Cocoa Pods Diseases Detection by MobileNet Confluence and Classification Algorithms
Cocoa cultivation is of immense importance to the people of Côte d'Ivoire. However, this culture is experiencing significant challenges due to diseases spread by various agents such as bacteria, viruses, and fungi, which cause considerable economic losses. Currently, the methods available to de...
        Saved in:
      
    
          | Published in | International journal of advanced computer science & applications Vol. 14; no. 9 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        West Yorkshire
          Science and Information (SAI) Organization Limited
    
        2023
     The Science and Information Organization  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2158-107X 2156-5570 2156-5570  | 
| DOI | 10.14569/IJACSA.2023.0140937 | 
Cover
| Abstract | Cocoa cultivation is of immense importance to the people of Côte d'Ivoire. However, this culture is experiencing significant challenges due to diseases spread by various agents such as bacteria, viruses, and fungi, which cause considerable economic losses. Currently, the methods available to detect these cocoa diseases force farmers to seek the expertise of agronomists for visual inspections and diagnostics, a laborious and complex process. In the search for solutions, many studies have opted for using convolutional neural networks (CNNs) to identify diseases in cocoa pods. However, an essential advance is to develop hybrid approaches that combine the advantages of a CNN with sophisticated classification algorithms. This research stands out for its innovative contribution, combining MobileNetV2, a convolutional neural network architecture, with algorithms, such as Logistic Regression (LR), K Nearest Neighbors (KNN), Support Vector Machines (SVM), XGBoost, and Random Forest. The study was conducted in two distinct phases. First, each algorithm was evaluated individually, and then performance was measured when MobileNetV2 was merged with the algorithms mentioned. These hybrid approaches complement and amplify MobileNetV2's capabilities. To do so, they draw on MobileNetV2's inherent capabilities to extract key features and enhance information quality. By combining this expertise with the classification methods of these other models, hybrid approaches outperform individual techniques. Accuracy rates range from 72.4% to 86.04%.This performance amplitude underlines the effectiveness of the synergy between the extraction characteristics of MobileNetV2 and the classification skills of other algorithms. | 
    
|---|---|
| AbstractList | Cocoa cultivation is of immense importance to the people of Côte d'Ivoire. However, this culture is experiencing significant challenges due to diseases spread by various agents such as bacteria, viruses, and fungi, which cause considerable economic losses. Currently, the methods available to detect these cocoa diseases force farmers to seek the expertise of agronomists for visual inspections and diagnostics, a laborious and complex process. In the search for solutions, many studies have opted for using convolutional neural networks (CNNs) to identify diseases in cocoa pods. However, an essential advance is to develop hybrid approaches that combine the advantages of a CNN with sophisticated classification algorithms. This research stands out for its innovative contribution, combining MobileNetV2, a convolutional neural network architecture, with algorithms, such as Logistic Regression (LR), K Nearest Neighbors (KNN), Support Vector Machines (SVM), XGBoost, and Random Forest. The study was conducted in two distinct phases. First, each algorithm was evaluated individually, and then performance was measured when MobileNetV2 was merged with the algorithms mentioned. These hybrid approaches complement and amplify MobileNetV2's capabilities. To do so, they draw on MobileNetV2's inherent capabilities to extract key features and enhance information quality. By combining this expertise with the classification methods of these other models, hybrid approaches outperform individual techniques. Accuracy rates range from 72.4% to 86.04%.This performance amplitude underlines the effectiveness of the synergy between the extraction characteristics of MobileNetV2 and the classification skills of other algorithms. | 
    
| Author | AYIKPA, Kacoutchy Jean MAMADOU, Diarra KOUASSI, Brou Médard BALLO, Abou Bakary  | 
    
| Author_xml | – sequence: 1 givenname: Diarra surname: MAMADOU fullname: MAMADOU, Diarra – sequence: 2 givenname: Kacoutchy Jean surname: AYIKPA fullname: AYIKPA, Kacoutchy Jean – sequence: 3 givenname: Abou Bakary surname: BALLO fullname: BALLO, Abou Bakary – sequence: 4 givenname: Brou Médard surname: KOUASSI fullname: KOUASSI, Brou Médard  | 
    
| BackLink | https://hal.science/hal-04230938$$DView record in HAL | 
    
| BookMark | eNptkV1LwzAYhYMoOOf-gRcFr7zoTJqmbbwr9WOT-QFT8C6kaeIyumY2rbJ_b9YOBtPc5OXlOeGckzNwXJlKAnCB4BiFJKLX08c0m6fjAAZ4DFEIKY6PwCBAJPIJieFxNyc-gvHHKRhZu4TuYBpECR6AeWaE4d6rKax3q63kVrpBNlI02lRevvGeTK5L-SwbLzOVKltZCenxqvCyklurlRa8Q9Py09S6WazsOThRvLRytLuH4P3-7i2b-LOXh2mWznyBCW18FIU4wYVQLkWAY57nAhKCqXMGi0jkMMqLXEUhgQSrhFCac1woJSSkJKZFhIeA9O-21ZpvfnhZsnWtV7zeMARZVw7TSy4sZ9ty2K4cp7vqdQu-Vxiu2SSdse0OhgF2ZPKNHHvZs-vafLXSNmxp2rpysViQJBjFIXL2huCmp0RtrK2lYkI3XS1NzXW5t9P_1aGd8ED8J8V_sl_hS5aL | 
    
| CitedBy_id | crossref_primary_10_1149_2162_8777_ad3981 crossref_primary_10_3390_jimaging10010019  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC ADTOC UNPAY  | 
    
| DOI | 10.14569/IJACSA.2023.0140937 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2156-5570 | 
    
| ExternalDocumentID | 10.14569/ijacsa.2023.0140937 oai:HAL:hal-04230938v1 10_14569_IJACSA_2023_0140937  | 
    
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB PUEGO RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U 1XC ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c359t-164383dcf456237abbc055399260d6cb06bdbf645053f8599ba3dffce09579d63 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2158-107X 2156-5570  | 
    
| IngestDate | Wed Oct 01 16:41:04 EDT 2025 Tue Oct 14 20:31:18 EDT 2025 Mon Jul 14 10:09:25 EDT 2025 Wed Oct 01 01:54:38 EDT 2025 Thu Apr 24 23:09:16 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-164383dcf456237abbc055399260d6cb06bdbf645053f8599ba3dffce09579d63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2883174105?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2883174105 | 
    
| PQPubID | 5444811 | 
    
| ParticipantIDs | unpaywall_primary_10_14569_ijacsa_2023_0140937 hal_primary_oai_HAL_hal_04230938v1 proquest_journals_2883174105 crossref_citationtrail_10_14569_IJACSA_2023_0140937 crossref_primary_10_14569_IJACSA_2023_0140937  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-00-00 | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – year: 2023 text: 2023-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | West Yorkshire | 
    
| PublicationPlace_xml | – name: West Yorkshire | 
    
| PublicationTitle | International journal of advanced computer science & applications | 
    
| PublicationYear | 2023 | 
    
| Publisher | Science and Information (SAI) Organization Limited The Science and Information Organization  | 
    
| Publisher_xml | – name: Science and Information (SAI) Organization Limited – name: The Science and Information Organization  | 
    
| SSID | ssj0000392683 | 
    
| Score | 2.2744393 | 
    
| Snippet | Cocoa cultivation is of immense importance to the people of Côte d'Ivoire. However, this culture is experiencing significant challenges due to diseases spread... | 
    
| SourceID | unpaywall hal proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| SubjectTerms | Algorithms Artificial neural networks Classification Cocoa Computer Science Economic impact Neural networks Support vector machines  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Nb9NAEB216QEutHypgRatEFc7H2s73aOVUoWKRpFKUDit9sOmpcGOageU_oX-aWa8tgnqAXHhZlu7Gsk7u37PO_sewDuuEwQJpu8NE7Iws0Z5KkwGON0RyQWBDkNFB5wvptFkHpwvwsUONCVBCHoK5XbwT0ksPle26H2u5ukgmOaiN1Mr5O585I1zkys5y20hT91WBl4kZVW_lEm9kRe5xnk1TUpJZ-ec34e_suku7EUh4vYO7M2ns_gLuc8hifFIi8pdk97paFGfs0OAIXrX35QpSKVoyH2iJIJs07e-Y7tXVEW5BVEfrbOV2vxUy-XW1-psH-6bMz-uSOXGX5faN3cPJSD_w4s4gCc16GWxy9KnsJNkz2C_MZRg9fryHC6rKIyisCYKa6MwvWFtFPY7ClOZZZW5J5U9VZnG4uXX_Pa6vPpevID52ftP44lXuz54hoei9JC_IWu2JiVuxkdKa9MPK_3cqG8jo_uRtjqNAoRuPD0JhdCK2zQ1mGvhSNiIv4ROlmfJITCulDXCkOghEqFhqjlPhcasROAihtp0gTdjKE0tiU7OHEtJ1IhGXn44j8eXsaSRl_XId8Fre62cJMhf2r_F9Gibkp73JP4o6RkVJWGTkx-DLhw12SPrVaSQ5ASNjBEhcBf8NqMeBnXp-UfQV__a4TU8plv3d-kIOuXtOjlGvFXqN_VE-QXMaSwS priority: 102 providerName: Unpaywall  | 
    
| Title | Cocoa Pods Diseases Detection by MobileNet Confluence and Classification Algorithms | 
    
| URI | https://www.proquest.com/docview/2883174105 https://hal.science/hal-04230938 http://thesai.org/Downloads/Volume14No9/Paper_37-Cocoa_Pods_Diseases_Detection_by_MobileNet_Confluence.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB6RcKAXXi1qgKJVxdXBZGMne0DIDYSAihUVIoWTtQ-7AQU7EEPFv--MvU5TVaInW9balmb28c3uzPcBHHIVI0jQrtOKScLMaOlILz7G4Y5Irt1WniepwPk69Aej9tXYG69AWNXCUFplNScWE7XJNO2RH5EqLqJnhAOnsyeHVKPodLWS0JBWWsGcFBRjNVhtETNWHVa_nYfDH4tdFxfhgF9wc-JSR7ymnbGtp0MgIY4ur4LeTdAkSfEmhR6C5NGX1qvahLIll6Do2ks6k2-_5HS6tCr1N2HdwkkWlP7fgpU43YaNSqqB2ZH7EW56mc4kG2Zmzs7KMxm8ifMiEStl6o1dZwoniDDOGRUBlsIlTKaGFbKZlFBU-JAF059olnzyOP8Eo_75bW_gWD0FR3NP5A5GRhiPGp1Q1MM7UintegUzre8aXyvXV0YlfhtBEU-6nhBKcpMkGr3odYTx-Q7U0yyNPwPjUhotNNEJYojRShTniVDob4QEoqV0A3hltUhbsnHSvJhGFHSQraPS1hHZOrK2boCzeGtWkm38p_1XdMiiKTFlD4LvET2jdB9s0n09bsB-5a_Ijs959Kc3NaC58OG_P71_kHou__rp7vvf24MP1LrcpdmHev78En9B3JKrA6h1-xcHtkvidRQOg7vfL7fo5A | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71cSgX3ohAgRWCo1PXazvdQ4VM2ippk6iirZSb2ZcpVWoH7FLlz_HbmLHXIQgJTr1Z1torz4xnv9mdmQ_gHVcWQYL2vcAShZnR0pOR3cXfHZFcGKooklTgPJ7Eg4vweBpN1-BnWwtDaZWtT6wdtSk07ZHvECsuomeEAx_m3zxijaLT1ZZCQzpqBbNftxhzhR0ndnGLIVy5PzxAfb8PgqPD8_7AcywDnuaRqDyMFzBKMzqjWID3pFLaj-p-rbFvYq38WBmVxSFCBZ7tRUIoyU2Wafy2qCdMzPG967AZ8lBg8Lf58XBy-mm5y-Mj_IjrXqC4tFIf1d7U1e_hbGJneJz0z5IuUZh3KdQRRMe-sj6uX1J25gr03brJ53JxK2ezlVXw6CHcd_CVJY29PYI1mz-GBy01BHOe4gmc9QtdSHZamJIdNGdAeGGrOvErZ2rBxoVChzSxFaOiw4YohcncsJqmkxKYapthyewLqqG6vC6fwsWdSPYZbORFbp8D41IaLTS1L8SQJsgU55lQaF8IQUSgdAd4K7VUu-bmxLExSynIIVmnjaxTknXqZN0Bb_nUvGnu8Z_xb1Ehy6HUmXuQjFK6R-lFOGTvx24Htlt9pc4flOlv6-1Ad6nDvyf9eiV1Kf-Y9MW_3_cGtgbn41E6Gk5OXsI9erLZIdqGjer7jX2FmKlSr51hMvh81__CL-PnIuU | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Nb9NAEB216QEutHypgRatEFc7H2s73aOVUoWKRpFKUDit9sOmpcGOageU_oX-aWa8tgnqAXHhZlu7Gsk7u37PO_sewDuuEwQJpu8NE7Iws0Z5KkwGON0RyQWBDkNFB5wvptFkHpwvwsUONCVBCHoK5XbwT0ksPle26H2u5ukgmOaiN1Mr5O585I1zkys5y20hT91WBl4kZVW_lEm9kRe5xnk1TUpJZ-ec34e_suku7EUh4vYO7M2ns_gLuc8hifFIi8pdk97paFGfs0OAIXrX35QpSKVoyH2iJIJs07e-Y7tXVEW5BVEfrbOV2vxUy-XW1-psH-6bMz-uSOXGX5faN3cPJSD_w4s4gCc16GWxy9KnsJNkz2C_MZRg9fryHC6rKIyisCYKa6MwvWFtFPY7ClOZZZW5J5U9VZnG4uXX_Pa6vPpevID52ftP44lXuz54hoei9JC_IWu2JiVuxkdKa9MPK_3cqG8jo_uRtjqNAoRuPD0JhdCK2zQ1mGvhSNiIv4ROlmfJITCulDXCkOghEqFhqjlPhcasROAihtp0gTdjKE0tiU7OHEtJ1IhGXn44j8eXsaSRl_XId8Fre62cJMhf2r_F9Gibkp73JP4o6RkVJWGTkx-DLhw12SPrVaSQ5ASNjBEhcBf8NqMeBnXp-UfQV__a4TU8plv3d-kIOuXtOjlGvFXqN_VE-QXMaSwS | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cocoa+Pods+Diseases+Detection+by+MobileNet+Confluence+and+Classification+Algorithms&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Mamadou%2C+Diarra&rft.au=Ayikpa%2C+Kacoutchy+Jean&rft.au=Ballo%2C+Abou+Bakary&rft.au=Kouassi%2C+Brou+M%C3%A9dard&rft.date=2023&rft.pub=The+Science+and+Information+Organization&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=14&rft.issue=9&rft_id=info:doi/10.14569%2FIJACSA.2023.0140937&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04230938v1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |