Fault compensation by online updating of genetic algorithm-selected neural network model for model predictive control

This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an offline and an online artificial neural networks (ANNs) along with a switch t...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 1; no. 11; p. 1488
Main Authors Hong, Seong Hyeon, Cornelius, Jackson, Wang, Yi, Pant, Kapil
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2523-3963
2523-3971
2523-3971
DOI10.1007/s42452-019-1526-9

Cover

Abstract This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an offline and an online artificial neural networks (ANNs) along with a switch that selects one of them for MPC. Through selective online updating of weight parameters, the online ANN is able to accurately capture the fault-induced variations in system dynamics, and can be used for MPC reconfiguration and fault compensation. Specifically, the system dynamics is identified by training a multilayer perceptron (MLP). To improve the model accuracy, a meta-optimization approach based on the genetic algorithm is applied to optimize the MLP hyperparameters and the training algorithm. A dual-thread decision maker is proposed to manage the robust model updating scheme and the dual-net model switch. A case study of numerical simulation using an unmanned quadrotor is undertaken to verify the feasibility of the proposed method to mitigate performance degradation. Salient performance in the response prediction and control, subject to gradually growing anomaly is successfully demonstrated. Quantitatively, the proposed updating model outperforms the offline ANN model and yields 2× and 4× lower errors, respectively, for prediction and control of the system response.
AbstractList This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an offline and an online artificial neural networks (ANNs) along with a switch that selects one of them for MPC. Through selective online updating of weight parameters, the online ANN is able to accurately capture the fault-induced variations in system dynamics, and can be used for MPC reconfiguration and fault compensation. Specifically, the system dynamics is identified by training a multilayer perceptron (MLP). To improve the model accuracy, a meta-optimization approach based on the genetic algorithm is applied to optimize the MLP hyperparameters and the training algorithm. A dual-thread decision maker is proposed to manage the robust model updating scheme and the dual-net model switch. A case study of numerical simulation using an unmanned quadrotor is undertaken to verify the feasibility of the proposed method to mitigate performance degradation. Salient performance in the response prediction and control, subject to gradually growing anomaly is successfully demonstrated. Quantitatively, the proposed updating model outperforms the offline ANN model and yields 2× and 4× lower errors, respectively, for prediction and control of the system response.
This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an offline and an online artificial neural networks (ANNs) along with a switch that selects one of them for MPC. Through selective online updating of weight parameters, the online ANN is able to accurately capture the fault-induced variations in system dynamics, and can be used for MPC reconfiguration and fault compensation. Specifically, the system dynamics is identified by training a multilayer perceptron (MLP). To improve the model accuracy, a meta-optimization approach based on the genetic algorithm is applied to optimize the MLP hyperparameters and the training algorithm. A dual-thread decision maker is proposed to manage the robust model updating scheme and the dual-net model switch. A case study of numerical simulation using an unmanned quadrotor is undertaken to verify the feasibility of the proposed method to mitigate performance degradation. Salient performance in the response prediction and control, subject to gradually growing anomaly is successfully demonstrated. Quantitatively, the proposed updating model outperforms the offline ANN model and yields 2× and 4× lower errors, respectively, for prediction and control of the system response.
ArticleNumber 1488
Author Wang, Yi
Hong, Seong Hyeon
Pant, Kapil
Cornelius, Jackson
Author_xml – sequence: 1
  givenname: Seong Hyeon
  surname: Hong
  fullname: Hong, Seong Hyeon
  organization: University of South Carolina
– sequence: 2
  givenname: Jackson
  surname: Cornelius
  fullname: Cornelius, Jackson
  organization: CFD Research Corporation
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-5750-3181
  surname: Wang
  fullname: Wang, Yi
  email: yiwang@cec.sc.edu
  organization: University of South Carolina
– sequence: 4
  givenname: Kapil
  surname: Pant
  fullname: Pant, Kapil
  organization: CFD Research Corporation
BookMark eNqNkEtrWzEQhUVJoXn4B3QnyPqmel3LWgZTJ4VANs1ayNJcV64s3Uq6Df73kWvTQiChqxmGc2bOfBfoLKYICH2m5IYSIr8UwUTPOkJVR3s279QHdM56xjuuJD3728_5JzQrZUsIYVJxseDnaFqZKVRs026EWEz1KeL1HqcYfAQ8ja6N4ganAW8gQvUWm7BJ2dcfu65AAFvB4QhTNqGV-pzyT7xLDgIeUj51YwbnbfW_od2JNadwhT4OJhSYneolelp9_b687x4e774tbx86y3tVO7oWzElwQkoOhC0WAuxaOUWYNUr1A2FMKAPWKqWMdUYQTsCInvZSUMccv0TsuHeKo9k_mxD0mP3O5L2mRB_Y6SM73djpAzutmun6aBpz-jVBqXqbphxbTs1ky9ArKUVTyaPK5lRKhkFbX__wq9n48O5--sr5P5lOj5SmjRvI_zK9bXoBhVKjLA
CitedBy_id crossref_primary_10_1007_s10404_020_02349_z
crossref_primary_10_1007_s00366_022_01672_z
crossref_primary_10_1007_s10846_022_01576_6
crossref_primary_10_1115_1_4049130
crossref_primary_10_3390_jmse12111939
crossref_primary_10_1016_j_engappai_2023_107110
crossref_primary_10_1007_s00521_022_07783_4
Cites_doi 10.1016/j.ress.2018.02.007
10.1109/TCST.2014.2354981
10.1109/TNNLS.2015.2465174
10.1109/TIE.2015.2455026
10.1145/1541880.1541882
10.1109/72.80202
10.2478/amcs-2014-0023
10.1155/2019/7272387
10.1109/TIE.2011.2169636
10.3389/fncom.2018.00096
10.1109/37.466261
10.1609/aimag.v35i4.2553
10.1007/BF00175354
10.1002/aic.10505
10.1016/j.isatra.2010.12.007
10.1371/journal.pone.0152173
10.1109/TNNLS.2015.2411671
10.1016/j.automatica.2012.06.038
10.1002/rnc.727
10.1002/asjc.449
10.1021/acs.iecr.6b01364
10.1007/s40313-017-0327-x
10.1016/j.energy.2012.03.063
10.1002/asjc.1655
10.1002/cem.1401
10.1109/TIE.2016.2645498
10.1109/TNNLS.2013.2275948
10.1049/iet-cta.2016.0125
10.2478/v10006-012-0017-6
10.1145/3219819.3219845
10.1109/ICMLA.2015.141
10.1109/ICIEA.2017.8282943
10.2514/6.2008-3212
10.1109/ASCC.2017.8287417
10.1109/CAC.2017.8243262
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
Springer Nature Switzerland AG 2019.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: Springer Nature Switzerland AG 2019.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
ADTOC
UNPAY
DOI 10.1007/s42452-019-1526-9
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database (Proquest)
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2523-3971
ExternalDocumentID 10.1007/s42452-019-1526-9
10_1007_s42452_019_1526_9
GrantInformation_xml – fundername: Army Research Laboratory
  grantid: W911QX-18-P-0180
  funderid: http://dx.doi.org/10.13039/100006754
GroupedDBID -EM
0R~
88I
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACULB
ADKNI
ADMLS
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
H13
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ACSTC
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7XB
8FE
8FG
8FK
D1I
L6V
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-1b42d7ed4773e02884ecb9d902ca995f02249aecc999acda4030ea4515741d2d3
IEDL.DBID UNPAY
ISSN 2523-3963
2523-3971
IngestDate Tue Aug 19 16:39:12 EDT 2025
Wed Oct 08 14:30:39 EDT 2025
Wed Oct 01 05:02:47 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Fri Feb 21 02:30:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Model predictive control
Anomaly mitigation
Neural network
Meta-optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-1b42d7ed4773e02884ecb9d902ca995f02249aecc999acda4030ea4515741d2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5750-3181
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s42452-019-1526-9.pdf
PQID 2788459774
PQPubID 5758472
ParticipantIDs unpaywall_primary_10_1007_s42452_019_1526_9
proquest_journals_2788459774
crossref_citationtrail_10_1007_s42452_019_1526_9
crossref_primary_10_1007_s42452_019_1526_9
springer_journals_10_1007_s42452_019_1526_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191100
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191100
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Tatjewski (CR14) 2014; 24
Patan (CR26) 2015; 23
Draeger, Engell, Ranke (CR4) 1995; 15
CR19
Whitley (CR25) 1994; 4
CR39
CR38
Patan, Korbicz (CR5) 2012; 22
CR37
CR36
Cheng, Liu, Hou, Yu, Tan (CR6) 2015; 62
CR34
CR32
Zhang, Tao (CR22) 2016; 64
CR30
Kusiak, Xu (CR17) 2012; 42
Yan, Wang (CR12) 2014; 25
Han, Zhang, Hou, Qiao (CR10) 2016; 27
Narendra, Parthasarathy (CR1) 1990; 1
Vatankhah, Farrokhi (CR18) 2018; 21
Martínez-Heras, Donati (CR31) 2014; 35
Ma, Xia, Li, Chang (CR35) 2016; 10
Tian, Yang, van der Helm, Dewald (CR24) 2018; 12
Mohammadzaheri, Chen, Grainger (CR3) 2012; 14
Puttige, Anavatti (CR23) 2008; 3
Akpan, Hassapis (CR8) 2011; 50
Negri, Cavalca, de Oliveira, Araújo, Celiberto (CR11) 2017; 28
Pan, Wang (CR9) 2012; 59
Curteanu, Cartwright (CR20) 2011; 25
Zhang, Tao, Gao (CR21) 2016; 55
Hagan, Demuth, Jesús (CR2) 2002; 12
Jeong, Park, Park, Min, Lee (CR33) 2018; 184
Chandola, Banerjee, Kumar (CR28) 2009; 41
Morari, Maeder (CR13) 2012; 48
Goldstein, Uchida (CR29) 2016; 11
Wang, Gao, Qiu (CR7) 2016; 27
Sena, Ramos, Silva, Fileti (CR15) 2017; 57
Alexandridis, Sarimveis (CR16) 2005; 51
Zhang, Sun, Liu, Deng (CR27) 2019
M Goldstein (1526_CR29) 2016; 11
S Curteanu (1526_CR20) 2011; 25
M Mohammadzaheri (1526_CR3) 2012; 14
V Chandola (1526_CR28) 2009; 41
Y Pan (1526_CR9) 2012; 59
VR Puttige (1526_CR23) 2008; 3
KS Narendra (1526_CR1) 1990; 1
B Vatankhah (1526_CR18) 2018; 21
H Jeong (1526_CR33) 2018; 184
HJ Sena (1526_CR15) 2017; 57
D Ma (1526_CR35) 2016; 10
R Tian (1526_CR24) 2018; 12
K Patan (1526_CR26) 2015; 23
L Cheng (1526_CR6) 2015; 62
VA Akpan (1526_CR8) 2011; 50
K Patan (1526_CR5) 2012; 22
HG Han (1526_CR10) 2016; 27
GH Negri (1526_CR11) 2017; 28
1526_CR19
T Wang (1526_CR7) 2016; 27
1526_CR39
1526_CR38
A Kusiak (1526_CR17) 2012; 42
1526_CR37
A Draeger (1526_CR4) 1995; 15
A Alexandridis (1526_CR16) 2005; 51
1526_CR36
1526_CR34
1526_CR32
1526_CR30
P Tatjewski (1526_CR14) 2014; 24
M Morari (1526_CR13) 2012; 48
D Whitley (1526_CR25) 1994; 4
R Zhang (1526_CR22) 2016; 64
Z Yan (1526_CR12) 2014; 25
R Zhang (1526_CR21) 2016; 55
B Zhang (1526_CR27) 2019
MT Hagan (1526_CR2) 2002; 12
JA Martínez-Heras (1526_CR31) 2014; 35
References_xml – volume: 184
  start-page: 27
  year: 2018
  end-page: 40
  ident: CR33
  article-title: Fault detection and identification method using observer-based residuals
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.02.007
– volume: 23
  start-page: 1147
  issue: 3
  year: 2015
  end-page: 1155
  ident: CR26
  article-title: Neural network-based model predictive control: fault tolerance and stability
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2354981
– volume: 27
  start-page: 402
  issue: 2
  year: 2016
  end-page: 415
  ident: CR10
  article-title: Nonlinear model predictive control based on a self-organizing recurrent neural network
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2465174
– volume: 62
  start-page: 7717
  issue: 12
  year: 2015
  end-page: 7727
  ident: CR6
  article-title: Neural-network-based nonlinear model predictive control for piezoelectric actuators
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2455026
– volume: 41
  start-page: 15
  issue: 3
  year: 2009
  ident: CR28
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/1541880.1541882
– volume: 1
  start-page: 4
  issue: 1
  year: 1990
  end-page: 27
  ident: CR1
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80202
– volume: 24
  start-page: 313
  issue: 2
  year: 2014
  end-page: 323
  ident: CR14
  article-title: Disturbance modeling and state estimation for offset-free predictive control with state-space process models
  publication-title: Int J Appl Math Comput Sci
  doi: 10.2478/amcs-2014-0023
– ident: CR39
– ident: CR37
– year: 2019
  ident: CR27
  article-title: Recurrent neural network-based model predictive control for multiple unmanned quadrotor formation flight
  publication-title: Int J Aerosp Eng
  doi: 10.1155/2019/7272387
– volume: 59
  start-page: 3089
  issue: 8
  year: 2012
  end-page: 3101
  ident: CR9
  article-title: Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2011.2169636
– volume: 12
  start-page: 96
  year: 2018
  ident: CR24
  article-title: A novel approach for modeling neural responses to joint perturbations using the NARMAX method and a hierarchical neural network
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2018.00096
– ident: CR30
– volume: 15
  start-page: 61
  issue: 5
  year: 1995
  end-page: 66
  ident: CR4
  article-title: Model predictive control using neural networks
  publication-title: IEEE Control Syst
  doi: 10.1109/37.466261
– volume: 35
  start-page: 37
  issue: 4
  year: 2014
  end-page: 46
  ident: CR31
  article-title: Enhanced telemetry monitoring with novelty detection
  publication-title: AI Mag
  doi: 10.1609/aimag.v35i4.2553
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  end-page: 85
  ident: CR25
  article-title: A genetic algorithm tutorial
  publication-title: Stat Comput
  doi: 10.1007/BF00175354
– volume: 51
  start-page: 2495
  issue: 9
  year: 2005
  end-page: 2506
  ident: CR16
  article-title: Nonlinear adaptive model predictive control based on self-correcting neural network models
  publication-title: AIChE J
  doi: 10.1002/aic.10505
– volume: 50
  start-page: 177
  issue: 2
  year: 2011
  end-page: 194
  ident: CR8
  article-title: Nonlinear model identification and adaptive model predictive control using neural networks
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2010.12.007
– volume: 11
  start-page: e0152173
  issue: 4
  year: 2016
  ident: CR29
  article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0152173
– volume: 27
  start-page: 416
  issue: 2
  year: 2016
  end-page: 425
  ident: CR7
  article-title: A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2411671
– volume: 48
  start-page: 2059
  issue: 9
  year: 2012
  end-page: 2067
  ident: CR13
  article-title: Nonlinear offset-free model predictive control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.06.038
– volume: 57
  start-page: 1093
  year: 2017
  end-page: 1098
  ident: CR15
  article-title: Adaptive offset remover based on Kalman filter integrated to a model predictive controller
  publication-title: Chem Eng
– ident: CR19
– volume: 12
  start-page: 959
  issue: 11
  year: 2002
  end-page: 985
  ident: CR2
  article-title: An introduction to the use of neural networks in control systems
  publication-title: Int J Robust and Nonlinear Control IFAC-Affil J
  doi: 10.1002/rnc.727
– volume: 14
  start-page: 1
  issue: 1
  year: 2012
  end-page: 11
  ident: CR3
  article-title: A critical review of the most popular types of neuro control
  publication-title: Asian J Control
  doi: 10.1002/asjc.449
– ident: CR38
– volume: 55
  start-page: 6465
  issue: 22
  year: 2016
  end-page: 6474
  ident: CR21
  article-title: A new approach of Takagi-Sugeno fuzzy modeling using an improved genetic algorithm optimization for oxygen content in a coke furnace
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.6b01364
– volume: 28
  start-page: 623
  issue: 5
  year: 2017
  end-page: 634
  ident: CR11
  article-title: Evaluation of nonlinear model-based predictive control approaches using derivative-free optimization and FCC neural networks
  publication-title: J Control Autom Electr Syst
  doi: 10.1007/s40313-017-0327-x
– volume: 42
  start-page: 241
  issue: 1
  year: 2012
  end-page: 250
  ident: CR17
  article-title: Modeling and optimization of HVAC systems using a dynamic neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.063
– volume: 21
  start-page: 2232
  issue: 5
  year: 2018
  end-page: 2244
  ident: CR18
  article-title: Nonlinear adaptive model predictive control of constrained systems with offset-free tracking behavior
  publication-title: Asian J Control
  doi: 10.1002/asjc.1655
– volume: 3
  start-page: 31
  issue: 7
  year: 2008
  end-page: 38
  ident: CR23
  article-title: Real-time system identification of unmanned aerial vehicles: a multi-network approach
  publication-title: JCP
– ident: CR32
– ident: CR34
– volume: 25
  start-page: 527
  issue: 10
  year: 2011
  end-page: 549
  ident: CR20
  article-title: Neural networks applied in chemistry. I. Determination of the optimal topology of multilayer perceptron neural networks
  publication-title: J Chemom
  doi: 10.1002/cem.1401
– volume: 64
  start-page: 3147
  issue: 4
  year: 2016
  end-page: 3155
  ident: CR22
  article-title: Data-driven modeling using improved multi-objective optimization based neural network for coke furnace system
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2645498
– ident: CR36
– volume: 25
  start-page: 457
  issue: 3
  year: 2014
  end-page: 469
  ident: CR12
  article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2275948
– volume: 10
  start-page: 2213
  issue: 17
  year: 2016
  end-page: 2222
  ident: CR35
  article-title: Active disturbance rejection and predictive control strategy for a quadrotor helicopter
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2016.0125
– volume: 22
  start-page: 225
  issue: 1
  year: 2012
  end-page: 237
  ident: CR5
  article-title: Nonlinear model predictive control of a boiler unit: a fault tolerant control study
  publication-title: Int J Appl Math Comput Sci
  doi: 10.2478/v10006-012-0017-6
– volume: 22
  start-page: 225
  issue: 1
  year: 2012
  ident: 1526_CR5
  publication-title: Int J Appl Math Comput Sci
  doi: 10.2478/v10006-012-0017-6
– volume: 23
  start-page: 1147
  issue: 3
  year: 2015
  ident: 1526_CR26
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2354981
– volume: 27
  start-page: 416
  issue: 2
  year: 2016
  ident: 1526_CR7
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2411671
– volume: 28
  start-page: 623
  issue: 5
  year: 2017
  ident: 1526_CR11
  publication-title: J Control Autom Electr Syst
  doi: 10.1007/s40313-017-0327-x
– volume: 12
  start-page: 96
  year: 2018
  ident: 1526_CR24
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2018.00096
– volume: 184
  start-page: 27
  year: 2018
  ident: 1526_CR33
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.02.007
– ident: 1526_CR19
– ident: 1526_CR34
  doi: 10.1145/3219819.3219845
– ident: 1526_CR32
  doi: 10.1109/ICMLA.2015.141
– volume: 55
  start-page: 6465
  issue: 22
  year: 2016
  ident: 1526_CR21
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.6b01364
– ident: 1526_CR38
  doi: 10.1109/ICIEA.2017.8282943
– ident: 1526_CR30
  doi: 10.2514/6.2008-3212
– ident: 1526_CR37
  doi: 10.1109/ASCC.2017.8287417
– volume: 62
  start-page: 7717
  issue: 12
  year: 2015
  ident: 1526_CR6
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2455026
– volume: 11
  start-page: e0152173
  issue: 4
  year: 2016
  ident: 1526_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0152173
– volume: 57
  start-page: 1093
  year: 2017
  ident: 1526_CR15
  publication-title: Chem Eng
– volume: 10
  start-page: 2213
  issue: 17
  year: 2016
  ident: 1526_CR35
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2016.0125
– ident: 1526_CR39
– volume: 24
  start-page: 313
  issue: 2
  year: 2014
  ident: 1526_CR14
  publication-title: Int J Appl Math Comput Sci
  doi: 10.2478/amcs-2014-0023
– volume: 1
  start-page: 4
  issue: 1
  year: 1990
  ident: 1526_CR1
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80202
– volume: 14
  start-page: 1
  issue: 1
  year: 2012
  ident: 1526_CR3
  publication-title: Asian J Control
  doi: 10.1002/asjc.449
– volume: 48
  start-page: 2059
  issue: 9
  year: 2012
  ident: 1526_CR13
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.06.038
– year: 2019
  ident: 1526_CR27
  publication-title: Int J Aerosp Eng
  doi: 10.1155/2019/7272387
– volume: 41
  start-page: 15
  issue: 3
  year: 2009
  ident: 1526_CR28
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/1541880.1541882
– volume: 35
  start-page: 37
  issue: 4
  year: 2014
  ident: 1526_CR31
  publication-title: AI Mag
  doi: 10.1609/aimag.v35i4.2553
– volume: 51
  start-page: 2495
  issue: 9
  year: 2005
  ident: 1526_CR16
  publication-title: AIChE J
  doi: 10.1002/aic.10505
– volume: 25
  start-page: 457
  issue: 3
  year: 2014
  ident: 1526_CR12
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2275948
– volume: 25
  start-page: 527
  issue: 10
  year: 2011
  ident: 1526_CR20
  publication-title: J Chemom
  doi: 10.1002/cem.1401
– volume: 3
  start-page: 31
  issue: 7
  year: 2008
  ident: 1526_CR23
  publication-title: JCP
– volume: 42
  start-page: 241
  issue: 1
  year: 2012
  ident: 1526_CR17
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.063
– volume: 59
  start-page: 3089
  issue: 8
  year: 2012
  ident: 1526_CR9
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2011.2169636
– volume: 27
  start-page: 402
  issue: 2
  year: 2016
  ident: 1526_CR10
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2465174
– volume: 64
  start-page: 3147
  issue: 4
  year: 2016
  ident: 1526_CR22
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2645498
– volume: 12
  start-page: 959
  issue: 11
  year: 2002
  ident: 1526_CR2
  publication-title: Int J Robust and Nonlinear Control IFAC-Affil J
  doi: 10.1002/rnc.727
– volume: 50
  start-page: 177
  issue: 2
  year: 2011
  ident: 1526_CR8
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2010.12.007
– volume: 21
  start-page: 2232
  issue: 5
  year: 2018
  ident: 1526_CR18
  publication-title: Asian J Control
  doi: 10.1002/asjc.1655
– ident: 1526_CR36
  doi: 10.1109/CAC.2017.8243262
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  ident: 1526_CR25
  publication-title: Stat Comput
  doi: 10.1007/BF00175354
– volume: 15
  start-page: 61
  issue: 5
  year: 1995
  ident: 1526_CR4
  publication-title: IEEE Control Syst
  doi: 10.1109/37.466261
SSID ssj0002793483
ssib051670015
Score 2.181799
Snippet This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1488
SubjectTerms 3. Engineering (general)
Algorithms
Anomalies
Applied and Technical Physics
Artificial neural networks
Case studies
Chemistry/Food Science
Compensation
Control systems
Decision making
Earth Sciences
Engineering
Environment
Genetic algorithms
Materials Science
Mathematical models
Model accuracy
Model updating
Multilayer perceptrons
Neural networks
Neurons
Optimization
Performance degradation
Predictive control
Reconfiguration
Research Article
Robustness (mathematics)
System dynamics
Unmanned helicopters
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NTxsxEB2l4UA5VJQWNTRUPnACWSRe74cPCAEiQpWIqqpI3FZe2wGhZbOFXSH-PTOON6GX9LbSfljaefY8e2beABwIjT5ApDOO3inl0iqcc7FVPNFJZrIo0aKgc8jraXJ1I3_exrc9mHa1MJRW2a2JfqG2c0Nn5McC92qSxNLkaf2XU9coiq52LTR0aK1gT7zE2AfYEKSM1YeN88vpr98dwuIxVaUEB_jgw24qkl6rU-COjEcIxy70SfV1FBakzAXF0c0lXP3rvFaMdBlE3YLNtqr164suy3d-arINnwLBZGcLRHyGnqt2YOud7OAXaCe6LRtG2eS4ifWmYcUrW4hmsLamiofqjs1nDNFFRY5Ml3f4L5r7R_7s--Y4y0gIE8epFmnkzHfUYciAw1X9RBEgWktZyIb_CjeTyz8XVzy0X-AmilXDx4UUNnVWpmnkkIZk0plCWTUSRisVz8j7K40QQI6pjdUS1wunJRIkZClW2GgX-tW8ct-AxZkdm2yUITCUFMYWaE0xS03mxoiFIhrAqPuvuQna5NQio8yXqsreFDmaIidT5GoAh8tX6oUwx7qHh52x8jBHn_MVogZw1BlwdXvNx46WNv7_0Hvrh_4OH4XHFx3qDKHfPLVuH2lOU_wI2H0DDiv2aA
  priority: 102
  providerName: ProQuest
Title Fault compensation by online updating of genetic algorithm-selected neural network model for model predictive control
URI https://link.springer.com/article/10.1007/s42452-019-1526-9
https://www.proquest.com/docview/2788459774
https://link.springer.com/content/pdf/10.1007/s42452-019-1526-9.pdf
UnpaywallVersion publishedVersion
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2523-3971
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssib051670015
  issn: 2523-3963
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5Be0Ac9sFDFLGVD3ta5NImTmIf2apdtBIVQlSCU-TYDiBCGpVEKzjw2xnnVXa1Aq325siOndhjz5fMzDcAXx2JOsAJYoraKaBMC9xznhbUlz5X3PWlE9n_kKcz_2TOfl56l2swbmJhSm_3xiRZxTRYlqY0P8p0fNQGvll7nXUpEBT1j0_FAGvXoet7CMg70J3Pzo6vbFo5_MyirijzqdXlYNTYNv_Wz-_aaQU5WyvpJmwUaSYff8kkeaWIph9BN69Q-Z_cDYo8GqinP9gd__MdP8GHGqiS40qyPsOaSbdg8xV94TYUU1kkObFe6fgxXC4xiR5JRb5BisxGTqTXZBETlFIbLElkcr1Y3uY39_ShzL9jNLGEmjhOWrmjkzIzD0EkXZeypbUk2TOZ1F71OzCfTi7GJ7RO40CV64mcjiLm6MBoFgSuQTjDmVGR0GLoKCmEF1sUISSKEmJVqbRkeO4YyRBoIdrRjnZ3oZMuUrMHxON6pPiQo4AJ5igdOQhw4kBxM0KZitweDJvlC1XNcW5TbSRhy85czmqIsxraWQ1FD761t2QVwcdbjQ8amQjrvf4Q4jNwZmn8WA8Om2VdVb_R2WErSu8Pvf9PrQ-gky8L8wUBUx71YZ1Pf_Sh-30yOzvHq9PnSb_eJC8vrhIT
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lB6QDxFSgEf4EJlkXi9Dx8qxKNRStsIoVbqbfHaThFaNttmV1X-HL-NGceblEs49bbSPqz1fPY343kBvBEaOUCkE47slHJpFa652Cqe6CQzWZRoUdA55Ok4GZ3LrxfxxQb86XJhKKyy2xP9Rm2nhs7I3wu01SQVS5Mf6itOXaPIu9q10NChtYI98CXGQmLHsZvfoAk3Ozj6gvJ-K8Tw8OzziIcuA9xEsWr4oJDCps7KNI0csm0mnSmUVX1htFLxhEhOafxTVKW0sVrisnBaoh6AZGyFjfC792BLRlKh8bf16XD87XuH6HhAWTCBcH95N5-KpK8NKtAC5BHCv3O1Uj4fuSEpUkJxpNWEq3_JcqUBL522O7DdVrWe3-iyvMWLw4fwICi07OMCgY9gw1WPYedWmcMn0A51WzaMotfRaPZQYMWcLYp0sLamDIvqkk0nDNFMSZVMl5c4983P33zm-_Q4y6jwJo5TLcLWme_gw1DjDlf1NXmcaO9mIfr-KZzfiSCewWY1rdxzYHFmBybrZwhEJYWxBaJHTFKTuQFir4h60O_mNTehFjq15CjzZRVnL4ocRZGTKHLVg3fLV-pFIZB1D-91wsrDnjDLVwjuwX4nwNXtNR_bX8r4_0Pvrh_6NWyPzk5P8pOj8fELuC881uhAaQ82m-vWvUQVqyleBRwz-HHXS-cvjHwzOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgE9IL4qFgr4ABcqq7uO8-EDQogSWgoVByr1FhzbaVWl2bSbqNq_1l_XGSfZLZfl1NtK2cRK5tlv7Jl5A_BeaOQAERcc2Snm0iqcc6FVPNJRYpIg0iKnc8hfh9HekfxxHB6vwfVQC0NplcOa6BdqOzV0Rr4jcK8mSSxN7hR9WsTv3fRzfcGpgxRFWod2Gh1EDtz8Crdvs0_7u2jrD0Kk3_583eN9hwFuglA1fJJLYWNnZRwHDpk2kc7kyqqxMFqpsCCCUxrfEt0obayWOCWclugDIBFbYQN87j24H5OKO1Wpp98HLIcTqn_pqfbMB_hUIL0qqMC9Hw8Q-EOQlSr5KABJORKKI6FGXP1Lk0vfdxGu3YCHbVXr-ZUuy1uMmD6Bx70ry7502HsKa656Bhu3BA6fQ5vqtmwY5a3jdtmDgOVz1slzsLam2orqhE0LhjimckqmyxP80s3pOZ_5Dj3OMpLcxHGqLmGd-d49DH3t_ld9SbEmWrVZn3f_Ao7uxAybsF5NK_cSWJjYiUnGCUJQSWFsjrgRRWwSN0HU5cEIxsN3zUyvgk7NOMpsod_sTZGhKTIyRaZG8HFxS91JgKz689ZgrKxfDWbZErsj2B4MuLy84mHbCxv_f-hXq4d-Bw9wwmQ_9w8PXsMj4aFGJ0lbsN5ctu4N-lZN_taDmMHfu541NxKdMNU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oPIgHv8XJlBw8KZlbm37kOIZjCIoHB_NU0iRVsXZltoj-9b70yymiiLdC0qRJXvJ-6Xvv9wCOLYE6wPIiitrJo0xx3HOO4tQVri992xVWaP5DXl654wm7mDrTJRjWsTCFt3ttkixjGgxLU5KdpSo6awLfjL3OuBRwivrHpbyLpcuw4joIyFuwMrm6HtyatHJ4zaI2L_KpVc9ev7ZtftfOZ-30ATkbK-karOZJKl5fRBwvKKLRBqh6CKX_yWM3z8KufPvC7vjPMW7CegVUyaCUrC1Y0sk2rC3QF-5APhJ5nBHjlY6X4WKJSfhKSvINkqcmciK5I7OIoJSaYEki4rvZ_CG7f6LPRf4drYgh1MR-ktIdnRSZeQgi6eopnRtLkjmTSeVVvwuT0fnNcEyrNA5U2g7PaD9klvK0Yp5na4QzPtMy5Ir3LCk4dyKDIrhAUUKsKqQSDM8dLRgCLUQ7ylL2HrSSWaL3gTi-6ku_56OAcWZJFVoIcCJP-rqPMhXabejVyxfIiuPcpNqIg4aduZjVAGc1MLMa8DacNK-kJcHHT5U7tUwE1V5_DvAbfGZo_FgbTutl_Sj-obHTRpR-7_rgT7U70MrmuT5EwJSFR9WGeAfzhQ5i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+compensation+by+online+updating+of+genetic+algorithm-selected+neural+network+model+for+model+predictive+control&rft.jtitle=SN+applied+sciences&rft.au=Hong%2C+Seong+Hyeon&rft.au=Cornelius%2C+Jackson&rft.au=Wang%2C+Yi&rft.au=Pant%2C+Kapil&rft.date=2019-11-01&rft.pub=Springer+International+Publishing&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=1&rft.issue=11&rft_id=info:doi/10.1007%2Fs42452-019-1526-9&rft.externalDocID=10_1007_s42452_019_1526_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon