EECO: An AI-Based Algorithm for Energy-Efficient Comfort Optimisation

Environmental comfort takes a central role in the well-being and health of people. In modern industrial, commercial, and residential buildings, passive energy sources (such as solar irradiance and heat exchangers) and heating, ventilation, and air conditioning (HVAC) systems are usually employed to...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 16; no. 21; p. 7334
Main Authors Segala, Giacomo, Doriguzzi-Corin, Roberto, Peroni, Claudio, Gerola, Matteo, Siracusa, Domenico
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en16217334

Cover

Abstract Environmental comfort takes a central role in the well-being and health of people. In modern industrial, commercial, and residential buildings, passive energy sources (such as solar irradiance and heat exchangers) and heating, ventilation, and air conditioning (HVAC) systems are usually employed to achieve the required comfort. While passive strategies can effectively enhance the livability of indoor spaces with limited or no energy cost, active strategies based on HVAC machines are often preferred to have direct control over the environment. Commonly, the working parameters of such machines are manually tuned to a fixed set point during working hours or throughout the whole day, leading to inefficiencies in terms of comfort and energy consumption. Albeit effective, previous works that tackle the comfort–energy tradeoff are tailored to the specific environment under study (in terms of geometry, characteristics of the building, etc.) and thus cannot be applied on a large industrial scale. We address the problem from a different angle and propose an adaptive and practical solution for comfort optimisation. It does not require the intervention of expert personnel or any customisations around the environment while it implicitly analyses the influence of different agents (e.g., passive phenomena) on the monitored parameters. A convolutional neural network (CNN) predicts the long-term impact on thermal comfort and energy consumption of a range of possible actuation strategies for the HVAC system. The decision on the best HVAC settings is taken by choosing the combination of ON/OFF and set point (SP), which optimises thermal comfort and, at the same time, minimises energy consumption. We validate our solution in a real-world scenario and through software simulations, providing a performance comparison against the fixed set point strategy and a greedy approach. The evaluation results show that our solution achieves the desired thermal comfort while reducing the energy footprint by up to approximately 16% in a real environment.
AbstractList Environmental comfort takes a central role in the well-being and health of people. In modern industrial, commercial, and residential buildings, passive energy sources (such as solar irradiance and heat exchangers) and heating, ventilation, and air conditioning (HVAC) systems are usually employed to achieve the required comfort. While passive strategies can effectively enhance the livability of indoor spaces with limited or no energy cost, active strategies based on HVAC machines are often preferred to have direct control over the environment. Commonly, the working parameters of such machines are manually tuned to a fixed set point during working hours or throughout the whole day, leading to inefficiencies in terms of comfort and energy consumption. Albeit effective, previous works that tackle the comfort–energy tradeoff are tailored to the specific environment under study (in terms of geometry, characteristics of the building, etc.) and thus cannot be applied on a large industrial scale. We address the problem from a different angle and propose an adaptive and practical solution for comfort optimisation. It does not require the intervention of expert personnel or any customisations around the environment while it implicitly analyses the influence of different agents (e.g., passive phenomena) on the monitored parameters. A convolutional neural network (CNN) predicts the long-term impact on thermal comfort and energy consumption of a range of possible actuation strategies for the HVAC system. The decision on the best HVAC settings is taken by choosing the combination of ON/OFF and set point (SP), which optimises thermal comfort and, at the same time, minimises energy consumption. We validate our solution in a real-world scenario and through software simulations, providing a performance comparison against the fixed set point strategy and a greedy approach. The evaluation results show that our solution achieves the desired thermal comfort while reducing the energy footprint by up to approximately 16% in a real environment.
Audience Academic
Author Segala, Giacomo
Gerola, Matteo
Siracusa, Domenico
Doriguzzi-Corin, Roberto
Peroni, Claudio
Author_xml – sequence: 1
  givenname: Giacomo
  orcidid: 0000-0001-9380-2384
  surname: Segala
  fullname: Segala, Giacomo
– sequence: 2
  givenname: Roberto
  orcidid: 0000-0002-8001-7835
  surname: Doriguzzi-Corin
  fullname: Doriguzzi-Corin, Roberto
– sequence: 3
  givenname: Claudio
  surname: Peroni
  fullname: Peroni, Claudio
– sequence: 4
  givenname: Matteo
  orcidid: 0000-0002-1001-8242
  surname: Gerola
  fullname: Gerola, Matteo
– sequence: 5
  givenname: Domenico
  orcidid: 0000-0002-5640-6507
  surname: Siracusa
  fullname: Siracusa, Domenico
BookMark eNp9UU1v1DAQtVArUZZe-gsicQOl2J7EjrmFVSgrVdpLe7YcfyxeJfbieIX232MIKpyYOczo6c3Tm5k36CrEYBG6I_geQOCPNhBGCQdoXqEbIgSrCeZw9U__Gt0uyxGXACAAcIOGYdjuP1V9qPpd_Vkt1lT9dIjJ529z5WKqhmDT4VIPznntbcjVNs4Fz9X-lP3sF5V9DG_RtVPTYm__1A16_jI8bb_Wj_uH3bZ_rDW0IteUN1RYpzHjMIIQQIxm1DbagqGi6zi34zgS6zjHLaEUG2IwAy26RjmGCWzQbtU1UR3lKflZpYuMysvfQEwHqVL2erJSUW4NI9QwrhvaqlETwpnVQDTWtBjYoA-r1jmc1OWHmqYXQYLlr4PKvwct7Hcr-5Ti97NdsjzGcwplWUm7riO0Y9AW1v3KOqhiwQcXc1K6pLGz1-Vbzhe855y2QKERZeD9OqBTXJZk3f88_ATp8ZBz
Cites_doi 10.1016/j.egypro.2015.07.218
10.1016/j.apenergy.2020.115147
10.1016/j.buildenv.2020.106863
10.1016/j.buildenv.2012.08.024
10.3390/app112210771
10.1016/j.enbuild.2015.11.033
10.1016/j.jobe.2021.103678
10.1016/j.enbuild.2023.112848
10.1109/CCDC.2014.6852646
10.3390/en13174363
10.1016/j.enbuild.2020.109807
10.1016/j.enbuild.2020.110469
10.1016/j.softx.2020.100563
10.1016/j.enconman.2022.116573
10.1109/JIOT.2020.2992117
10.1016/j.rser.2019.06.014
10.3390/su12020482
10.1016/j.enbuild.2015.06.002
10.1016/j.isatra.2019.10.006
10.1109/ICASSP.2019.8682194
10.1016/j.rser.2021.110969
10.1016/j.buildenv.2019.03.038
10.1016/j.enbuild.2017.07.056
10.1016/j.scs.2011.09.001
10.1177/0143624412465200
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/en16217334
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_a27ed612d67c425abc1176ec31c0c267
10.3390/en16217334
A772532349
10_3390_en16217334
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c359t-27429efc0673b39931dc62e4ce3d298877ebbb1ef77051220d1d063c984af6013
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Tue Oct 14 19:06:01 EDT 2025
Wed Oct 29 07:03:32 EDT 2025
Mon Jun 30 06:32:03 EDT 2025
Mon Oct 20 16:54:50 EDT 2025
Thu Oct 16 04:41:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-27429efc0673b39931dc62e4ce3d298877ebbb1ef77051220d1d063c984af6013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5640-6507
0000-0002-1001-8242
0000-0001-9380-2384
0000-0002-8001-7835
OpenAccessLink https://doaj.org/article/a27ed612d67c425abc1176ec31c0c267
PQID 2888128635
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_a27ed612d67c425abc1176ec31c0c267
unpaywall_primary_10_3390_en16217334
proquest_journals_2888128635
gale_infotracacademiconefile_A772532349
crossref_primary_10_3390_en16217334
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_9) 2023; 284
Liu (ref_4) 2020; 228
Tartarini (ref_27) 2020; 12
Guo (ref_29) 2020; 117
Essaaidi (ref_15) 2021; 144
ref_35
ref_34
ref_33
ref_31
Khan (ref_21) 2015; 75
ref_30
Chen (ref_8) 2015; 102
Yang (ref_16) 2012; 2
ref_18
Valladares (ref_11) 2019; 155
Gao (ref_12) 2020; 7
ref_17
Yau (ref_20) 2014; 35
Manjarres (ref_13) 2017; 152
Radi (ref_32) 2022; 46
Ascione (ref_10) 2016; 111
ref_25
ref_24
ref_23
Schiavon (ref_36) 2013; 59
Martell (ref_14) 2020; 99
ref_22
ref_1
ref_3
Yang (ref_6) 2020; 271
ref_2
Wu (ref_7) 2020; 177
ref_28
ref_26
Ngarambe (ref_19) 2020; 211
Baldi (ref_5) 2023; 276
References_xml – ident: ref_28
– ident: ref_30
– ident: ref_3
– ident: ref_24
– ident: ref_26
– ident: ref_34
– volume: 75
  start-page: 1373
  year: 2015
  ident: ref_21
  article-title: Thermal Comfort Analysis of PMV Model Prediction in Air Conditioned and Naturally Ventilated Buildings
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.218
– volume: 271
  start-page: 115147
  year: 2020
  ident: ref_6
  article-title: Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115147
– volume: 177
  start-page: 106863
  year: 2020
  ident: ref_7
  article-title: A PMV-based HVAC control strategy for office rooms subjected to solar radiation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.106863
– volume: 59
  start-page: 250
  year: 2013
  ident: ref_36
  article-title: Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.08.024
– ident: ref_25
  doi: 10.3390/app112210771
– volume: 111
  start-page: 131
  year: 2016
  ident: ref_10
  article-title: Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.11.033
– volume: 46
  start-page: 103678
  year: 2022
  ident: ref_32
  article-title: Data-driven based HVAC optimisation approaches: A Systematic Literature Review
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.103678
– volume: 284
  start-page: 112848
  year: 2023
  ident: ref_9
  article-title: The impact of personal preference-based thermal control on energy use and thermal comfort: Field implementation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.112848
– ident: ref_1
– ident: ref_23
– ident: ref_17
  doi: 10.1109/CCDC.2014.6852646
– ident: ref_18
  doi: 10.3390/en13174363
– volume: 211
  start-page: 109807
  year: 2020
  ident: ref_19
  article-title: The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109807
– volume: 228
  start-page: 110469
  year: 2020
  ident: ref_4
  article-title: Effectiveness of passive design strategies in responding to future climate change for residential buildings in hot and humid Hong Kong
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110469
– volume: 12
  start-page: 100563
  year: 2020
  ident: ref_27
  article-title: CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100563
– ident: ref_31
– ident: ref_33
– ident: ref_2
– volume: 276
  start-page: 116573
  year: 2023
  ident: ref_5
  article-title: Dynamic optimization for minimal HVAC demand with latent heat storage, heat recovery, natural ventilation, and solar shadings
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.116573
– volume: 7
  start-page: 8472
  year: 2020
  ident: ref_12
  article-title: DeepComfort: Energy-Efficient Thermal Comfort Control in Buildings Via Reinforcement Learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2992117
– volume: 117
  start-page: 109207
  year: 2020
  ident: ref_29
  article-title: On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.06.014
– ident: ref_35
  doi: 10.3390/su12020482
– volume: 102
  start-page: 357
  year: 2015
  ident: ref_8
  article-title: Model predictive control for indoor thermal comfort and energy optimization using occupant feedback
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.06.002
– volume: 99
  start-page: 454
  year: 2020
  ident: ref_14
  article-title: Multiobjective control architecture to estimate optimal set points for user comfort and energy saving in buildings
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.10.006
– ident: ref_22
  doi: 10.1109/ICASSP.2019.8682194
– volume: 144
  start-page: 110969
  year: 2021
  ident: ref_15
  article-title: Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110969
– volume: 155
  start-page: 105
  year: 2019
  ident: ref_11
  article-title: Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.03.038
– volume: 152
  start-page: 409
  year: 2017
  ident: ref_13
  article-title: An energy-efficient predictive control for HVAC systems applied to tertiary buildings based on regression techniques
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.07.056
– volume: 2
  start-page: 1
  year: 2012
  ident: ref_16
  article-title: Multi-objective optimization for decision-making of energy and comfort management in building automation and control
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2011.09.001
– volume: 35
  start-page: 23
  year: 2014
  ident: ref_20
  article-title: A review on predicted mean vote and adaptive thermal comfort models
  publication-title: Build. Serv. Eng. Res. Technol.
  doi: 10.1177/0143624412465200
SSID ssj0000331333
Score 2.353699
Snippet Environmental comfort takes a central role in the well-being and health of people. In modern industrial, commercial, and residential buildings, passive energy...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7334
SubjectTerms Algorithms
automated HVAC configuration
Automation
deep learning
Energy consumption
Energy efficiency
Energy use
Green buildings
HVAC
Implements, utensils, etc
Indoor air quality
Internet of Things
Mathematical models
Neural networks
Simulation methods
Software
thermal comfort
Work hours
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9UH7IH5iapUFCz4tzX4mEURy5UoVvIpY6NuyX6kP19x5phT_e2dzybUi9DWEsJnd-c1vdnd-A3DIgmo8F4GWXudUNrKkjlWWRt8ggZUq-l5I--tcn57LLxfqYgfmYy1MulY5YmIP1GHp0x75EcdUDbEU4-On1S-aukal09WxhYYdWiuEj73E2APY5UkZawK709n82_ftrksuBCZlYqNTKjDfP4ot00jLhZD_RKZewP9_mN6Dh9ftyv65sYvFnTh08gQeDwSS1JsZfwo7sX0Ge3dkBZ8D5m_HZx9I3ZL6M51imAqkXlziz3Q_rwiSVDLrC_7orJePwKhDEBXweUfOEECuhgs-L-D8ZPbj-JQO7RKoF6rqaDp0rWLjU-sZl3gHC17zKH0UgVcIJkV0zrHYFAV6Iud5YAEJiq9KaRvMy8RLmLTLNr4CorTQTarSdUJjSmRdFa0qGyGVK3NhVQbvRlOZ1UYVw2A2kQxqbg2awTRZcftGUrLuHyzXl2ZwDGN5EQPSrKALj_hhnWes0NEL5nPPdZHB-zQHJvlbt7beDmUDONCkXGVqTA-U4EJWGRyM02QGR_xtbpdNBofbqbtn0Pv3f-U1PEoN5zfViAcw6dbX8Q3Sks69HdbaX6Xz3oA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7o9kH74F2MVglY8CnNzjUTXyQtW6pg64ML9SnMtRa32WWbreiv90ySrauCCL4OE5hwbt-XnPMNwC5xIljKXKasHGc8cJUZUurM24AAlgtvOyHt98fyaMrfnYrTjSn-2FaJVPy8S9JdhyzyE5YTmVOSF4zxfOHCm6vhWxKRpRIKIb24CVtSIBofwdb0-EP1qfuZPDzdq5IyZPe5b4hEEM4Y_6UOdXL9fyblbbi1ahb621c9m21UncO7oNfn7ZtNvuytWrNnv_8m5fg_L3QP7gyQNK16H7oPN3zzALY3hAofAjLCg5PXadWk1dtsHwufS6vZ2Xx53n6-SBH2ppNuhDCbdIIUWMdSzDO43qYnmJIuhpahRzA9nHw8OMqGCxgyy0TZZvE3bumDjZfZmIhkiLOSem49c7TE9FR4YwzxoSgwtikdO-IQ8thScR2Q6bHHMGrmjX8CqZBMhjj3a5hEkqVN6bVQgXFh1JhpkcDLtTnqRa-zUSM_iUarfxotgf1oqesdURu7W5gvz-oh1GpNC-8QuDlZWMxI2lhCCuktI3ZsqSwSeBXtXMcIbpfa6mEQAQ8atbDqCgmHYJTxMoGdtSvUQ2hf1lQpBEUKgVoCu9fu8ZdDP_23bc_gdrzKvp9z3IFRu1z55wh4WvNi8OkfZKv2Aw
  priority: 102
  providerName: Unpaywall
Title EECO: An AI-Based Algorithm for Energy-Efficient Comfort Optimisation
URI https://www.proquest.com/docview/2888128635
https://www.mdpi.com/1996-1073/16/21/7334/pdf?version=1698581145
https://doaj.org/article/a27ed612d67c425abc1176ec31c0c267
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RQEB-0HrSH4ifG1uWBBU-P5n0m8ZYtu62C2yIurKfH-0o9bNNSU8T_3nlJWleE9uIlh0cOw0xm5vcjb34DsM-CajwXgZZe51Q2sqSOVZZG3yCAlSr6Xkj780IfL-WnlVptrPpKd8IGeeDBcQeWFzFgGw668Ph9WecZK3T0gvncc93PkedltUGm-hosBJIvMeiRCuT1B7FlGuG3EPKvDtQL9f9bjrfh8XV7aX_9tOv1Rr-ZP4WdESiSejDwGTyI7XPY3pAPfAHI0w5PPpC6JfVHOsV2FEi9PrtAuv_9nCAYJbN-sI_OepkI7C4Esx_PO3KCheJ8vMjzEpbz2dfDYzquRaBeqKqj6edqFRufVsy4hC9Y8JpH6aMIvMKiUUTnHItNUWDGcZ4HFhCI-KqUtkH-JV7BVnvRxtdAlBa6SdO4TmikPtZV0aqyEVK5MhdWZfDuxlXmclC_MMgakkPNH4dmME1evH0jKVb3BxhHM8bR3BfHDN6nGJiUV92V9XYcD0BDk0KVqZEGKMGFrDLYuwmTGRPuh-HI5LHVInzKYP82dHcY_eZ_GL0LT9L6-WE2cQ-2uqvr-BZBSucm8LCcH03g0XS2OP0y6b9OfB6tGJ4tF6f1t9-flOWE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ9qWtpaKlVPFontOJtKqMrSRbsFlqoCiZvxK_SwZLdLEOLP9bd1nE0WqkrcuFpRZM3rm8_2zABsJS4tLeOO9qyMqShFj5ok19TbEhNYkXrbNNI-HMvhifh-mp6uwJ-uFiY8q-xiYhOo3dSGM_JthlQNYyni49fZbxqmRoXb1W6Ehm5HK7idpsVYW9ix72-ukcJd7oy-ob4_MbY3ON4d0nbKALU8zWsa7ipzX9owscUEuE6clcwL67ljOfpg5o0xiS-zDA2YsdglDnHd5j2hS6QzHP_7CNYEFzmSv7X-YPzj5_KUJ-YcSSBf9EXlPI-3fZVIpAGci3-QsBkY8D8sbMD6VTXTN9d6MrmDe3tP4UmbsJJiYWHPYMVXz2HjThvDF4B8cffoCykqUoxoH2HRkWJyjsKrf10QTIrJoCkwpIOmXQWiHMEohOs1OcKAddE-KHoJJw8iuFewWk0r_xpIKrksQ1Ww4RIpmDa512mv5CI1vZjrNIKPnajUbNGFQyF7CQJVtwKNoB-kuPwidM5uFqbzc9U6otIs8w7TOiczi_FKG5skmfSWJza2TGYRfA46UMG_67m2ui1TwI2GTlmqQDqScobajmCzU5NqHf9S3ZppBFtL1d2z6Tf3_-UDrA-PDw_UwWi8_xYeh2H3i0rITVit51f-HaZEtXnf2h2Bs4c29b9mUBo9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BlUo5VH2qobS1VBAnaxM7cZJKVRVgt2xpoYcicTN-hR6W7LIEIf5af13HeSxUlbhxtaLImvdne74B2IxsUhrGLc2MCGlcxhnVUa6oMyUWsHHiTEOk_eNQ7B_H306SkyX40_fC-GeVfUxsArWdGn9GPmAI1TCWYn4clN2ziJ97oy-zC-onSPmb1n6cRmsiB-7mGuHb5efxHup6i7HR8NfuPu0mDFDDk7ym_p4yd6Xx01q0T9WRNYK52DhuWY7-lzqtdeTKNEXjZSy0kcWcbvIsViVCGY7_XYZHqWdx913qo6-L852Qc4R_vGVE5TwPB66KBAIAzuN_cmAzKuD_hLAGq1fVTN1cq8nkTsYbPYOnXalKita2nsOSq17A2h0Cw5eASHH36BMpKlKM6Q4mREuKyRmKqv59TrAcJsOmtZAOG6IKzG8E4w-u1-QIQ9V595ToFRw_iNhew0o1rdwbIIngovT9wJoLBF9K504lWcnjRGchV0kAH3tRyVnLvyERt3iByluBBrDjpbj4wnNmNwvT-ZnsXFAqljqLBZ0VqcFIpbSJolQ4wyMTGibSALa9DqT37HqujOoaFHCjniNLFghEEs54nAew0atJdi5_KW8NNIDNheru2fT6_X_5AI_RwOX38eHBW3jip9y3LZAbsFLPr9w7rIVq_b4xOgKnD23lfwGcsRfX
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7o9kH74F2MVglY8CnNzjUTXyQtW6pg64ML9SnMtRa32WWbreiv90ySrauCCL4OE5hwbt-XnPMNwC5xIljKXKasHGc8cJUZUurM24AAlgtvOyHt98fyaMrfnYrTjSn-2FaJVPy8S9JdhyzyE5YTmVOSF4zxfOHCm6vhWxKRpRIKIb24CVtSIBofwdb0-EP1qfuZPDzdq5IyZPe5b4hEEM4Y_6UOdXL9fyblbbi1ahb621c9m21UncO7oNfn7ZtNvuytWrNnv_8m5fg_L3QP7gyQNK16H7oPN3zzALY3hAofAjLCg5PXadWk1dtsHwufS6vZ2Xx53n6-SBH2ppNuhDCbdIIUWMdSzDO43qYnmJIuhpahRzA9nHw8OMqGCxgyy0TZZvE3bumDjZfZmIhkiLOSem49c7TE9FR4YwzxoSgwtikdO-IQ8thScR2Q6bHHMGrmjX8CqZBMhjj3a5hEkqVN6bVQgXFh1JhpkcDLtTnqRa-zUSM_iUarfxotgf1oqesdURu7W5gvz-oh1GpNC-8QuDlZWMxI2lhCCuktI3ZsqSwSeBXtXMcIbpfa6mEQAQ8atbDqCgmHYJTxMoGdtSvUQ2hf1lQpBEUKgVoCu9fu8ZdDP_23bc_gdrzKvp9z3IFRu1z55wh4WvNi8OkfZKv2Aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EECO%3A+An+AI-Based+Algorithm+for+Energy-Efficient+Comfort+Optimisation&rft.jtitle=Energies+%28Basel%29&rft.au=Segala%2C+Giacomo&rft.au=Doriguzzi-Corin%2C+Roberto&rft.au=Peroni%2C+Claudio&rft.au=Gerola%2C+Matteo&rft.date=2023-11-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=21&rft.spage=7334&rft_id=info:doi/10.3390%2Fen16217334&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16217334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon