5af13HeSxUlbhxtaLImvdne74B2IxsUhrGLc2MCGlcxhnVUa6oMyUWsHHiTEOk_eNQ7B_H306SkyX40_fC-GeVfUxsArWdGn9GPmAI1TCWYn4clN2ziJ97oy-zC-onSPmb1n6cRmsiB-7mGuHb5efxHup6i7HR8NfuPu0mDFDDk7ym_p4yd6Xx01q0T9WRNYK52DhuWY7-lzqtdeTKNEXjZSy0kcWcbvIsViVCGY7_XYZHqWdx913qo6-L852Qc4R_vGVE5TwPB66KBAIAzuN_cmAzKuD_hLAGq1fVTN1cq8nkTsYbPYOnXalKita2nsOSq17A2h0Cw5eASHH36BMpKlKM6Q4mREuKyRmKqv59TrAcJsOmtZAOG6IKzG8E4w-u1-QIQ9V595ToFRw_iNhew0o1rdwbIIngovT9wJoLBF9K504lWcnjRGchV0kAH3tRyVnLvyERt3iByluBBrDjpbj4wnNmNwvT-ZnsXFAqljqLBZ0VqcFIpbSJolQ4wyMTGibSALa9DqT37HqujOoaFHCjniNLFghEEs54nAew0atJdi5_KW8NNIDNheru2fT6_X_5AI_RwOX38eHBW3jip9y3LZAbsFLPr9w7rIVq_b4xOgKnD23lfwGcsRfX |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7o9kH74F2MVglY8CnNzjUTXyQtW6pg64ML9SnMtRa32WWbreiv90ySrauCCL4OE5hwbt-XnPMNwC5xIljKXKasHGc8cJUZUurM24AAlgtvOyHt98fyaMrfnYrTjSn-2FaJVPy8S9JdhyzyE5YTmVOSF4zxfOHCm6vhWxKRpRIKIb24CVtSIBofwdb0-EP1qfuZPDzdq5IyZPe5b4hEEM4Y_6UOdXL9fyblbbi1ahb621c9m21UncO7oNfn7ZtNvuytWrNnv_8m5fg_L3QP7gyQNK16H7oPN3zzALY3hAofAjLCg5PXadWk1dtsHwufS6vZ2Xx53n6-SBH2ppNuhDCbdIIUWMdSzDO43qYnmJIuhpahRzA9nHw8OMqGCxgyy0TZZvE3bumDjZfZmIhkiLOSem49c7TE9FR4YwzxoSgwtikdO-IQ8thScR2Q6bHHMGrmjX8CqZBMhjj3a5hEkqVN6bVQgXFh1JhpkcDLtTnqRa-zUSM_iUarfxotgf1oqesdURu7W5gvz-oh1GpNC-8QuDlZWMxI2lhCCuktI3ZsqSwSeBXtXMcIbpfa6mEQAQ8atbDqCgmHYJTxMoGdtSvUQ2hf1lQpBEUKgVoCu9fu8ZdDP_23bc_gdrzKvp9z3IFRu1z55wh4WvNi8OkfZKv2Aw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EECO%3A+An+AI-Based+Algorithm+for+Energy-Efficient+Comfort+Optimisation&rft.jtitle=Energies+%28Basel%29&rft.au=Segala%2C+Giacomo&rft.au=Doriguzzi-Corin%2C+Roberto&rft.au=Peroni%2C+Claudio&rft.au=Gerola%2C+Matteo&rft.date=2023-11-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=21&rft.spage=7334&rft_id=info:doi/10.3390%2Fen16217334&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16217334 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |