Machine Learning-Assisted Prediction of Ambient-Processed Perovskite Solar Cells’ Performances

As we move towards the commercialization and upscaling of perovskite solar cells, it is essential to fabricate them in ambient environment rather than in the conventional glove box environment. The efficiency of ambient-processed perovskite solar cells lags behind those fabricated in controlled envi...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 17; no. 23; p. 5998
Main Authors Pyun, Dowon, Lee, Seungtae, Lee, Solhee, Jeong, Seok-Hyun, Hwang, Jae-Keun, Kim, Kyunghwan, Kim, Youngmin, Nam, Jiyeon, Cho, Sujin, Hwang, Ji-Seong, Lee, Wonkyu, Lee, Sangwon, Lee, Hae-Seok, Kim, Donghwan, Kang, Yoonmook
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2024
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en17235998

Cover

Abstract As we move towards the commercialization and upscaling of perovskite solar cells, it is essential to fabricate them in ambient environment rather than in the conventional glove box environment. The efficiency of ambient-processed perovskite solar cells lags behind those fabricated in controlled environments, primarily owing to external environmental factors such as humidity and temperature. In the case of device fabrication in ambient environments, relying solely on a single parameter, such as temperature or humidity, is insufficient for accurately characterizing environmental conditions. Therefore, the dew point is introduced as a parameter which accounts for both temperature and humidity. In this study, a machine learning model was developed to predict the efficiency of ambient-processed perovskite solar cells based on meteorological data, particularly the dew point. A total of 238 perovskite solar cells were fabricated, and their photovoltaic parameters and dew points were collected from March to December 2023. The collected data were used to train various tree-based machine learning models, with the random forest model achieving the highest accuracy. The efficiencies of the perovskite solar cells fabricated in January and February 2024 were predicted with a MAPE of 4.44%. An additional Shapley Additive exPlanations analysis confirmed the significance of the dew point in the performance of perovskite solar cells.
AbstractList As we move towards the commercialization and upscaling of perovskite solar cells, it is essential to fabricate them in ambient environment rather than in the conventional glove box environment. The efficiency of ambient-processed perovskite solar cells lags behind those fabricated in controlled environments, primarily owing to external environmental factors such as humidity and temperature. In the case of device fabrication in ambient environments, relying solely on a single parameter, such as temperature or humidity, is insufficient for accurately characterizing environmental conditions. Therefore, the dew point is introduced as a parameter which accounts for both temperature and humidity. In this study, a machine learning model was developed to predict the efficiency of ambient-processed perovskite solar cells based on meteorological data, particularly the dew point. A total of 238 perovskite solar cells were fabricated, and their photovoltaic parameters and dew points were collected from March to December 2023. The collected data were used to train various tree-based machine learning models, with the random forest model achieving the highest accuracy. The efficiencies of the perovskite solar cells fabricated in January and February 2024 were predicted with a MAPE of 4.44%. An additional Shapley Additive exPlanations analysis confirmed the significance of the dew point in the performance of perovskite solar cells.
Audience Academic
Author Lee, Hae-Seok
Kim, Donghwan
Pyun, Dowon
Kim, Kyunghwan
Lee, Sangwon
Hwang, Ji-Seong
Lee, Wonkyu
Lee, Solhee
Kim, Youngmin
Cho, Sujin
Hwang, Jae-Keun
Kang, Yoonmook
Lee, Seungtae
Jeong, Seok-Hyun
Nam, Jiyeon
Author_xml – sequence: 1
  givenname: Dowon
  orcidid: 0000-0002-0559-8465
  surname: Pyun
  fullname: Pyun, Dowon
– sequence: 2
  givenname: Seungtae
  orcidid: 0000-0001-8324-1624
  surname: Lee
  fullname: Lee, Seungtae
– sequence: 3
  givenname: Solhee
  orcidid: 0000-0003-3754-0185
  surname: Lee
  fullname: Lee, Solhee
– sequence: 4
  givenname: Seok-Hyun
  orcidid: 0000-0002-8094-0443
  surname: Jeong
  fullname: Jeong, Seok-Hyun
– sequence: 5
  givenname: Jae-Keun
  surname: Hwang
  fullname: Hwang, Jae-Keun
– sequence: 6
  givenname: Kyunghwan
  orcidid: 0009-0002-4364-8272
  surname: Kim
  fullname: Kim, Kyunghwan
– sequence: 7
  givenname: Youngmin
  surname: Kim
  fullname: Kim, Youngmin
– sequence: 8
  givenname: Jiyeon
  surname: Nam
  fullname: Nam, Jiyeon
– sequence: 9
  givenname: Sujin
  surname: Cho
  fullname: Cho, Sujin
– sequence: 10
  givenname: Ji-Seong
  orcidid: 0000-0001-5428-5572
  surname: Hwang
  fullname: Hwang, Ji-Seong
– sequence: 11
  givenname: Wonkyu
  surname: Lee
  fullname: Lee, Wonkyu
– sequence: 12
  givenname: Sangwon
  surname: Lee
  fullname: Lee, Sangwon
– sequence: 13
  givenname: Hae-Seok
  surname: Lee
  fullname: Lee, Hae-Seok
– sequence: 14
  givenname: Donghwan
  surname: Kim
  fullname: Kim, Donghwan
– sequence: 15
  givenname: Yoonmook
  surname: Kang
  fullname: Kang, Yoonmook
BookMark eNpNkc9uEzEQxi3USpS2F55gJW5IWzw7zsY-RhGUSkFUKpyN_4yDw8Yu9haJG6_B6_EkOARB7YNHM9_89FnfM3aSciLGngO_QlT8FSVYDrhQSj5hZ6DU2ANf4smj-im7rHXH20EERDxjn94Z9zkm6jZkSopp269qjXUm390W8tHNMacuh261t5HS3N-W7KjWw5xK_la_xJm6uzyZ0q1pmuqvHz8Pk5DL3qSmvGCnwUyVLv--5-zjm9cf1m_7zfvrm_Vq07vmeO5BOJILiyaAJLB8HGmE0XOvSIG1RNzSMKAHAUh84QIXZH1o_1B26bzDc3Zz5Ppsdvq-xL0p33U2Uf9p5LLVpszRTaSFEMo4FZREKwbvTcBxGRpaAQxW-sZ6cWTdl_z1geqsd_mhpGZfIwjBlQQum-rqqNqaBo0p5LkY166nfXQtmhBbfyVBSSHHxdgWXh4XXMm1Fgr_bALXhwT1_wTxNxiLkJc
Cites_doi 10.1021/ja809598r
10.1038/s41467-024-49351-5
10.1039/D1YA00084E
10.1021/acs.jpclett.2c00131
10.1038/s41586-021-03964-8
10.1021/acsaem.0c00638
10.1002/solr.202300127
10.1016/j.solmat.2019.02.025
10.1021/acssuschemeng.1c04615
10.1038/nenergy.2016.15
10.1039/C5EE02733K
10.1002/solr.202300214
10.1016/j.solener.2023.05.050
10.1021/acsaem.1c02796
10.1126/science.aav8680
10.1016/j.matlet.2018.03.095
10.1016/j.solmat.2023.112289
10.1126/science.abd4016
10.1021/acsaem.2c02649
10.1016/j.mtener.2024.101593
10.1038/s42256-019-0138-9
10.1002/ente.202400034
10.1016/j.solener.2020.02.052
10.1039/C6TA05053K
10.1039/D3CC00972F
10.3390/en16165977
10.1016/j.mssp.2022.107100
10.1021/acs.jpclett.6b01176
10.1021/acsenergylett.2c02555
10.1039/C4TA05033A
10.1016/j.jallcom.2023.171890
10.1002/adma.201606363
10.1039/C8TA06689B
10.1039/D3YA00065F
10.1038/s41598-017-00866-6
10.1021/acsenergylett.3c01952
10.1038/srep38150
10.1016/j.optmat.2021.111258
10.1021/acsami.4c01864
10.1016/S0040-6090(99)00825-1
10.1016/j.joule.2020.01.008
10.1002/crat.202100116
10.1002/aenm.201700012
10.1021/nl400349b
10.1038/s41560-023-01358-w
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en17235998
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_4449ac9f983b42ddaf367fd149112b8d
A819848656
10_3390_en17235998
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c359t-14ce85b3af18e1b066e616d0d9e91bbee0be223d1413e05cf04ebdf0339b7cdc3
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Wed Aug 27 01:19:35 EDT 2025
Mon Jun 30 13:38:41 EDT 2025
Tue Jul 01 05:40:28 EDT 2025
Tue Jul 01 04:13:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-14ce85b3af18e1b066e616d0d9e91bbee0be223d1413e05cf04ebdf0339b7cdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5428-5572
0000-0002-8094-0443
0009-0002-4364-8272
0000-0001-8324-1624
0000-0003-3754-0185
0000-0002-0559-8465
OpenAccessLink https://doaj.org/article/4449ac9f983b42ddaf367fd149112b8d
PQID 3144098108
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_4449ac9f983b42ddaf367fd149112b8d
proquest_journals_3144098108
gale_infotracacademiconefile_A819848656
crossref_primary_10_3390_en17235998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Scarpulla (ref_38) 2023; 255
Grinsztajn (ref_47) 2022; 35
Zeng (ref_19) 2023; 59
Yin (ref_3) 2015; 3
Hsu (ref_26) 2022; 152
ref_13
Li (ref_6) 2020; 370
Wang (ref_41) 2019; 365
Lundberg (ref_49) 2020; 2
Min (ref_1) 2021; 598
Berhe (ref_24) 2016; 9
Lee (ref_50) 2023; 261
Bae (ref_12) 2024; 43
ref_25
Burst (ref_37) 2016; 1
Srivastava (ref_32) 2023; 8
Noh (ref_2) 2013; 13
Kojima (ref_4) 2009; 131
Chouhan (ref_43) 2018; 221
Yan (ref_18) 2023; 8
Chen (ref_42) 2017; 7
Burgelman (ref_45) 2000; 361
Boro (ref_22) 2024; 12
Mammeri (ref_33) 2024; 1
Ghosh (ref_21) 2023; 2
Chen (ref_7) 2020; 4
Kartopu (ref_39) 2019; 194
Ablekim (ref_40) 2018; 1
Cheng (ref_28) 2016; 4
ref_35
Pyun (ref_9) 2023; 6
Cai (ref_44) 2021; 9
Zheng (ref_20) 2024; 15
Scott (ref_48) 2017; 30
Liu (ref_27) 2023; 7
Mesquita (ref_23) 2020; 199
Ko (ref_34) 2018; 6
Kim (ref_14) 2022; 1
Hyun (ref_8) 2022; 5
Toloueinia (ref_30) 2020; 3
Hwang (ref_15) 2023; 7
Pyun (ref_10) 2024; 16
Bae (ref_36) 2016; 7
Lee (ref_16) 2017; 29
Manspeaker (ref_29) 2022; 57
Howard (ref_31) 2022; 13
Abnavi (ref_46) 2021; 118
ref_5
Kim (ref_17) 2023; 8
Jeong (ref_11) 2023; 968
References_xml – volume: 131
  start-page: 6050
  year: 2009
  ident: ref_4
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– ident: ref_5
– volume: 15
  start-page: 4907
  year: 2024
  ident: ref_20
  article-title: Solvent engineering for scalable fabrication of perovskite/silicon tandem solar cells in air
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49351-5
– volume: 1
  start-page: 252
  year: 2022
  ident: ref_14
  article-title: Simple approach for an electron extraction layer in an all-vacuum processed nip perovskite solar cell
  publication-title: Energy Adv.
  doi: 10.1039/D1YA00084E
– volume: 13
  start-page: 2254
  year: 2022
  ident: ref_31
  article-title: Quantitative predictions of moisture-driven photoemission dynamics in metal halide perovskites via machine learning
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00131
– volume: 598
  start-page: 444
  year: 2021
  ident: ref_1
  article-title: Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes
  publication-title: Nature
  doi: 10.1038/s41586-021-03964-8
– volume: 3
  start-page: 8240
  year: 2020
  ident: ref_30
  article-title: Moisture-induced structural degradation in methylammonium lead iodide perovskite thin films
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00638
– volume: 7
  start-page: 2300127
  year: 2023
  ident: ref_27
  article-title: Oxygen-Induced Reversible Degradation of Perovskite Solar Cells
  publication-title: Solar RRL
  doi: 10.1002/solr.202300127
– volume: 194
  start-page: 259
  year: 2019
  ident: ref_39
  article-title: Study of thin film poly-crystalline CdTe solar cells presenting high acceptor concentrations achieved by in-situ arsenic doping
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.02.025
– volume: 9
  start-page: 13001
  year: 2021
  ident: ref_44
  article-title: Improvement performance of planar perovskite solar cells by bulk and surface defect passivation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c04615
– volume: 1
  start-page: 16015
  year: 2016
  ident: ref_37
  article-title: CdTe solar cells with open-circuit voltage breaking the 1 V barrier
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.15
– volume: 1
  start-page: 5135
  year: 2018
  ident: ref_40
  article-title: Interface engineering for 25% CdTe solar cells
  publication-title: ACS Appl. Energy Mater.
– volume: 9
  start-page: 323
  year: 2016
  ident: ref_24
  article-title: Organometal halide perovskite solar cells: Degradation and stability
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02733K
– volume: 7
  start-page: 2300214
  year: 2023
  ident: ref_15
  article-title: Sputtered PbI2 with Post-Processing for Perovskite Solar Cells
  publication-title: Solar RRL
  doi: 10.1002/solr.202300214
– volume: 261
  start-page: 7
  year: 2023
  ident: ref_50
  article-title: Interpretable machine-learning for predicting power conversion efficiency of non-halogenated green solvent-processed organic solar cells based on Hansen solubility parameters and molecular weights of polymers
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2023.05.050
– volume: 5
  start-page: 5449
  year: 2022
  ident: ref_8
  article-title: Perovskite/Silicon Tandem Solar Cells with a Voc of 1784 mV Based on an Industrially Feasible 25 cm2 TOPCon Silicon Cell
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c02796
– volume: 365
  start-page: 591
  year: 2019
  ident: ref_41
  article-title: Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%
  publication-title: Science
  doi: 10.1126/science.aav8680
– volume: 221
  start-page: 150
  year: 2018
  ident: ref_43
  article-title: Effect of interface defect density on performance of perovskite solar cell: Correlation of simulation and experiment
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.03.095
– volume: 255
  start-page: 112289
  year: 2023
  ident: ref_38
  article-title: CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2023.112289
– volume: 370
  start-page: 1300
  year: 2020
  ident: ref_6
  article-title: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
  publication-title: Science
  doi: 10.1126/science.abd4016
– volume: 6
  start-page: 2687
  year: 2023
  ident: ref_9
  article-title: First Demonstration of Top Contact-Free Perovskite/Silicon Two-Terminal Tandem Solar Cells for Overcoming the Current Density Hurdle
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c02649
– volume: 43
  start-page: 101593
  year: 2024
  ident: ref_12
  article-title: Enhanced chemical interaction between ionic liquid and halide perovskite to improve performance of perovskite solar cells
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2024.101593
– volume: 2
  start-page: 56
  year: 2020
  ident: ref_49
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 1
  start-page: 1
  year: 2024
  ident: ref_33
  article-title: Stability forecasting of perovskite solar cells utilizing various machine learning and deep learning techniques
  publication-title: J. Opt.
– volume: 30
  start-page: 4765
  year: 2017
  ident: ref_48
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 12
  start-page: 2400034
  year: 2024
  ident: ref_22
  article-title: Thermal Stability Analysis of Formamidinium–Cesium-Based Lead Halide Perovskite Solar Cells Fabricated under Air Ambient Conditions
  publication-title: Energy Technol.
  doi: 10.1002/ente.202400034
– volume: 199
  start-page: 474
  year: 2020
  ident: ref_23
  article-title: Effect of relative humidity during the preparation of perovskite solar cells: Performance and stability
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2020.02.052
– volume: 4
  start-page: 12748
  year: 2016
  ident: ref_28
  article-title: The detrimental effect of excess mobile ions in planar CH3NH3PbI3 perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05053K
– volume: 59
  start-page: 5269
  year: 2023
  ident: ref_19
  article-title: Tailoring particle size of PbI2 towards efficient perovskite solar cells under ambient air conditions
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC00972F
– ident: ref_13
  doi: 10.3390/en16165977
– volume: 152
  start-page: 107100
  year: 2022
  ident: ref_26
  article-title: Impact of humidity in triple cation perovskite solar cells: Surface analysis
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2022.107100
– volume: 7
  start-page: 3091
  year: 2016
  ident: ref_36
  article-title: Electric-field-induced degradation of methylammonium lead iodide perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01176
– volume: 8
  start-page: 1716
  year: 2023
  ident: ref_32
  article-title: Machine learning enables prediction of halide perovskites’ optical behavior with >90% accuracy
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02555
– volume: 3
  start-page: 8926
  year: 2015
  ident: ref_3
  article-title: Halide perovskite materials for solar cells: A theoretical review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05033A
– volume: 968
  start-page: 171890
  year: 2023
  ident: ref_11
  article-title: Potassium chloride passivation for sputtered SnO2 to eliminate hysteresis and enhance the efficiency of perovskite solar cells
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.171890
– volume: 29
  start-page: 1606363
  year: 2017
  ident: ref_16
  article-title: Achieving large-area planar perovskite solar cells by introducing an interfacial compatibilizer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606363
– volume: 6
  start-page: 20695
  year: 2018
  ident: ref_34
  article-title: Dew point temperature as an invariant replacement for relative humidity for advanced perovskite solar cell fabrication systems
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06689B
– volume: 2
  start-page: 1155
  year: 2023
  ident: ref_21
  article-title: Role of antisolvent temperature and quaternary ammonium cation-based ionic liquid engineering in the performance of perovskite solar cells processed under air ambient conditions
  publication-title: Energy Adv.
  doi: 10.1039/D3YA00065F
– ident: ref_35
  doi: 10.1038/s41598-017-00866-6
– volume: 8
  start-page: 4777
  year: 2023
  ident: ref_17
  article-title: Reducing Humidity Dependency of Ambient-Air-Processed Wide-Bandgap Inverted Perovskite Solar Cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c01952
– ident: ref_25
  doi: 10.1038/srep38150
– volume: 118
  start-page: 111258
  year: 2021
  ident: ref_46
  article-title: Performance analysis of several electron/hole transport layers in thin film MAPbI3-based perovskite solar cells: A simulation study
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2021.111258
– volume: 16
  start-page: 28379
  year: 2024
  ident: ref_10
  article-title: Titanium Silicide: A Promising Candidate of Recombination Layer for Perovskite/Tunnel Oxide Passivated Contact Silicon Two-Terminal Tandem Solar Cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c01864
– volume: 361
  start-page: 527
  year: 2000
  ident: ref_45
  article-title: Modelling polycrystalline semiconductor solar cells
  publication-title: Thin Solid Film.
  doi: 10.1016/S0040-6090(99)00825-1
– volume: 4
  start-page: 850
  year: 2020
  ident: ref_7
  article-title: Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2020.01.008
– volume: 35
  start-page: 507
  year: 2022
  ident: ref_47
  article-title: Why do tree-based models still outperform deep learning on typical tabular data?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 57
  start-page: 2100116
  year: 2022
  ident: ref_29
  article-title: Ambient processing conditions and their effects on perovskite device performance
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.202100116
– volume: 7
  start-page: 1700012
  year: 2017
  ident: ref_42
  article-title: Molecular engineered hole-extraction materials to enable dopant-free, efficient p-i-n perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700012
– volume: 13
  start-page: 1764
  year: 2013
  ident: ref_2
  article-title: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells
  publication-title: Nano Lett.
  doi: 10.1021/nl400349b
– volume: 8
  start-page: 1158
  year: 2023
  ident: ref_18
  article-title: Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01358-w
SSID ssj0000331333
Score 2.3898501
Snippet As we move towards the commercialization and upscaling of perovskite solar cells, it is essential to fabricate them in ambient environment rather than in the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 5998
SubjectTerms ambient processed
Artificial intelligence
Dew
dew point
Efficiency
Glass substrates
Humidity
Machine learning
Perovskite
perovskite solar cells
Precipitation
Solar batteries
Solar cells
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELb4ucABFVrEUqgigcTJIo6dxD6hLWKLKoGQAImbG9tjLnRDk23PfY2-Xp-EmawX2gNc40RJZuz5s79vGDssmtrUzmseZKi58iFy4wkFEgzhPnWVRwInX1xW57fq6115lwpufTpWubCJg6EOraca-bGkXUijRa5PHn9w6hpFu6uphcYyWxUF-lpCik--PNdYcikxBZNzVlKJ2f0xTNFhyxJzjP_80EDX_5pRHjzN5B3bSCFiNp7rdJMtwXSLrf9DHPiefbsYzkBCluhR7zmKmRQWsquOtl5I3Fkbs_F3R4BHnvAANA5d-6unmm12TWltdgoPD_3f339oZIEh6D-w28nZzek5T70SuMffmXGhqP-ok00UGoTDQAIqUYU8GDDCOYDcAUYCQaDTgrz0MVfgQkQJGVf74OU2W5m2U9hhmS6LGIQwUIJQRHdf-tIJ05hYB3y-HrGDheTs45wSw2IqQfK1L_Idsc8k1Oc7iMZ6uNB29zatCquUMo030WjpVBFCE2VV48sVmuDC6TBiR6QSS4tt1jW-SZgB_FCirbJjjGe00hiTjtjeQms2rcLevsyZ3beHP7K1AoOV-TGVPbYy637CPgYbM_dpmFFPqjzV7g
  priority: 102
  providerName: ProQuest
Title Machine Learning-Assisted Prediction of Ambient-Processed Perovskite Solar Cells’ Performances
URI https://www.proquest.com/docview/3144098108
https://doaj.org/article/4449ac9f983b42ddaf367fd149112b8d
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFH7augs7TDCY1gFVJCZxiohrJ7GPpaIgJBDaQOrNxPbzLtCitnDmb-zv7ZfwXpJCOaBduOQQJ5Lzvdj-nu3vM8DPflWa0nmdBhnKVPkQU-NZBRIM6z51kUUWJ5-dFydX6nScj1eO-uI9YY09cAPcgVLKVN5Eo6VT_RCqKIsyBiL2xBScDtz7ZiZbSabqPlhKSr5k40cqKa8_wAkN1TKn7OLVCFQb9b_VHddjzGgdvrTkMBk0ldqADzj5Cp9XLAM34fqs3v2ISWuM-iclgDlUIbmY8aILA51MYzK4dSx1TFslAJfjbPow59na5DcntMkQb27m_x7_cslSPTDfgqvR0eXwJG1PSUg9fc4iFYpPHnWyikKjcEQhsBBFyIJBI5xDzBwSByDEhMQs9zFT6EIkhIwrffDyG3Qm0wl-h0TnfUJWGMxRKDa6z33uhKlMLAO9X3Zhb4mcvWvMMCwlEYyvfcG3C4cM6vMTbGBd36Cw2jas9n9h7cI-h8RyM1vMKl-1agGqKBtW2QExGa00sdEu7CyjZtv2N7eS16yNFpn-8R612Ya1PpGZZhvLDnQWs3vcJTKycD34qEfHPfh0eHR-8atX_4V0PR6LJ7Cw4hY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKGAJEKeocewk9gGhpbBsabdCopV6c-NXL2VTkgXEjb_Bn-BH8UuYyaOFA9x6jZ04mhnPw55vBuBpVpW6tE4lXvgykc7HRDtCgXhNuE9VpJHAyYu9Yn4g3x3mh2vwc8TCUFrlqBM7Re1rR2fkm4JuIbXiqXp5-imhrlF0uzq20OjFYid8-4ohW_ti-zXy91mWzd7sb82ToatA4kSuVwmX1KnTiipyFbhFkxsKXvjU66C5tSGkNqDN9BzVe0hzF1MZrI-pENqWzjuB370El6UQglII1ezt2ZkOzsGQT_RVUHF-uhmW6CDgslr9Zfe69gD_MgKdZZvdgOuDS8qmvQzdhLWwvAXX_ihUeBuOFl3OZWBDOdbjBNlKAuLZ-4aueoi9rI5s-tESwDIZ8Ac0Hpr6S0tnxOwDhdFsK5yctL--_6CREbPQ3oGDC6HiXVhf1stwD5jKs-g51yEPXFJ5_dzllutKx9Lj--UEnoyUM6d9CQ6DoQvR15zTdwKviKhnM6hsdvegbo7NsAuNlFJXTkethJWZ91UURYmLS1T5mVV-As-JJYY296qpXDVgFPBHqUyWmaL_pKRCH3gCGyPXzLDrW3Muo_f_P_wYrsz3F7tmd3tv5wFczdBR6lNkNmB91XwOD9HRWdlHnXQxOLpocf4NyMIUUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VIiFYIJ7ilgKRALGyGsdOYi8QurRcWkqrSlCpOzd-ddPelOTSih2_wa_wOXwJM3m0sIBdt7ETRzPjedhzZgBeZFWpS-sU88KXTDofmXaEAvGacJ-qSCOBk3d2i819-eEgP1iCnyMWhtIqR53YKWpfOzojXxN0C6kVda2JQ1rE3sbszekXRh2k6KZ1bKfRi8h2-HaO4Vv7emsDef0yy2bvPq9vsqHDAHMi1wvGJXXttKKKXAVu0fyGghc-9Tpobm0IqQ1oPz1HVR_S3MVUButjKoS2pfNO4HevwfVS4D4hlPrs_cX5Ds7B8E_0FVFxfroW5ugs4LJa_WUDu1YB_zIInZWb3YHbg3uaTHt5ugtLYX4Pbv1RtPA-HO50-ZchGUqzHjFkMQmLT_YauvYhVid1TKYnlsCWbMAi0Hho6rOWzouTTxRSJ-vh-Lj99f0HjYz4hfYB7F8JFR_C8ryeh0eQqDyLnnMd8sAlldrPXW65rnQsPb5fTuD5SDlz2pfjMBjGEH3NJX0n8JaIejGDSmh3D-rmyAw70kgpdeV01EpYmXlfRVGUuLhE9Z9Z5SfwilhiaKMvmspVA14Bf5RKZpkp-lJKKvSHJ7A6cs0MGqA1l_K68v_hZ3ADBdl83Nrdfgw3M_SZ-myZVVheNF_DE_R5FvZpJ1wJHF61NP8GMt4Yhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Assisted+Prediction+of+Ambient-Processed+Perovskite+Solar+Cells%E2%80%99+Performances&rft.jtitle=Energies+%28Basel%29&rft.au=Dowon+Pyun&rft.au=Seungtae+Lee&rft.au=Solhee+Lee&rft.au=Seok-Hyun+Jeong&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=17&rft.issue=23&rft.spage=5998&rft_id=info:doi/10.3390%2Fen17235998&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4449ac9f983b42ddaf367fd149112b8d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon