Cocoa Pods Diseases Detection by MobileNet Confluence and Classification Algorithms

Cocoa cultivation is of immense importance to the people of Côte d'Ivoire. However, this culture is experiencing significant challenges due to diseases spread by various agents such as bacteria, viruses, and fungi, which cause considerable economic losses. Currently, the methods available to de...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 14; no. 9
Main Authors MAMADOU, Diarra, AYIKPA, Kacoutchy Jean, BALLO, Abou Bakary, KOUASSI, Brou Médard
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2023
The Science and Information Organization
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
2156-5570
DOI10.14569/IJACSA.2023.0140937

Cover

Abstract Cocoa cultivation is of immense importance to the people of Côte d'Ivoire. However, this culture is experiencing significant challenges due to diseases spread by various agents such as bacteria, viruses, and fungi, which cause considerable economic losses. Currently, the methods available to detect these cocoa diseases force farmers to seek the expertise of agronomists for visual inspections and diagnostics, a laborious and complex process. In the search for solutions, many studies have opted for using convolutional neural networks (CNNs) to identify diseases in cocoa pods. However, an essential advance is to develop hybrid approaches that combine the advantages of a CNN with sophisticated classification algorithms. This research stands out for its innovative contribution, combining MobileNetV2, a convolutional neural network architecture, with algorithms, such as Logistic Regression (LR), K Nearest Neighbors (KNN), Support Vector Machines (SVM), XGBoost, and Random Forest. The study was conducted in two distinct phases. First, each algorithm was evaluated individually, and then performance was measured when MobileNetV2 was merged with the algorithms mentioned. These hybrid approaches complement and amplify MobileNetV2's capabilities. To do so, they draw on MobileNetV2's inherent capabilities to extract key features and enhance information quality. By combining this expertise with the classification methods of these other models, hybrid approaches outperform individual techniques. Accuracy rates range from 72.4% to 86.04%.This performance amplitude underlines the effectiveness of the synergy between the extraction characteristics of MobileNetV2 and the classification skills of other algorithms.
AbstractList Cocoa cultivation is of immense importance to the people of Côte d'Ivoire. However, this culture is experiencing significant challenges due to diseases spread by various agents such as bacteria, viruses, and fungi, which cause considerable economic losses. Currently, the methods available to detect these cocoa diseases force farmers to seek the expertise of agronomists for visual inspections and diagnostics, a laborious and complex process. In the search for solutions, many studies have opted for using convolutional neural networks (CNNs) to identify diseases in cocoa pods. However, an essential advance is to develop hybrid approaches that combine the advantages of a CNN with sophisticated classification algorithms. This research stands out for its innovative contribution, combining MobileNetV2, a convolutional neural network architecture, with algorithms, such as Logistic Regression (LR), K Nearest Neighbors (KNN), Support Vector Machines (SVM), XGBoost, and Random Forest. The study was conducted in two distinct phases. First, each algorithm was evaluated individually, and then performance was measured when MobileNetV2 was merged with the algorithms mentioned. These hybrid approaches complement and amplify MobileNetV2's capabilities. To do so, they draw on MobileNetV2's inherent capabilities to extract key features and enhance information quality. By combining this expertise with the classification methods of these other models, hybrid approaches outperform individual techniques. Accuracy rates range from 72.4% to 86.04%.This performance amplitude underlines the effectiveness of the synergy between the extraction characteristics of MobileNetV2 and the classification skills of other algorithms.
Author AYIKPA, Kacoutchy Jean
MAMADOU, Diarra
KOUASSI, Brou Médard
BALLO, Abou Bakary
Author_xml – sequence: 1
  givenname: Diarra
  surname: MAMADOU
  fullname: MAMADOU, Diarra
– sequence: 2
  givenname: Kacoutchy Jean
  surname: AYIKPA
  fullname: AYIKPA, Kacoutchy Jean
– sequence: 3
  givenname: Abou Bakary
  surname: BALLO
  fullname: BALLO, Abou Bakary
– sequence: 4
  givenname: Brou Médard
  surname: KOUASSI
  fullname: KOUASSI, Brou Médard
BackLink https://hal.science/hal-04230938$$DView record in HAL
BookMark eNptkV1LwzAYhYMoOOf-gRcFr7zoTJqmbbwr9WOT-QFT8C6kaeIyumY2rbJ_b9YOBtPc5OXlOeGckzNwXJlKAnCB4BiFJKLX08c0m6fjAAZ4DFEIKY6PwCBAJPIJieFxNyc-gvHHKRhZu4TuYBpECR6AeWaE4d6rKax3q63kVrpBNlI02lRevvGeTK5L-SwbLzOVKltZCenxqvCyklurlRa8Q9Py09S6WazsOThRvLRytLuH4P3-7i2b-LOXh2mWznyBCW18FIU4wYVQLkWAY57nAhKCqXMGi0jkMMqLXEUhgQSrhFCac1woJSSkJKZFhIeA9O-21ZpvfnhZsnWtV7zeMARZVw7TSy4sZ9ty2K4cp7vqdQu-Vxiu2SSdse0OhgF2ZPKNHHvZs-vafLXSNmxp2rpysViQJBjFIXL2huCmp0RtrK2lYkI3XS1NzXW5t9P_1aGd8ED8J8V_sl_hS5aL
CitedBy_id crossref_primary_10_1149_2162_8777_ad3981
crossref_primary_10_3390_jimaging10010019
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
1XC
ADTOC
UNPAY
DOI 10.14569/IJACSA.2023.0140937
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10.14569/ijacsa.2023.0140937
oai:HAL:hal-04230938v1
10_14569_IJACSA_2023_0140937
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-c359t-164383dcf456237abbc055399260d6cb06bdbf645053f8599ba3dffce09579d63
IEDL.DBID BENPR
ISSN 2158-107X
2156-5570
IngestDate Wed Oct 01 16:41:04 EDT 2025
Tue Oct 14 20:31:18 EDT 2025
Mon Jul 14 10:09:25 EDT 2025
Wed Oct 01 01:54:38 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-164383dcf456237abbc055399260d6cb06bdbf645053f8599ba3dffce09579d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2883174105?pq-origsite=%requestingapplication%&accountid=15518
PQID 2883174105
PQPubID 5444811
ParticipantIDs unpaywall_primary_10_14569_ijacsa_2023_0140937
hal_primary_oai_HAL_hal_04230938v1
proquest_journals_2883174105
crossref_citationtrail_10_14569_IJACSA_2023_0140937
crossref_primary_10_14569_IJACSA_2023_0140937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2023
Publisher Science and Information (SAI) Organization Limited
The Science and Information Organization
Publisher_xml – name: Science and Information (SAI) Organization Limited
– name: The Science and Information Organization
SSID ssj0000392683
Score 2.2744393
Snippet Cocoa cultivation is of immense importance to the people of Côte d'Ivoire. However, this culture is experiencing significant challenges due to diseases spread...
SourceID unpaywall
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Artificial neural networks
Classification
Cocoa
Computer Science
Economic impact
Neural networks
Support vector machines
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Nb9NAEB216QEutHypgRatEFc7H2s73aOVUoWKRpFKUDit9sOmpcGOageU_oX-aWa8tgnqAXHhZlu7Gsk7u37PO_sewDuuEwQJpu8NE7Iws0Z5KkwGON0RyQWBDkNFB5wvptFkHpwvwsUONCVBCHoK5XbwT0ksPle26H2u5ukgmOaiN1Mr5O585I1zkys5y20hT91WBl4kZVW_lEm9kRe5xnk1TUpJZ-ec34e_suku7EUh4vYO7M2ns_gLuc8hifFIi8pdk97paFGfs0OAIXrX35QpSKVoyH2iJIJs07e-Y7tXVEW5BVEfrbOV2vxUy-XW1-psH-6bMz-uSOXGX5faN3cPJSD_w4s4gCc16GWxy9KnsJNkz2C_MZRg9fryHC6rKIyisCYKa6MwvWFtFPY7ClOZZZW5J5U9VZnG4uXX_Pa6vPpevID52ftP44lXuz54hoei9JC_IWu2JiVuxkdKa9MPK_3cqG8jo_uRtjqNAoRuPD0JhdCK2zQ1mGvhSNiIv4ROlmfJITCulDXCkOghEqFhqjlPhcasROAihtp0gTdjKE0tiU7OHEtJ1IhGXn44j8eXsaSRl_XId8Fre62cJMhf2r_F9Gibkp73JP4o6RkVJWGTkx-DLhw12SPrVaSQ5ASNjBEhcBf8NqMeBnXp-UfQV__a4TU8plv3d-kIOuXtOjlGvFXqN_VE-QXMaSwS
  priority: 102
  providerName: Unpaywall
Title Cocoa Pods Diseases Detection by MobileNet Confluence and Classification Algorithms
URI https://www.proquest.com/docview/2883174105
https://hal.science/hal-04230938
http://thesai.org/Downloads/Volume14No9/Paper_37-Cocoa_Pods_Diseases_Detection_by_MobileNet_Confluence.pdf
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB6RcKAXXi1qgKJVxdXBZGMne0DIDYSAihUVIoWTtQ-7AQU7EEPFv--MvU5TVaInW9balmb28c3uzPcBHHIVI0jQrtOKScLMaOlILz7G4Y5Irt1WniepwPk69Aej9tXYG69AWNXCUFplNScWE7XJNO2RH5EqLqJnhAOnsyeHVKPodLWS0JBWWsGcFBRjNVhtETNWHVa_nYfDH4tdFxfhgF9wc-JSR7ymnbGtp0MgIY4ur4LeTdAkSfEmhR6C5NGX1qvahLIll6Do2ks6k2-_5HS6tCr1N2HdwkkWlP7fgpU43YaNSqqB2ZH7EW56mc4kG2Zmzs7KMxm8ifMiEStl6o1dZwoniDDOGRUBlsIlTKaGFbKZlFBU-JAF059olnzyOP8Eo_75bW_gWD0FR3NP5A5GRhiPGp1Q1MM7UintegUzre8aXyvXV0YlfhtBEU-6nhBKcpMkGr3odYTx-Q7U0yyNPwPjUhotNNEJYojRShTniVDob4QEoqV0A3hltUhbsnHSvJhGFHSQraPS1hHZOrK2boCzeGtWkm38p_1XdMiiKTFlD4LvET2jdB9s0n09bsB-5a_Ijs959Kc3NaC58OG_P71_kHou__rp7vvf24MP1LrcpdmHev78En9B3JKrA6h1-xcHtkvidRQOg7vfL7fo5A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71cSgX3ohAgRWCo1PXazvdQ4VM2ippk6iirZSb2ZcpVWoH7FLlz_HbmLHXIQgJTr1Z1torz4xnv9mdmQ_gHVcWQYL2vcAShZnR0pOR3cXfHZFcGKooklTgPJ7Eg4vweBpN1-BnWwtDaZWtT6wdtSk07ZHvECsuomeEAx_m3zxijaLT1ZZCQzpqBbNftxhzhR0ndnGLIVy5PzxAfb8PgqPD8_7AcywDnuaRqDyMFzBKMzqjWID3pFLaj-p-rbFvYq38WBmVxSFCBZ7tRUIoyU2Wafy2qCdMzPG967AZ8lBg8Lf58XBy-mm5y-Mj_IjrXqC4tFIf1d7U1e_hbGJneJz0z5IuUZh3KdQRRMe-sj6uX1J25gr03brJ53JxK2ezlVXw6CHcd_CVJY29PYI1mz-GBy01BHOe4gmc9QtdSHZamJIdNGdAeGGrOvErZ2rBxoVChzSxFaOiw4YohcncsJqmkxKYapthyewLqqG6vC6fwsWdSPYZbORFbp8D41IaLTS1L8SQJsgU55lQaF8IQUSgdAd4K7VUu-bmxLExSynIIVmnjaxTknXqZN0Bb_nUvGnu8Z_xb1Ehy6HUmXuQjFK6R-lFOGTvx24Htlt9pc4flOlv6-1Ad6nDvyf9eiV1Kf-Y9MW_3_cGtgbn41E6Gk5OXsI9erLZIdqGjer7jX2FmKlSr51hMvh81__CL-PnIuU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Nb9NAEB216QEutHypgRatEFc7H2s73aOVUoWKRpFKUDit9sOmpcGOageU_oX-aWa8tgnqAXHhZlu7Gsk7u37PO_sewDuuEwQJpu8NE7Iws0Z5KkwGON0RyQWBDkNFB5wvptFkHpwvwsUONCVBCHoK5XbwT0ksPle26H2u5ukgmOaiN1Mr5O585I1zkys5y20hT91WBl4kZVW_lEm9kRe5xnk1TUpJZ-ec34e_suku7EUh4vYO7M2ns_gLuc8hifFIi8pdk97paFGfs0OAIXrX35QpSKVoyH2iJIJs07e-Y7tXVEW5BVEfrbOV2vxUy-XW1-psH-6bMz-uSOXGX5faN3cPJSD_w4s4gCc16GWxy9KnsJNkz2C_MZRg9fryHC6rKIyisCYKa6MwvWFtFPY7ClOZZZW5J5U9VZnG4uXX_Pa6vPpevID52ftP44lXuz54hoei9JC_IWu2JiVuxkdKa9MPK_3cqG8jo_uRtjqNAoRuPD0JhdCK2zQ1mGvhSNiIv4ROlmfJITCulDXCkOghEqFhqjlPhcasROAihtp0gTdjKE0tiU7OHEtJ1IhGXn44j8eXsaSRl_XId8Fre62cJMhf2r_F9Gibkp73JP4o6RkVJWGTkx-DLhw12SPrVaSQ5ASNjBEhcBf8NqMeBnXp-UfQV__a4TU8plv3d-kIOuXtOjlGvFXqN_VE-QXMaSwS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cocoa+Pods+Diseases+Detection+by+MobileNet+Confluence+and+Classification+Algorithms&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Mamadou%2C+Diarra&rft.au=Ayikpa%2C+Kacoutchy+Jean&rft.au=Ballo%2C+Abou+Bakary&rft.au=Kouassi%2C+Brou+M%C3%A9dard&rft.date=2023&rft.pub=The+Science+and+Information+Organization&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=14&rft.issue=9&rft_id=info:doi/10.14569%2FIJACSA.2023.0140937&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04230938v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon