Fault compensation by online updating of genetic algorithm-selected neural network model for model predictive control
This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an offline and an online artificial neural networks (ANNs) along with a switch t...
Saved in:
| Published in | SN applied sciences Vol. 1; no. 11; p. 1488 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.11.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2523-3963 2523-3971 2523-3971 |
| DOI | 10.1007/s42452-019-1526-9 |
Cover
| Abstract | This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an offline and an online artificial neural networks (ANNs) along with a switch that selects one of them for MPC. Through selective online updating of weight parameters, the online ANN is able to accurately capture the fault-induced variations in system dynamics, and can be used for MPC reconfiguration and fault compensation. Specifically, the system dynamics is identified by training a multilayer perceptron (MLP). To improve the model accuracy, a meta-optimization approach based on the genetic algorithm is applied to optimize the MLP hyperparameters and the training algorithm. A dual-thread decision maker is proposed to manage the robust model updating scheme and the dual-net model switch. A case study of numerical simulation using an unmanned quadrotor is undertaken to verify the feasibility of the proposed method to mitigate performance degradation. Salient performance in the response prediction and control, subject to gradually growing anomaly is successfully demonstrated. Quantitatively, the proposed updating model outperforms the offline ANN model and yields 2× and 4× lower errors, respectively, for prediction and control of the system response. |
|---|---|
| AbstractList | This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an offline and an online artificial neural networks (ANNs) along with a switch that selects one of them for MPC. Through selective online updating of weight parameters, the online ANN is able to accurately capture the fault-induced variations in system dynamics, and can be used for MPC reconfiguration and fault compensation. Specifically, the system dynamics is identified by training a multilayer perceptron (MLP). To improve the model accuracy, a meta-optimization approach based on the genetic algorithm is applied to optimize the MLP hyperparameters and the training algorithm. A dual-thread decision maker is proposed to manage the robust model updating scheme and the dual-net model switch. A case study of numerical simulation using an unmanned quadrotor is undertaken to verify the feasibility of the proposed method to mitigate performance degradation. Salient performance in the response prediction and control, subject to gradually growing anomaly is successfully demonstrated. Quantitatively, the proposed updating model outperforms the offline ANN model and yields 2× and 4× lower errors, respectively, for prediction and control of the system response. This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by slow-paced faults/anomalies. The dual-net model is comprised of an offline and an online artificial neural networks (ANNs) along with a switch that selects one of them for MPC. Through selective online updating of weight parameters, the online ANN is able to accurately capture the fault-induced variations in system dynamics, and can be used for MPC reconfiguration and fault compensation. Specifically, the system dynamics is identified by training a multilayer perceptron (MLP). To improve the model accuracy, a meta-optimization approach based on the genetic algorithm is applied to optimize the MLP hyperparameters and the training algorithm. A dual-thread decision maker is proposed to manage the robust model updating scheme and the dual-net model switch. A case study of numerical simulation using an unmanned quadrotor is undertaken to verify the feasibility of the proposed method to mitigate performance degradation. Salient performance in the response prediction and control, subject to gradually growing anomaly is successfully demonstrated. Quantitatively, the proposed updating model outperforms the offline ANN model and yields 2× and 4× lower errors, respectively, for prediction and control of the system response. |
| ArticleNumber | 1488 |
| Author | Wang, Yi Hong, Seong Hyeon Pant, Kapil Cornelius, Jackson |
| Author_xml | – sequence: 1 givenname: Seong Hyeon surname: Hong fullname: Hong, Seong Hyeon organization: University of South Carolina – sequence: 2 givenname: Jackson surname: Cornelius fullname: Cornelius, Jackson organization: CFD Research Corporation – sequence: 3 givenname: Yi orcidid: 0000-0002-5750-3181 surname: Wang fullname: Wang, Yi email: yiwang@cec.sc.edu organization: University of South Carolina – sequence: 4 givenname: Kapil surname: Pant fullname: Pant, Kapil organization: CFD Research Corporation |
| BookMark | eNqNkEtrWzEQhUVJoXn4B3QnyPqmel3LWgZTJ4VANs1ayNJcV64s3Uq6Df73kWvTQiChqxmGc2bOfBfoLKYICH2m5IYSIr8UwUTPOkJVR3s279QHdM56xjuuJD3728_5JzQrZUsIYVJxseDnaFqZKVRs026EWEz1KeL1HqcYfAQ8ja6N4ganAW8gQvUWm7BJ2dcfu65AAFvB4QhTNqGV-pzyT7xLDgIeUj51YwbnbfW_od2JNadwhT4OJhSYneolelp9_b687x4e774tbx86y3tVO7oWzElwQkoOhC0WAuxaOUWYNUr1A2FMKAPWKqWMdUYQTsCInvZSUMccv0TsuHeKo9k_mxD0mP3O5L2mRB_Y6SM73djpAzutmun6aBpz-jVBqXqbphxbTs1ky9ArKUVTyaPK5lRKhkFbX__wq9n48O5--sr5P5lOj5SmjRvI_zK9bXoBhVKjLA |
| CitedBy_id | crossref_primary_10_1007_s10404_020_02349_z crossref_primary_10_1007_s00366_022_01672_z crossref_primary_10_1007_s10846_022_01576_6 crossref_primary_10_1115_1_4049130 crossref_primary_10_3390_jmse12111939 crossref_primary_10_1016_j_engappai_2023_107110 crossref_primary_10_1007_s00521_022_07783_4 |
| Cites_doi | 10.1016/j.ress.2018.02.007 10.1109/TCST.2014.2354981 10.1109/TNNLS.2015.2465174 10.1109/TIE.2015.2455026 10.1145/1541880.1541882 10.1109/72.80202 10.2478/amcs-2014-0023 10.1155/2019/7272387 10.1109/TIE.2011.2169636 10.3389/fncom.2018.00096 10.1109/37.466261 10.1609/aimag.v35i4.2553 10.1007/BF00175354 10.1002/aic.10505 10.1016/j.isatra.2010.12.007 10.1371/journal.pone.0152173 10.1109/TNNLS.2015.2411671 10.1016/j.automatica.2012.06.038 10.1002/rnc.727 10.1002/asjc.449 10.1021/acs.iecr.6b01364 10.1007/s40313-017-0327-x 10.1016/j.energy.2012.03.063 10.1002/asjc.1655 10.1002/cem.1401 10.1109/TIE.2016.2645498 10.1109/TNNLS.2013.2275948 10.1049/iet-cta.2016.0125 10.2478/v10006-012-0017-6 10.1145/3219819.3219845 10.1109/ICMLA.2015.141 10.1109/ICIEA.2017.8282943 10.2514/6.2008-3212 10.1109/ASCC.2017.8287417 10.1109/CAC.2017.8243262 |
| ContentType | Journal Article |
| Copyright | Springer Nature Switzerland AG 2019 Springer Nature Switzerland AG 2019. |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: Springer Nature Switzerland AG 2019. |
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U ADTOC UNPAY |
| DOI | 10.1007/s42452-019-1526-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database (Proquest) Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2523-3971 |
| ExternalDocumentID | 10.1007/s42452-019-1526-9 10_1007_s42452_019_1526_9 |
| GrantInformation_xml | – fundername: Army Research Laboratory grantid: W911QX-18-P-0180 funderid: http://dx.doi.org/10.13039/100006754 |
| GroupedDBID | -EM 0R~ 88I AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTEG ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACULB ADKNI ADMLS ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CCPQU DWQXO EBLON EBS EJD FINBP FNLPD FSGXE GNUQQ GNWQR GROUPED_DOAJ H13 HCIFZ J-C KB. KOV M2P M4Y M7S NQJWS NU0 OK1 PATMY PCBAR PDBOC PIMPY PTHSS PYCSY RSV SOJ STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ACSTC CITATION PHGZM PHGZT PQGLB PUEGO 3V. 7XB 8FE 8FG 8FK D1I L6V PKEHL PQEST PQQKQ PQUKI Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c359t-1b42d7ed4773e02884ecb9d902ca995f02249aecc999acda4030ea4515741d2d3 |
| IEDL.DBID | UNPAY |
| ISSN | 2523-3963 2523-3971 |
| IngestDate | Tue Aug 19 16:39:12 EDT 2025 Wed Oct 08 14:30:39 EDT 2025 Wed Oct 01 05:02:47 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Fri Feb 21 02:30:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Model predictive control Anomaly mitigation Neural network Meta-optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-1b42d7ed4773e02884ecb9d902ca995f02249aecc999acda4030ea4515741d2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5750-3181 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s42452-019-1526-9.pdf |
| PQID | 2788459774 |
| PQPubID | 5758472 |
| ParticipantIDs | unpaywall_primary_10_1007_s42452_019_1526_9 proquest_journals_2788459774 crossref_citationtrail_10_1007_s42452_019_1526_9 crossref_primary_10_1007_s42452_019_1526_9 springer_journals_10_1007_s42452_019_1526_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20191100 2019-11-00 20191101 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 20191100 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: London |
| PublicationTitle | SN applied sciences |
| PublicationTitleAbbrev | SN Appl. Sci |
| PublicationYear | 2019 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Tatjewski (CR14) 2014; 24 Patan (CR26) 2015; 23 Draeger, Engell, Ranke (CR4) 1995; 15 CR19 Whitley (CR25) 1994; 4 CR39 CR38 Patan, Korbicz (CR5) 2012; 22 CR37 CR36 Cheng, Liu, Hou, Yu, Tan (CR6) 2015; 62 CR34 CR32 Zhang, Tao (CR22) 2016; 64 CR30 Kusiak, Xu (CR17) 2012; 42 Yan, Wang (CR12) 2014; 25 Han, Zhang, Hou, Qiao (CR10) 2016; 27 Narendra, Parthasarathy (CR1) 1990; 1 Vatankhah, Farrokhi (CR18) 2018; 21 Martínez-Heras, Donati (CR31) 2014; 35 Ma, Xia, Li, Chang (CR35) 2016; 10 Tian, Yang, van der Helm, Dewald (CR24) 2018; 12 Mohammadzaheri, Chen, Grainger (CR3) 2012; 14 Puttige, Anavatti (CR23) 2008; 3 Akpan, Hassapis (CR8) 2011; 50 Negri, Cavalca, de Oliveira, Araújo, Celiberto (CR11) 2017; 28 Pan, Wang (CR9) 2012; 59 Curteanu, Cartwright (CR20) 2011; 25 Zhang, Tao, Gao (CR21) 2016; 55 Hagan, Demuth, Jesús (CR2) 2002; 12 Jeong, Park, Park, Min, Lee (CR33) 2018; 184 Chandola, Banerjee, Kumar (CR28) 2009; 41 Morari, Maeder (CR13) 2012; 48 Goldstein, Uchida (CR29) 2016; 11 Wang, Gao, Qiu (CR7) 2016; 27 Sena, Ramos, Silva, Fileti (CR15) 2017; 57 Alexandridis, Sarimveis (CR16) 2005; 51 Zhang, Sun, Liu, Deng (CR27) 2019 M Goldstein (1526_CR29) 2016; 11 S Curteanu (1526_CR20) 2011; 25 M Mohammadzaheri (1526_CR3) 2012; 14 V Chandola (1526_CR28) 2009; 41 Y Pan (1526_CR9) 2012; 59 VR Puttige (1526_CR23) 2008; 3 KS Narendra (1526_CR1) 1990; 1 B Vatankhah (1526_CR18) 2018; 21 H Jeong (1526_CR33) 2018; 184 HJ Sena (1526_CR15) 2017; 57 D Ma (1526_CR35) 2016; 10 R Tian (1526_CR24) 2018; 12 K Patan (1526_CR26) 2015; 23 L Cheng (1526_CR6) 2015; 62 VA Akpan (1526_CR8) 2011; 50 K Patan (1526_CR5) 2012; 22 HG Han (1526_CR10) 2016; 27 GH Negri (1526_CR11) 2017; 28 1526_CR19 T Wang (1526_CR7) 2016; 27 1526_CR39 1526_CR38 A Kusiak (1526_CR17) 2012; 42 1526_CR37 A Draeger (1526_CR4) 1995; 15 A Alexandridis (1526_CR16) 2005; 51 1526_CR36 1526_CR34 1526_CR32 1526_CR30 P Tatjewski (1526_CR14) 2014; 24 M Morari (1526_CR13) 2012; 48 D Whitley (1526_CR25) 1994; 4 R Zhang (1526_CR22) 2016; 64 Z Yan (1526_CR12) 2014; 25 R Zhang (1526_CR21) 2016; 55 B Zhang (1526_CR27) 2019 MT Hagan (1526_CR2) 2002; 12 JA Martínez-Heras (1526_CR31) 2014; 35 |
| References_xml | – volume: 184 start-page: 27 year: 2018 end-page: 40 ident: CR33 article-title: Fault detection and identification method using observer-based residuals publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.02.007 – volume: 23 start-page: 1147 issue: 3 year: 2015 end-page: 1155 ident: CR26 article-title: Neural network-based model predictive control: fault tolerance and stability publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2014.2354981 – volume: 27 start-page: 402 issue: 2 year: 2016 end-page: 415 ident: CR10 article-title: Nonlinear model predictive control based on a self-organizing recurrent neural network publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2465174 – volume: 62 start-page: 7717 issue: 12 year: 2015 end-page: 7727 ident: CR6 article-title: Neural-network-based nonlinear model predictive control for piezoelectric actuators publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2015.2455026 – volume: 41 start-page: 15 issue: 3 year: 2009 ident: CR28 article-title: Anomaly detection: a survey publication-title: ACM Comput Surv (CSUR) doi: 10.1145/1541880.1541882 – volume: 1 start-page: 4 issue: 1 year: 1990 end-page: 27 ident: CR1 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/72.80202 – volume: 24 start-page: 313 issue: 2 year: 2014 end-page: 323 ident: CR14 article-title: Disturbance modeling and state estimation for offset-free predictive control with state-space process models publication-title: Int J Appl Math Comput Sci doi: 10.2478/amcs-2014-0023 – ident: CR39 – ident: CR37 – year: 2019 ident: CR27 article-title: Recurrent neural network-based model predictive control for multiple unmanned quadrotor formation flight publication-title: Int J Aerosp Eng doi: 10.1155/2019/7272387 – volume: 59 start-page: 3089 issue: 8 year: 2012 end-page: 3101 ident: CR9 article-title: Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2011.2169636 – volume: 12 start-page: 96 year: 2018 ident: CR24 article-title: A novel approach for modeling neural responses to joint perturbations using the NARMAX method and a hierarchical neural network publication-title: Front Comput Neurosci doi: 10.3389/fncom.2018.00096 – ident: CR30 – volume: 15 start-page: 61 issue: 5 year: 1995 end-page: 66 ident: CR4 article-title: Model predictive control using neural networks publication-title: IEEE Control Syst doi: 10.1109/37.466261 – volume: 35 start-page: 37 issue: 4 year: 2014 end-page: 46 ident: CR31 article-title: Enhanced telemetry monitoring with novelty detection publication-title: AI Mag doi: 10.1609/aimag.v35i4.2553 – volume: 4 start-page: 65 issue: 2 year: 1994 end-page: 85 ident: CR25 article-title: A genetic algorithm tutorial publication-title: Stat Comput doi: 10.1007/BF00175354 – volume: 51 start-page: 2495 issue: 9 year: 2005 end-page: 2506 ident: CR16 article-title: Nonlinear adaptive model predictive control based on self-correcting neural network models publication-title: AIChE J doi: 10.1002/aic.10505 – volume: 50 start-page: 177 issue: 2 year: 2011 end-page: 194 ident: CR8 article-title: Nonlinear model identification and adaptive model predictive control using neural networks publication-title: ISA Trans doi: 10.1016/j.isatra.2010.12.007 – volume: 11 start-page: e0152173 issue: 4 year: 2016 ident: CR29 article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data publication-title: PLoS ONE doi: 10.1371/journal.pone.0152173 – volume: 27 start-page: 416 issue: 2 year: 2016 end-page: 425 ident: CR7 article-title: A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2411671 – volume: 48 start-page: 2059 issue: 9 year: 2012 end-page: 2067 ident: CR13 article-title: Nonlinear offset-free model predictive control publication-title: Automatica doi: 10.1016/j.automatica.2012.06.038 – volume: 57 start-page: 1093 year: 2017 end-page: 1098 ident: CR15 article-title: Adaptive offset remover based on Kalman filter integrated to a model predictive controller publication-title: Chem Eng – ident: CR19 – volume: 12 start-page: 959 issue: 11 year: 2002 end-page: 985 ident: CR2 article-title: An introduction to the use of neural networks in control systems publication-title: Int J Robust and Nonlinear Control IFAC-Affil J doi: 10.1002/rnc.727 – volume: 14 start-page: 1 issue: 1 year: 2012 end-page: 11 ident: CR3 article-title: A critical review of the most popular types of neuro control publication-title: Asian J Control doi: 10.1002/asjc.449 – ident: CR38 – volume: 55 start-page: 6465 issue: 22 year: 2016 end-page: 6474 ident: CR21 article-title: A new approach of Takagi-Sugeno fuzzy modeling using an improved genetic algorithm optimization for oxygen content in a coke furnace publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.6b01364 – volume: 28 start-page: 623 issue: 5 year: 2017 end-page: 634 ident: CR11 article-title: Evaluation of nonlinear model-based predictive control approaches using derivative-free optimization and FCC neural networks publication-title: J Control Autom Electr Syst doi: 10.1007/s40313-017-0327-x – volume: 42 start-page: 241 issue: 1 year: 2012 end-page: 250 ident: CR17 article-title: Modeling and optimization of HVAC systems using a dynamic neural network publication-title: Energy doi: 10.1016/j.energy.2012.03.063 – volume: 21 start-page: 2232 issue: 5 year: 2018 end-page: 2244 ident: CR18 article-title: Nonlinear adaptive model predictive control of constrained systems with offset-free tracking behavior publication-title: Asian J Control doi: 10.1002/asjc.1655 – volume: 3 start-page: 31 issue: 7 year: 2008 end-page: 38 ident: CR23 article-title: Real-time system identification of unmanned aerial vehicles: a multi-network approach publication-title: JCP – ident: CR32 – ident: CR34 – volume: 25 start-page: 527 issue: 10 year: 2011 end-page: 549 ident: CR20 article-title: Neural networks applied in chemistry. I. Determination of the optimal topology of multilayer perceptron neural networks publication-title: J Chemom doi: 10.1002/cem.1401 – volume: 64 start-page: 3147 issue: 4 year: 2016 end-page: 3155 ident: CR22 article-title: Data-driven modeling using improved multi-objective optimization based neural network for coke furnace system publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2645498 – ident: CR36 – volume: 25 start-page: 457 issue: 3 year: 2014 end-page: 469 ident: CR12 article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2275948 – volume: 10 start-page: 2213 issue: 17 year: 2016 end-page: 2222 ident: CR35 article-title: Active disturbance rejection and predictive control strategy for a quadrotor helicopter publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2016.0125 – volume: 22 start-page: 225 issue: 1 year: 2012 end-page: 237 ident: CR5 article-title: Nonlinear model predictive control of a boiler unit: a fault tolerant control study publication-title: Int J Appl Math Comput Sci doi: 10.2478/v10006-012-0017-6 – volume: 22 start-page: 225 issue: 1 year: 2012 ident: 1526_CR5 publication-title: Int J Appl Math Comput Sci doi: 10.2478/v10006-012-0017-6 – volume: 23 start-page: 1147 issue: 3 year: 2015 ident: 1526_CR26 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2014.2354981 – volume: 27 start-page: 416 issue: 2 year: 2016 ident: 1526_CR7 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2411671 – volume: 28 start-page: 623 issue: 5 year: 2017 ident: 1526_CR11 publication-title: J Control Autom Electr Syst doi: 10.1007/s40313-017-0327-x – volume: 12 start-page: 96 year: 2018 ident: 1526_CR24 publication-title: Front Comput Neurosci doi: 10.3389/fncom.2018.00096 – volume: 184 start-page: 27 year: 2018 ident: 1526_CR33 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.02.007 – ident: 1526_CR19 – ident: 1526_CR34 doi: 10.1145/3219819.3219845 – ident: 1526_CR32 doi: 10.1109/ICMLA.2015.141 – volume: 55 start-page: 6465 issue: 22 year: 2016 ident: 1526_CR21 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.6b01364 – ident: 1526_CR38 doi: 10.1109/ICIEA.2017.8282943 – ident: 1526_CR30 doi: 10.2514/6.2008-3212 – ident: 1526_CR37 doi: 10.1109/ASCC.2017.8287417 – volume: 62 start-page: 7717 issue: 12 year: 2015 ident: 1526_CR6 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2015.2455026 – volume: 11 start-page: e0152173 issue: 4 year: 2016 ident: 1526_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0152173 – volume: 57 start-page: 1093 year: 2017 ident: 1526_CR15 publication-title: Chem Eng – volume: 10 start-page: 2213 issue: 17 year: 2016 ident: 1526_CR35 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2016.0125 – ident: 1526_CR39 – volume: 24 start-page: 313 issue: 2 year: 2014 ident: 1526_CR14 publication-title: Int J Appl Math Comput Sci doi: 10.2478/amcs-2014-0023 – volume: 1 start-page: 4 issue: 1 year: 1990 ident: 1526_CR1 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.80202 – volume: 14 start-page: 1 issue: 1 year: 2012 ident: 1526_CR3 publication-title: Asian J Control doi: 10.1002/asjc.449 – volume: 48 start-page: 2059 issue: 9 year: 2012 ident: 1526_CR13 publication-title: Automatica doi: 10.1016/j.automatica.2012.06.038 – year: 2019 ident: 1526_CR27 publication-title: Int J Aerosp Eng doi: 10.1155/2019/7272387 – volume: 41 start-page: 15 issue: 3 year: 2009 ident: 1526_CR28 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/1541880.1541882 – volume: 35 start-page: 37 issue: 4 year: 2014 ident: 1526_CR31 publication-title: AI Mag doi: 10.1609/aimag.v35i4.2553 – volume: 51 start-page: 2495 issue: 9 year: 2005 ident: 1526_CR16 publication-title: AIChE J doi: 10.1002/aic.10505 – volume: 25 start-page: 457 issue: 3 year: 2014 ident: 1526_CR12 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2275948 – volume: 25 start-page: 527 issue: 10 year: 2011 ident: 1526_CR20 publication-title: J Chemom doi: 10.1002/cem.1401 – volume: 3 start-page: 31 issue: 7 year: 2008 ident: 1526_CR23 publication-title: JCP – volume: 42 start-page: 241 issue: 1 year: 2012 ident: 1526_CR17 publication-title: Energy doi: 10.1016/j.energy.2012.03.063 – volume: 59 start-page: 3089 issue: 8 year: 2012 ident: 1526_CR9 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2011.2169636 – volume: 27 start-page: 402 issue: 2 year: 2016 ident: 1526_CR10 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2465174 – volume: 64 start-page: 3147 issue: 4 year: 2016 ident: 1526_CR22 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2645498 – volume: 12 start-page: 959 issue: 11 year: 2002 ident: 1526_CR2 publication-title: Int J Robust and Nonlinear Control IFAC-Affil J doi: 10.1002/rnc.727 – volume: 50 start-page: 177 issue: 2 year: 2011 ident: 1526_CR8 publication-title: ISA Trans doi: 10.1016/j.isatra.2010.12.007 – volume: 21 start-page: 2232 issue: 5 year: 2018 ident: 1526_CR18 publication-title: Asian J Control doi: 10.1002/asjc.1655 – ident: 1526_CR36 doi: 10.1109/CAC.2017.8243262 – volume: 4 start-page: 65 issue: 2 year: 1994 ident: 1526_CR25 publication-title: Stat Comput doi: 10.1007/BF00175354 – volume: 15 start-page: 61 issue: 5 year: 1995 ident: 1526_CR4 publication-title: IEEE Control Syst doi: 10.1109/37.466261 |
| SSID | ssj0002793483 ssib051670015 |
| Score | 2.181799 |
| Snippet | This paper presents a methodology that combines a dual-net model and the model predictive control (MPC) to compensate degraded system performance caused by... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1488 |
| SubjectTerms | 3. Engineering (general) Algorithms Anomalies Applied and Technical Physics Artificial neural networks Case studies Chemistry/Food Science Compensation Control systems Decision making Earth Sciences Engineering Environment Genetic algorithms Materials Science Mathematical models Model accuracy Model updating Multilayer perceptrons Neural networks Neurons Optimization Performance degradation Predictive control Reconfiguration Research Article Robustness (mathematics) System dynamics Unmanned helicopters |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NTxsxEB2l4UA5VJQWNTRUPnACWSRe74cPCAEiQpWIqqpI3FZe2wGhZbOFXSH-PTOON6GX9LbSfljaefY8e2beABwIjT5ApDOO3inl0iqcc7FVPNFJZrIo0aKgc8jraXJ1I3_exrc9mHa1MJRW2a2JfqG2c0Nn5McC92qSxNLkaf2XU9coiq52LTR0aK1gT7zE2AfYEKSM1YeN88vpr98dwuIxVaUEB_jgw24qkl6rU-COjEcIxy70SfV1FBakzAXF0c0lXP3rvFaMdBlE3YLNtqr164suy3d-arINnwLBZGcLRHyGnqt2YOud7OAXaCe6LRtG2eS4ifWmYcUrW4hmsLamiofqjs1nDNFFRY5Ml3f4L5r7R_7s--Y4y0gIE8epFmnkzHfUYciAw1X9RBEgWktZyIb_CjeTyz8XVzy0X-AmilXDx4UUNnVWpmnkkIZk0plCWTUSRisVz8j7K40QQI6pjdUS1wunJRIkZClW2GgX-tW8ct-AxZkdm2yUITCUFMYWaE0xS03mxoiFIhrAqPuvuQna5NQio8yXqsreFDmaIidT5GoAh8tX6oUwx7qHh52x8jBHn_MVogZw1BlwdXvNx46WNv7_0Hvrh_4OH4XHFx3qDKHfPLVuH2lOU_wI2H0DDiv2aA priority: 102 providerName: ProQuest |
| Title | Fault compensation by online updating of genetic algorithm-selected neural network model for model predictive control |
| URI | https://link.springer.com/article/10.1007/s42452-019-1526-9 https://www.proquest.com/docview/2788459774 https://link.springer.com/content/pdf/10.1007/s42452-019-1526-9.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2523-3971 dateEnd: 20231231 omitProxy: true ssIdentifier: ssib051670015 issn: 2523-3963 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5Be0Ac9sFDFLGVD3ta5NImTmIf2apdtBIVQlSCU-TYDiBCGpVEKzjw2xnnVXa1Aq325siOndhjz5fMzDcAXx2JOsAJYoraKaBMC9xznhbUlz5X3PWlE9n_kKcz_2TOfl56l2swbmJhSm_3xiRZxTRYlqY0P8p0fNQGvll7nXUpEBT1j0_FAGvXoet7CMg70J3Pzo6vbFo5_MyirijzqdXlYNTYNv_Wz-_aaQU5WyvpJmwUaSYff8kkeaWIph9BN69Q-Z_cDYo8GqinP9gd__MdP8GHGqiS40qyPsOaSbdg8xV94TYUU1kkObFe6fgxXC4xiR5JRb5BisxGTqTXZBETlFIbLElkcr1Y3uY39_ShzL9jNLGEmjhOWrmjkzIzD0EkXZeypbUk2TOZ1F71OzCfTi7GJ7RO40CV64mcjiLm6MBoFgSuQTjDmVGR0GLoKCmEF1sUISSKEmJVqbRkeO4YyRBoIdrRjnZ3oZMuUrMHxON6pPiQo4AJ5igdOQhw4kBxM0KZitweDJvlC1XNcW5TbSRhy85czmqIsxraWQ1FD761t2QVwcdbjQ8amQjrvf4Q4jNwZmn8WA8Om2VdVb_R2WErSu8Pvf9PrQ-gky8L8wUBUx71YZ1Pf_Sh-30yOzvHq9PnSb_eJC8vrhIT |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lB6QDxFSgEf4EJlkXi9Dx8qxKNRStsIoVbqbfHaThFaNttmV1X-HL-NGceblEs49bbSPqz1fPY343kBvBEaOUCkE47slHJpFa652Cqe6CQzWZRoUdA55Ok4GZ3LrxfxxQb86XJhKKyy2xP9Rm2nhs7I3wu01SQVS5Mf6itOXaPIu9q10NChtYI98CXGQmLHsZvfoAk3Ozj6gvJ-K8Tw8OzziIcuA9xEsWr4oJDCps7KNI0csm0mnSmUVX1htFLxhEhOafxTVKW0sVrisnBaoh6AZGyFjfC792BLRlKh8bf16XD87XuH6HhAWTCBcH95N5-KpK8NKtAC5BHCv3O1Uj4fuSEpUkJxpNWEq3_JcqUBL522O7DdVrWe3-iyvMWLw4fwICi07OMCgY9gw1WPYedWmcMn0A51WzaMotfRaPZQYMWcLYp0sLamDIvqkk0nDNFMSZVMl5c4983P33zm-_Q4y6jwJo5TLcLWme_gw1DjDlf1NXmcaO9mIfr-KZzfiSCewWY1rdxzYHFmBybrZwhEJYWxBaJHTFKTuQFir4h60O_mNTehFjq15CjzZRVnL4ocRZGTKHLVg3fLV-pFIZB1D-91wsrDnjDLVwjuwX4nwNXtNR_bX8r4_0Pvrh_6NWyPzk5P8pOj8fELuC881uhAaQ82m-vWvUQVqyleBRwz-HHXS-cvjHwzOw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgE9IL4qFgr4ABcqq7uO8-EDQogSWgoVByr1FhzbaVWl2bSbqNq_1l_XGSfZLZfl1NtK2cRK5tlv7Jl5A_BeaOQAERcc2Snm0iqcc6FVPNJRYpIg0iKnc8hfh9HekfxxHB6vwfVQC0NplcOa6BdqOzV0Rr4jcK8mSSxN7hR9WsTv3fRzfcGpgxRFWod2Gh1EDtz8Crdvs0_7u2jrD0Kk3_583eN9hwFuglA1fJJLYWNnZRwHDpk2kc7kyqqxMFqpsCCCUxrfEt0obayWOCWclugDIBFbYQN87j24H5OKO1Wpp98HLIcTqn_pqfbMB_hUIL0qqMC9Hw8Q-EOQlSr5KABJORKKI6FGXP1Lk0vfdxGu3YCHbVXr-ZUuy1uMmD6Bx70ry7502HsKa656Bhu3BA6fQ5vqtmwY5a3jdtmDgOVz1slzsLam2orqhE0LhjimckqmyxP80s3pOZ_5Dj3OMpLcxHGqLmGd-d49DH3t_ld9SbEmWrVZn3f_Ao7uxAybsF5NK_cSWJjYiUnGCUJQSWFsjrgRRWwSN0HU5cEIxsN3zUyvgk7NOMpsod_sTZGhKTIyRaZG8HFxS91JgKz689ZgrKxfDWbZErsj2B4MuLy84mHbCxv_f-hXq4d-Bw9wwmQ_9w8PXsMj4aFGJ0lbsN5ctu4N-lZN_taDmMHfu541NxKdMNU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oPIgHv8XJlBw8KZlbm37kOIZjCIoHB_NU0iRVsXZltoj-9b70yymiiLdC0qRJXvJ-6Xvv9wCOLYE6wPIiitrJo0xx3HOO4tQVri992xVWaP5DXl654wm7mDrTJRjWsTCFt3ttkixjGgxLU5KdpSo6awLfjL3OuBRwivrHpbyLpcuw4joIyFuwMrm6HtyatHJ4zaI2L_KpVc9ev7ZtftfOZ-30ATkbK-karOZJKl5fRBwvKKLRBqh6CKX_yWM3z8KufPvC7vjPMW7CegVUyaCUrC1Y0sk2rC3QF-5APhJ5nBHjlY6X4WKJSfhKSvINkqcmciK5I7OIoJSaYEki4rvZ_CG7f6LPRf4drYgh1MR-ktIdnRSZeQgi6eopnRtLkjmTSeVVvwuT0fnNcEyrNA5U2g7PaD9klvK0Yp5na4QzPtMy5Ir3LCk4dyKDIrhAUUKsKqQSDM8dLRgCLUQ7ylL2HrSSWaL3gTi-6ku_56OAcWZJFVoIcCJP-rqPMhXabejVyxfIiuPcpNqIg4aduZjVAGc1MLMa8DacNK-kJcHHT5U7tUwE1V5_DvAbfGZo_FgbTutl_Sj-obHTRpR-7_rgT7U70MrmuT5EwJSFR9WGeAfzhQ5i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+compensation+by+online+updating+of+genetic+algorithm-selected+neural+network+model+for+model+predictive+control&rft.jtitle=SN+applied+sciences&rft.au=Hong%2C+Seong+Hyeon&rft.au=Cornelius%2C+Jackson&rft.au=Wang%2C+Yi&rft.au=Pant%2C+Kapil&rft.date=2019-11-01&rft.pub=Springer+International+Publishing&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=1&rft.issue=11&rft_id=info:doi/10.1007%2Fs42452-019-1526-9&rft.externalDocID=10_1007_s42452_019_1526_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon |