Natural Language-Based Human-Machine Collaborative Learning Games Algorithm Based on Deep Rein-Forcement Learning
Human-machine collaborative game agents are usually in an open environment, and they typically obtain behavioral information through environmental rewards. However, traditional agent environment exploration techniques are limited in reward-sparse environments. Deep rein-forcement learning was adopte...
Saved in:
| Published in | IEEE access Vol. 12; pp. 28818 - 28830 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3365500 |
Cover
| Abstract | Human-machine collaborative game agents are usually in an open environment, and they typically obtain behavioral information through environmental rewards. However, traditional agent environment exploration techniques are limited in reward-sparse environments. Deep rein-forcement learning was adopted to design an algorithm with adversarial sparse reward environment rewards and improve the exploration ability and the decision-making ability of agents in electronic game environments. First, a human-machine collaboration model was designed using natural language instructions to guide the rein-forcement learning process of agents based on the concept of reward construction. Then, a hind-sight experience re-play algorithm was introduced to optimize it, solving the reward problem of human-machine collaborative agents in a sparse reward environment. These experiments confirmed that the designed natural language reward construction model could achieve a score of 9.8 in the game and achieve 92% prediction accuracy. The model optimized through hind-sight experience re-play could achieve a maximum accuracy of 97.8% in achieving target instructions and ultimately obtain a game score of 9.9. As a result, the designed natural language human-machine collaboration model has good application performance in coefficient reward environment games and can obtain better scores. |
|---|---|
| AbstractList | Human-machine collaborative game agents are usually in an open environment, and they typically obtain behavioral information through environmental rewards. However, traditional agent environment exploration techniques are limited in reward-sparse environments. Deep rein-forcement learning was adopted to design an algorithm with adversarial sparse reward environment rewards and improve the exploration ability and the decision-making ability of agents in electronic game environments. First, a human-machine collaboration model was designed using natural language instructions to guide the rein-forcement learning process of agents based on the concept of reward construction. Then, a hind-sight experience re-play algorithm was introduced to optimize it, solving the reward problem of human-machine collaborative agents in a sparse reward environment. These experiments confirmed that the designed natural language reward construction model could achieve a score of 9.8 in the game and achieve 92% prediction accuracy. The model optimized through hind-sight experience re-play could achieve a maximum accuracy of 97.8% in achieving target instructions and ultimately obtain a game score of 9.9. As a result, the designed natural language human-machine collaboration model has good application performance in coefficient reward environment games and can obtain better scores. |
| Author | Na, Le |
| Author_xml | – sequence: 1 givenname: Le orcidid: 0009-0002-9407-415X surname: Na fullname: Na, Le email: 13756155689@163.com organization: School of Education, Jilin International Studies University, Jilin, Changchun, China |
| BookMark | eNplkU1v1DAQhiNUJErpL4BDJM5Z_BE7znEJ_ZIWkCicrYk9TrNK7K2dFPXfkyVVVcFcZjSa55FG79vsxAePWfaekg2lpP60bZqL29sNI6zccC6FIORVdsqorAsuuDx5Mb_JzlPak6XUshLVaXb_DaY5wpDvwHczdFh8hoQ2v55H8MVXMHe9x7wJwwBtiDD1D5jvEKLvfZdfwYgp3w5diP10N-YrGnz-BfGQ_8DeF5chGhzRT8_Uu-y1gyHh-VM_y35dXvxsrovd96ubZrsrDBf1VFAkkjhBWIWqrZTBSikC4CwwZluQjNTEGKCiqjmpuWOOuhIpodxRaRH4WXazem2AvT7EfoT4qAP0-u8ixE5DnHozoOaMSWEt4RW3pZJOWV6CbB2aslXKHl3l6pr9AR5_wzA8CynRxxQ0GIMp6WMK-imFBfu4YocY7mdMk96HOfrla81qzkQlCRPLFV-vTAwpRXT_udeE_3V_WKkeEV8QJeelovwPfrGiTA |
| CODEN | IAECCG |
| Cites_doi | 10.1016/j.ijhydene.2021.09.196 10.1111/evj.13506 10.1109/jsac.2020.3018825 10.1287/moor.2019.1033 10.1109/jsac.2020.3000835 10.1016/j.neunet.2020.11.012 10.1049/cmu2.12334 10.1162/jocn_a_01508 10.1016/j.neunet.2021.02.026 10.1109/tits.2020.3014263 10.1007/s10489-022-03219-7 10.1016/j.ijhydene.2021.07.009 10.1523/jneurosci.2611-19.2020 10.1587/transcom.2022ebp3160 10.1002/ppul.24564 10.47852/bonviewjcce512522514 10.1002/sim.8322 10.1093/mnras/sty2728 10.1109/jlt.2021.3120874 10.1049/gtd2.12206 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3365500 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) (F) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) (F) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 28830 |
| ExternalDocumentID | oai_doaj_org_article_32265dd0373d486f8d34a6bfec4b88da 10.1109/access.2024.3365500 10_1109_ACCESS_2024_3365500 10433481 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c359t-1e060f5027e8b78ce7880aafda22dba62090cca15793093f2f1f4e1013f16dea3 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:33 EDT 2025 Tue Aug 19 16:48:10 EDT 2025 Mon Jun 30 05:17:49 EDT 2025 Wed Oct 01 04:52:19 EDT 2025 Wed Aug 27 02:08:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-1e060f5027e8b78ce7880aafda22dba62090cca15793093f2f1f4e1013f16dea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0002-9407-415X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/10433481.pdf |
| PQID | 2932576025 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10433481 unpaywall_primary_10_1109_access_2024_3365500 crossref_primary_10_1109_ACCESS_2024_3365500 doaj_primary_oai_doaj_org_article_32265dd0373d486f8d34a6bfec4b88da proquest_journals_2932576025 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref18 doi: 10.1016/j.ijhydene.2021.09.196 – ident: ref19 doi: 10.1111/evj.13506 – ident: ref2 doi: 10.1109/jsac.2020.3018825 – ident: ref13 doi: 10.1287/moor.2019.1033 – ident: ref7 doi: 10.1109/jsac.2020.3000835 – ident: ref4 doi: 10.1016/j.neunet.2020.11.012 – ident: ref5 doi: 10.1049/cmu2.12334 – ident: ref12 doi: 10.1162/jocn_a_01508 – ident: ref16 doi: 10.1016/j.neunet.2021.02.026 – ident: ref1 doi: 10.1109/tits.2020.3014263 – ident: ref8 doi: 10.1007/s10489-022-03219-7 – ident: ref17 doi: 10.1016/j.ijhydene.2021.07.009 – ident: ref20 doi: 10.1523/jneurosci.2611-19.2020 – ident: ref9 doi: 10.1587/transcom.2022ebp3160 – ident: ref14 doi: 10.1002/ppul.24564 – ident: ref15 doi: 10.47852/bonviewjcce512522514 – ident: ref10 doi: 10.1002/sim.8322 – ident: ref11 doi: 10.1093/mnras/sty2728 – ident: ref3 doi: 10.1109/jlt.2021.3120874 – ident: ref6 doi: 10.1049/gtd2.12206 |
| SSID | ssj0000816957 |
| Score | 2.3025417 |
| Snippet | Human-machine collaborative game agents are usually in an open environment, and they typically obtain behavioral information through environmental rewards.... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 28818 |
| SubjectTerms | Algorithms Behavioral sciences Collaboration Computer & video games Cooperation Deep learning Deep rein-forcement learning Deep reinforcement learning Electronic games Federated learning Games hind-sight experience re-play Human computer interaction human-machine collaboration Human-machine systems learning games Learning systems Machine learning Model accuracy Natural language natural language instructions Natural language processing Natural languages Open systems Reinforcement learning reward structure User experience Visual perception |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl9JDRYGqoVD50CMuTvwR57hsu0UVcEBF4mY5_qBIS3bZLlT994wds82qh164Rk4y8Zux34ycNwh9EhU1oTaWuBaCnDeyJMYLQWwbxcMELIipW8P5hTy94t-vxfWg1Vc8E9bLA_cTdwwOJ4VzlNXMcSWDcowb2QZveauUS9SIqmaQTKU1WJWyEXWWGSppczwaj-GLICGs-GfGJBBzurYVJcX-3GJljW2-eujm5s9vM50ONp7JNnqTGSMe9Za-RRu-20GvBzqCu-j-wiT5DHyWq4_kBDYnh1OFnpyn85Iej_9C_uhxFla9wd_iOVk8mt7MFrfLn3e4v3XW4S_ez_Glv-3IZLawqYy4umsPXU2-_hifktxLgVgmmiUpPZU0CEhCvWprZT2kvtSY4ExVudbIijYUwCwFxCttWKhCGbiHeGWhlM4b9g5tdrPOv0fYWGUqxz0M8bDMGmVsYJZaV9OylXVdoKPnadXzXjJDp1SDNrpHQUcUdEahQCdx6ldDo951ugBeoLMX6P95QYH2InCD9_H0i3GBDp6R1Dk4f2lgODHNArZXILJC9x9bTepYuWbr_kvY-gFtxWf2dZwDtLlcPPhDYDbL9mNy4iciKfM7 priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) (F) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYXoAHxscQYQP5gUdcnDh2kseuo0yI9QExaW-RY5_HtJKUkoLgr9_ZcUsLQuItimzZzn347nL3O0JeyYxrV2jDbINCnlcqZRqkZKbx4GESFWLo1nA-U2cX-ftLeRmL1UMtDACE5DMY-cfwL992ZuVDZSjheSgc3SN7RamGYq1NQMV3kKhkEZGFUl69GU8meAj0AbN8JIRCW5zv3D4BpD92VdkxMO-u2oX--UPP51t3zfSAzNa7HFJMbkarvhmZX38AOP73MR6SB9HqpOOBTR6RO9A-Jve3sAifkK8zHSA46IcYwWQneMFZGqL87DzkXAKd_Gab70AjOOsVfedzbel4ftUtr_vPX-gwtWvpKcCCfoTrlk27pQmhyM2sQ3IxfftpcsZiPwZmhKx6lgJX3El0ZKFsitIAus9ca2d1ltlGq4xXHBkilSjzvBIuc6nLAWVeuFRZ0OIp2W-7Fp4Rqk2pM5sDDgFU1brUxgnDjS142qiiSMjrNZ3qxQC7UQd3hVf1QNbak7WOZE3IiaflZqjHzA4v8LvXUQRrVF1KWstFIWxeKldakWvVODB5U5ZWJ-TQ02prvYFMCTles0YdBfxbjVaSd9XQYkwI27DLX3vVoevlzl6f_2OZI3LPDxvCO8dkv1-u4AUaPH3zMjD6LRWH_Kg priority: 102 providerName: IEEE |
| Title | Natural Language-Based Human-Machine Collaborative Learning Games Algorithm Based on Deep Rein-Forcement Learning |
| URI | https://ieeexplore.ieee.org/document/10433481 https://www.proquest.com/docview/2932576025 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10433481.pdf https://doaj.org/article/32265dd0373d486f8d34a6bfec4b88da |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLWgs0AseA4iw1B5wZKkTpw4ybJTKCPEVAhRaVhZjn09U1HSqpMOjxX_wB_yJdw4bmlhBbsoshVH9_3wuYQ8yxKmbK50aCoU8rQUcaggy0JdteBhGSpEN63hbCJOp-nr8-zcJ9zcXRgAcM1nELWPrpY_g_mXfCCSFjytHAg08RgkoLin7hZptDT2JjkQGfriPXIwnbwdfmgnysWiDLmrTT7xwJoD5WYQYlCYpBHnAp1ztmeOHGq_H7Oy53HeWtdL9fWzms93jM_4LpGbY3c9Jx-jdVNF-tsfiI7__1_3yB3vl9Jhx0j3yQ2oH5DbO2iFD8nVRDmQDvrG5zjDEzSBhro6wM_vP85cXybQ0W_WugbqAVwv6Ku2H5cO5xeL1ay5_ES7zYuavgBY0ncwq8PxYqVdunK765BMxy_fj05DP7Mh1DwrmzAGJpjNMNiFosoLDRhiM6WsUUliKiUSVjJkmjhDvcBKbhMb2xRQL3AbCwOKPyK9elHDY0KVLlRiUsAlgOpcFUpbrpk2OYsrkecBeb4hnVx20BzShTSslMPRCPlXtpSWntIBOWnJu13a4mq7F0gK6cVUonoTmTGM59ykhbCF4akSlQWdVkVhVEAOW_LtfK8jVkCON9wivRK4kuhJteEcepUBCbcc9NdZO67cO-vRP64_Jr1mtYan6B81Vd_lFfruKmPfC8QvjTUOIQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOSwceC4isIAPHHFx4keSY7dQCrQ9oF1pb5Fjj3dXlKSUFAS_HttxSwtC4hZFHtnOzNgzk5lvEHohMqpsrjQxtVNyXsqUKBCC6NqDhwl3IIZuDbO5nJzx9-fiPBarh1oYAAjJZzDwj-Ffvmn12ofKnIbzUDh6Hd0QnHPRl2ttQyq-h0Qp8ogtlNLy1XA0cttwXmDGB4xJZ43TvfsnwPTHvip7JubhulmqH9_VYrFz24zvoPlmnX2SyafBuqsH-ucfEI7_vZG76Ha0O_GwF5R76Bo099GtHTTCB-jLXAUQDjyNMUxy4q44g0Ocn8xC1iXg0W_B-QY4wrNe4Lc-2xYPFxft6qq7_Ix70rbBrwGW-CNcNWTcrnQIRm6pjtDZ-M3paEJiRwaimSg7kgKV1ArnykJR54UG50BTpaxRWWZqJTNaUicSqXBaT0tmM5taDk7rmU2lAcUeooOmbeARwkoXKjMc3BBwh7UqlLZMU21ymtYyzxP0csOnatkDb1TBYaFl1bO18mytIlsTdOJ5uR3qUbPDC_fdq6iElTu8pDCGspwZXkhbGMaVrC1oXheFUQk68rzama9nU4KON6JRRRX_Wjk7yTtrzmZMENmKy19rVaHv5d5aH_9jmufocHI6m1bTd_MPT9BNT9IHe47RQbdaw1Nn_nT1syD0vwBvmAAE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AcltcisizIB46kdeLYSY7dQlkhtkKISsvJcuzxUlHSqpvyOvEf-If8EiaOW1o4wS2KbMXRfPOyx98Q8kSkTLtcm9hWqORZKZNYgxCxqVryMIEG0XdrOJ_Is2n28kJchA03fxcGAHzxGfTbR3-WP4P5l3wg05Y8rRxIdPGYJKC6Z_4WaX9p3XVyIAXG4j1yMJ28Hr5rO8olsoy5P5t8GIg1B9r3IMSkMM36nEsMztmeO_Ks_aHNyl7EeWNdL_XXz3o-33E-41tEbZbd1Zx86K-bqm--_cHo-P__dZschriUDjsg3SHXoL5Lbu6wFd4jVxPtSTroq7DHGZ-iC7TUnwP8_P7j3NdlAh39htYnoIHA9ZK-aOtx6XB-uVjNmvcfaTd5UdNnAEv6BmZ1PF6sjN-u3M46ItPx87ejszj0bIgNF2UTJ8AkcwKTXSiqvDCAKTbT2lmdprbSMmUlQ9AkAu0CK7lLXeIyQLvAXSItaH6f9OpFDQ8I1abQqc0AhwCac11o47hhxuYsqWSeR-TpRnRq2VFzKJ_SsFINRyPEr2olrYKkI3Lainc7tOXV9i9QFCqoqULzJoW1jOfcZoV0heWZlpUDk1VFYXVEjlrx7XyvE1ZETjZoUcEIXCmMpNp0DqPKiMRbBP211g6Ve2s9_sfxJ6TXrNbwCOOjpnoclOAX9PwMKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+Language-Based+Human%E2%80%93Machine+Collaborative+Learning+Games+Algorithm+Based+on+Deep+Rein-Forcement+Learning&rft.jtitle=IEEE+access&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=28818&rft.epage=28830&rft_id=info:doi/10.1109%2FACCESS.2024.3365500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3365500 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |