Natural Language-Based Human-Machine Collaborative Learning Games Algorithm Based on Deep Rein-Forcement Learning

Human-machine collaborative game agents are usually in an open environment, and they typically obtain behavioral information through environmental rewards. However, traditional agent environment exploration techniques are limited in reward-sparse environments. Deep rein-forcement learning was adopte...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 28818 - 28830
Main Author Na, Le
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3365500

Cover

Abstract Human-machine collaborative game agents are usually in an open environment, and they typically obtain behavioral information through environmental rewards. However, traditional agent environment exploration techniques are limited in reward-sparse environments. Deep rein-forcement learning was adopted to design an algorithm with adversarial sparse reward environment rewards and improve the exploration ability and the decision-making ability of agents in electronic game environments. First, a human-machine collaboration model was designed using natural language instructions to guide the rein-forcement learning process of agents based on the concept of reward construction. Then, a hind-sight experience re-play algorithm was introduced to optimize it, solving the reward problem of human-machine collaborative agents in a sparse reward environment. These experiments confirmed that the designed natural language reward construction model could achieve a score of 9.8 in the game and achieve 92% prediction accuracy. The model optimized through hind-sight experience re-play could achieve a maximum accuracy of 97.8% in achieving target instructions and ultimately obtain a game score of 9.9. As a result, the designed natural language human-machine collaboration model has good application performance in coefficient reward environment games and can obtain better scores.
AbstractList Human-machine collaborative game agents are usually in an open environment, and they typically obtain behavioral information through environmental rewards. However, traditional agent environment exploration techniques are limited in reward-sparse environments. Deep rein-forcement learning was adopted to design an algorithm with adversarial sparse reward environment rewards and improve the exploration ability and the decision-making ability of agents in electronic game environments. First, a human-machine collaboration model was designed using natural language instructions to guide the rein-forcement learning process of agents based on the concept of reward construction. Then, a hind-sight experience re-play algorithm was introduced to optimize it, solving the reward problem of human-machine collaborative agents in a sparse reward environment. These experiments confirmed that the designed natural language reward construction model could achieve a score of 9.8 in the game and achieve 92% prediction accuracy. The model optimized through hind-sight experience re-play could achieve a maximum accuracy of 97.8% in achieving target instructions and ultimately obtain a game score of 9.9. As a result, the designed natural language human-machine collaboration model has good application performance in coefficient reward environment games and can obtain better scores.
Author Na, Le
Author_xml – sequence: 1
  givenname: Le
  orcidid: 0009-0002-9407-415X
  surname: Na
  fullname: Na, Le
  email: 13756155689@163.com
  organization: School of Education, Jilin International Studies University, Jilin, Changchun, China
BookMark eNplkU1v1DAQhiNUJErpL4BDJM5Z_BE7znEJ_ZIWkCicrYk9TrNK7K2dFPXfkyVVVcFcZjSa55FG79vsxAePWfaekg2lpP60bZqL29sNI6zccC6FIORVdsqorAsuuDx5Mb_JzlPak6XUshLVaXb_DaY5wpDvwHczdFh8hoQ2v55H8MVXMHe9x7wJwwBtiDD1D5jvEKLvfZdfwYgp3w5diP10N-YrGnz-BfGQ_8DeF5chGhzRT8_Uu-y1gyHh-VM_y35dXvxsrovd96ubZrsrDBf1VFAkkjhBWIWqrZTBSikC4CwwZluQjNTEGKCiqjmpuWOOuhIpodxRaRH4WXazem2AvT7EfoT4qAP0-u8ixE5DnHozoOaMSWEt4RW3pZJOWV6CbB2aslXKHl3l6pr9AR5_wzA8CynRxxQ0GIMp6WMK-imFBfu4YocY7mdMk96HOfrla81qzkQlCRPLFV-vTAwpRXT_udeE_3V_WKkeEV8QJeelovwPfrGiTA
CODEN IAECCG
Cites_doi 10.1016/j.ijhydene.2021.09.196
10.1111/evj.13506
10.1109/jsac.2020.3018825
10.1287/moor.2019.1033
10.1109/jsac.2020.3000835
10.1016/j.neunet.2020.11.012
10.1049/cmu2.12334
10.1162/jocn_a_01508
10.1016/j.neunet.2021.02.026
10.1109/tits.2020.3014263
10.1007/s10489-022-03219-7
10.1016/j.ijhydene.2021.07.009
10.1523/jneurosci.2611-19.2020
10.1587/transcom.2022ebp3160
10.1002/ppul.24564
10.47852/bonviewjcce512522514
10.1002/sim.8322
10.1093/mnras/sty2728
10.1109/jlt.2021.3120874
10.1049/gtd2.12206
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3365500
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) (F)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL) (F)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 28830
ExternalDocumentID oai_doaj_org_article_32265dd0373d486f8d34a6bfec4b88da
10.1109/access.2024.3365500
10_1109_ACCESS_2024_3365500
10433481
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-1e060f5027e8b78ce7880aafda22dba62090cca15793093f2f1f4e1013f16dea3
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:33 EDT 2025
Tue Aug 19 16:48:10 EDT 2025
Mon Jun 30 05:17:49 EDT 2025
Wed Oct 01 04:52:19 EDT 2025
Wed Aug 27 02:08:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-1e060f5027e8b78ce7880aafda22dba62090cca15793093f2f1f4e1013f16dea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-9407-415X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/10433481.pdf
PQID 2932576025
PQPubID 4845423
PageCount 13
ParticipantIDs ieee_primary_10433481
unpaywall_primary_10_1109_access_2024_3365500
crossref_primary_10_1109_ACCESS_2024_3365500
doaj_primary_oai_doaj_org_article_32265dd0373d486f8d34a6bfec4b88da
proquest_journals_2932576025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref18
  doi: 10.1016/j.ijhydene.2021.09.196
– ident: ref19
  doi: 10.1111/evj.13506
– ident: ref2
  doi: 10.1109/jsac.2020.3018825
– ident: ref13
  doi: 10.1287/moor.2019.1033
– ident: ref7
  doi: 10.1109/jsac.2020.3000835
– ident: ref4
  doi: 10.1016/j.neunet.2020.11.012
– ident: ref5
  doi: 10.1049/cmu2.12334
– ident: ref12
  doi: 10.1162/jocn_a_01508
– ident: ref16
  doi: 10.1016/j.neunet.2021.02.026
– ident: ref1
  doi: 10.1109/tits.2020.3014263
– ident: ref8
  doi: 10.1007/s10489-022-03219-7
– ident: ref17
  doi: 10.1016/j.ijhydene.2021.07.009
– ident: ref20
  doi: 10.1523/jneurosci.2611-19.2020
– ident: ref9
  doi: 10.1587/transcom.2022ebp3160
– ident: ref14
  doi: 10.1002/ppul.24564
– ident: ref15
  doi: 10.47852/bonviewjcce512522514
– ident: ref10
  doi: 10.1002/sim.8322
– ident: ref11
  doi: 10.1093/mnras/sty2728
– ident: ref3
  doi: 10.1109/jlt.2021.3120874
– ident: ref6
  doi: 10.1049/gtd2.12206
SSID ssj0000816957
Score 2.3025417
Snippet Human-machine collaborative game agents are usually in an open environment, and they typically obtain behavioral information through environmental rewards....
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 28818
SubjectTerms Algorithms
Behavioral sciences
Collaboration
Computer & video games
Cooperation
Deep learning
Deep rein-forcement learning
Deep reinforcement learning
Electronic games
Federated learning
Games
hind-sight experience re-play
Human computer interaction
human-machine collaboration
Human-machine systems
learning games
Learning systems
Machine learning
Model accuracy
Natural language
natural language instructions
Natural language processing
Natural languages
Open systems
Reinforcement learning
reward structure
User experience
Visual perception
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl9JDRYGqoVD50CMuTvwR57hsu0UVcEBF4mY5_qBIS3bZLlT994wds82qh164Rk4y8Zux34ycNwh9EhU1oTaWuBaCnDeyJMYLQWwbxcMELIipW8P5hTy94t-vxfWg1Vc8E9bLA_cTdwwOJ4VzlNXMcSWDcowb2QZveauUS9SIqmaQTKU1WJWyEXWWGSppczwaj-GLICGs-GfGJBBzurYVJcX-3GJljW2-eujm5s9vM50ONp7JNnqTGSMe9Za-RRu-20GvBzqCu-j-wiT5DHyWq4_kBDYnh1OFnpyn85Iej_9C_uhxFla9wd_iOVk8mt7MFrfLn3e4v3XW4S_ez_Glv-3IZLawqYy4umsPXU2-_hifktxLgVgmmiUpPZU0CEhCvWprZT2kvtSY4ExVudbIijYUwCwFxCttWKhCGbiHeGWhlM4b9g5tdrPOv0fYWGUqxz0M8bDMGmVsYJZaV9OylXVdoKPnadXzXjJDp1SDNrpHQUcUdEahQCdx6ldDo951ugBeoLMX6P95QYH2InCD9_H0i3GBDp6R1Dk4f2lgODHNArZXILJC9x9bTepYuWbr_kvY-gFtxWf2dZwDtLlcPPhDYDbL9mNy4iciKfM7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL) (F)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYXoAHxscQYQP5gUdcnDh2kseuo0yI9QExaW-RY5_HtJKUkoLgr9_ZcUsLQuItimzZzn347nL3O0JeyYxrV2jDbINCnlcqZRqkZKbx4GESFWLo1nA-U2cX-ftLeRmL1UMtDACE5DMY-cfwL992ZuVDZSjheSgc3SN7RamGYq1NQMV3kKhkEZGFUl69GU8meAj0AbN8JIRCW5zv3D4BpD92VdkxMO-u2oX--UPP51t3zfSAzNa7HFJMbkarvhmZX38AOP73MR6SB9HqpOOBTR6RO9A-Jve3sAifkK8zHSA46IcYwWQneMFZGqL87DzkXAKd_Gab70AjOOsVfedzbel4ftUtr_vPX-gwtWvpKcCCfoTrlk27pQmhyM2sQ3IxfftpcsZiPwZmhKx6lgJX3El0ZKFsitIAus9ca2d1ltlGq4xXHBkilSjzvBIuc6nLAWVeuFRZ0OIp2W-7Fp4Rqk2pM5sDDgFU1brUxgnDjS142qiiSMjrNZ3qxQC7UQd3hVf1QNbak7WOZE3IiaflZqjHzA4v8LvXUQRrVF1KWstFIWxeKldakWvVODB5U5ZWJ-TQ02prvYFMCTles0YdBfxbjVaSd9XQYkwI27DLX3vVoevlzl6f_2OZI3LPDxvCO8dkv1-u4AUaPH3zMjD6LRWH_Kg
  priority: 102
  providerName: IEEE
Title Natural Language-Based Human-Machine Collaborative Learning Games Algorithm Based on Deep Rein-Forcement Learning
URI https://ieeexplore.ieee.org/document/10433481
https://www.proquest.com/docview/2932576025
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10433481.pdf
https://doaj.org/article/32265dd0373d486f8d34a6bfec4b88da
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLWgs0AseA4iw1B5wZKkTpw4ybJTKCPEVAhRaVhZjn09U1HSqpMOjxX_wB_yJdw4bmlhBbsoshVH9_3wuYQ8yxKmbK50aCoU8rQUcaggy0JdteBhGSpEN63hbCJOp-nr8-zcJ9zcXRgAcM1nELWPrpY_g_mXfCCSFjytHAg08RgkoLin7hZptDT2JjkQGfriPXIwnbwdfmgnysWiDLmrTT7xwJoD5WYQYlCYpBHnAp1ztmeOHGq_H7Oy53HeWtdL9fWzms93jM_4LpGbY3c9Jx-jdVNF-tsfiI7__1_3yB3vl9Jhx0j3yQ2oH5DbO2iFD8nVRDmQDvrG5zjDEzSBhro6wM_vP85cXybQ0W_WugbqAVwv6Ku2H5cO5xeL1ay5_ES7zYuavgBY0ncwq8PxYqVdunK765BMxy_fj05DP7Mh1DwrmzAGJpjNMNiFosoLDRhiM6WsUUliKiUSVjJkmjhDvcBKbhMb2xRQL3AbCwOKPyK9elHDY0KVLlRiUsAlgOpcFUpbrpk2OYsrkecBeb4hnVx20BzShTSslMPRCPlXtpSWntIBOWnJu13a4mq7F0gK6cVUonoTmTGM59ykhbCF4akSlQWdVkVhVEAOW_LtfK8jVkCON9wivRK4kuhJteEcepUBCbcc9NdZO67cO-vRP64_Jr1mtYan6B81Vd_lFfruKmPfC8QvjTUOIQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOSwceC4isIAPHHFx4keSY7dQCrQ9oF1pb5Fjj3dXlKSUFAS_HttxSwtC4hZFHtnOzNgzk5lvEHohMqpsrjQxtVNyXsqUKBCC6NqDhwl3IIZuDbO5nJzx9-fiPBarh1oYAAjJZzDwj-Ffvmn12ofKnIbzUDh6Hd0QnHPRl2ttQyq-h0Qp8ogtlNLy1XA0cttwXmDGB4xJZ43TvfsnwPTHvip7JubhulmqH9_VYrFz24zvoPlmnX2SyafBuqsH-ucfEI7_vZG76Ha0O_GwF5R76Bo099GtHTTCB-jLXAUQDjyNMUxy4q44g0Ocn8xC1iXg0W_B-QY4wrNe4Lc-2xYPFxft6qq7_Ix70rbBrwGW-CNcNWTcrnQIRm6pjtDZ-M3paEJiRwaimSg7kgKV1ArnykJR54UG50BTpaxRWWZqJTNaUicSqXBaT0tmM5taDk7rmU2lAcUeooOmbeARwkoXKjMc3BBwh7UqlLZMU21ymtYyzxP0csOnatkDb1TBYaFl1bO18mytIlsTdOJ5uR3qUbPDC_fdq6iElTu8pDCGspwZXkhbGMaVrC1oXheFUQk68rzama9nU4KON6JRRRX_Wjk7yTtrzmZMENmKy19rVaHv5d5aH_9jmufocHI6m1bTd_MPT9BNT9IHe47RQbdaw1Nn_nT1syD0vwBvmAAE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AcltcisizIB46kdeLYSY7dQlkhtkKISsvJcuzxUlHSqpvyOvEf-If8EiaOW1o4wS2KbMXRfPOyx98Q8kSkTLtcm9hWqORZKZNYgxCxqVryMIEG0XdrOJ_Is2n28kJchA03fxcGAHzxGfTbR3-WP4P5l3wg05Y8rRxIdPGYJKC6Z_4WaX9p3XVyIAXG4j1yMJ28Hr5rO8olsoy5P5t8GIg1B9r3IMSkMM36nEsMztmeO_Ks_aHNyl7EeWNdL_XXz3o-33E-41tEbZbd1Zx86K-bqm--_cHo-P__dZschriUDjsg3SHXoL5Lbu6wFd4jVxPtSTroq7DHGZ-iC7TUnwP8_P7j3NdlAh39htYnoIHA9ZK-aOtx6XB-uVjNmvcfaTd5UdNnAEv6BmZ1PF6sjN-u3M46ItPx87ejszj0bIgNF2UTJ8AkcwKTXSiqvDCAKTbT2lmdprbSMmUlQ9AkAu0CK7lLXeIyQLvAXSItaH6f9OpFDQ8I1abQqc0AhwCac11o47hhxuYsqWSeR-TpRnRq2VFzKJ_SsFINRyPEr2olrYKkI3Lainc7tOXV9i9QFCqoqULzJoW1jOfcZoV0heWZlpUDk1VFYXVEjlrx7XyvE1ZETjZoUcEIXCmMpNp0DqPKiMRbBP211g6Ve2s9_sfxJ6TXrNbwCOOjpnoclOAX9PwMKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+Language-Based+Human%E2%80%93Machine+Collaborative+Learning+Games+Algorithm+Based+on+Deep+Rein-Forcement+Learning&rft.jtitle=IEEE+access&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=28818&rft.epage=28830&rft_id=info:doi/10.1109%2FACCESS.2024.3365500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3365500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon