Machine Learning-Assisted Prediction of Ambient-Processed Perovskite Solar Cells’ Performances
As we move towards the commercialization and upscaling of perovskite solar cells, it is essential to fabricate them in ambient environment rather than in the conventional glove box environment. The efficiency of ambient-processed perovskite solar cells lags behind those fabricated in controlled envi...
Saved in:
Published in | Energies (Basel) Vol. 17; no. 23; p. 5998 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1996-1073 1996-1073 |
DOI | 10.3390/en17235998 |
Cover
Abstract | As we move towards the commercialization and upscaling of perovskite solar cells, it is essential to fabricate them in ambient environment rather than in the conventional glove box environment. The efficiency of ambient-processed perovskite solar cells lags behind those fabricated in controlled environments, primarily owing to external environmental factors such as humidity and temperature. In the case of device fabrication in ambient environments, relying solely on a single parameter, such as temperature or humidity, is insufficient for accurately characterizing environmental conditions. Therefore, the dew point is introduced as a parameter which accounts for both temperature and humidity. In this study, a machine learning model was developed to predict the efficiency of ambient-processed perovskite solar cells based on meteorological data, particularly the dew point. A total of 238 perovskite solar cells were fabricated, and their photovoltaic parameters and dew points were collected from March to December 2023. The collected data were used to train various tree-based machine learning models, with the random forest model achieving the highest accuracy. The efficiencies of the perovskite solar cells fabricated in January and February 2024 were predicted with a MAPE of 4.44%. An additional Shapley Additive exPlanations analysis confirmed the significance of the dew point in the performance of perovskite solar cells. |
---|---|
AbstractList | As we move towards the commercialization and upscaling of perovskite solar cells, it is essential to fabricate them in ambient environment rather than in the conventional glove box environment. The efficiency of ambient-processed perovskite solar cells lags behind those fabricated in controlled environments, primarily owing to external environmental factors such as humidity and temperature. In the case of device fabrication in ambient environments, relying solely on a single parameter, such as temperature or humidity, is insufficient for accurately characterizing environmental conditions. Therefore, the dew point is introduced as a parameter which accounts for both temperature and humidity. In this study, a machine learning model was developed to predict the efficiency of ambient-processed perovskite solar cells based on meteorological data, particularly the dew point. A total of 238 perovskite solar cells were fabricated, and their photovoltaic parameters and dew points were collected from March to December 2023. The collected data were used to train various tree-based machine learning models, with the random forest model achieving the highest accuracy. The efficiencies of the perovskite solar cells fabricated in January and February 2024 were predicted with a MAPE of 4.44%. An additional Shapley Additive exPlanations analysis confirmed the significance of the dew point in the performance of perovskite solar cells. |
Audience | Academic |
Author | Lee, Hae-Seok Kim, Donghwan Pyun, Dowon Kim, Kyunghwan Lee, Sangwon Hwang, Ji-Seong Lee, Wonkyu Lee, Solhee Kim, Youngmin Cho, Sujin Hwang, Jae-Keun Kang, Yoonmook Lee, Seungtae Jeong, Seok-Hyun Nam, Jiyeon |
Author_xml | – sequence: 1 givenname: Dowon orcidid: 0000-0002-0559-8465 surname: Pyun fullname: Pyun, Dowon – sequence: 2 givenname: Seungtae orcidid: 0000-0001-8324-1624 surname: Lee fullname: Lee, Seungtae – sequence: 3 givenname: Solhee orcidid: 0000-0003-3754-0185 surname: Lee fullname: Lee, Solhee – sequence: 4 givenname: Seok-Hyun orcidid: 0000-0002-8094-0443 surname: Jeong fullname: Jeong, Seok-Hyun – sequence: 5 givenname: Jae-Keun surname: Hwang fullname: Hwang, Jae-Keun – sequence: 6 givenname: Kyunghwan orcidid: 0009-0002-4364-8272 surname: Kim fullname: Kim, Kyunghwan – sequence: 7 givenname: Youngmin surname: Kim fullname: Kim, Youngmin – sequence: 8 givenname: Jiyeon surname: Nam fullname: Nam, Jiyeon – sequence: 9 givenname: Sujin surname: Cho fullname: Cho, Sujin – sequence: 10 givenname: Ji-Seong orcidid: 0000-0001-5428-5572 surname: Hwang fullname: Hwang, Ji-Seong – sequence: 11 givenname: Wonkyu surname: Lee fullname: Lee, Wonkyu – sequence: 12 givenname: Sangwon surname: Lee fullname: Lee, Sangwon – sequence: 13 givenname: Hae-Seok surname: Lee fullname: Lee, Hae-Seok – sequence: 14 givenname: Donghwan surname: Kim fullname: Kim, Donghwan – sequence: 15 givenname: Yoonmook surname: Kang fullname: Kang, Yoonmook |
BookMark | eNpNkc9uEzEQxi3USpS2F55gJW5IWzw7zsY-RhGUSkFUKpyN_4yDw8Yu9haJG6_B6_EkOARB7YNHM9_89FnfM3aSciLGngO_QlT8FSVYDrhQSj5hZ6DU2ANf4smj-im7rHXH20EERDxjn94Z9zkm6jZkSopp269qjXUm390W8tHNMacuh261t5HS3N-W7KjWw5xK_la_xJm6uzyZ0q1pmuqvHz8Pk5DL3qSmvGCnwUyVLv--5-zjm9cf1m_7zfvrm_Vq07vmeO5BOJILiyaAJLB8HGmE0XOvSIG1RNzSMKAHAUh84QIXZH1o_1B26bzDc3Zz5Ppsdvq-xL0p33U2Uf9p5LLVpszRTaSFEMo4FZREKwbvTcBxGRpaAQxW-sZ6cWTdl_z1geqsd_mhpGZfIwjBlQQum-rqqNqaBo0p5LkY166nfXQtmhBbfyVBSSHHxdgWXh4XXMm1Fgr_bALXhwT1_wTxNxiLkJc |
Cites_doi | 10.1021/ja809598r 10.1038/s41467-024-49351-5 10.1039/D1YA00084E 10.1021/acs.jpclett.2c00131 10.1038/s41586-021-03964-8 10.1021/acsaem.0c00638 10.1002/solr.202300127 10.1016/j.solmat.2019.02.025 10.1021/acssuschemeng.1c04615 10.1038/nenergy.2016.15 10.1039/C5EE02733K 10.1002/solr.202300214 10.1016/j.solener.2023.05.050 10.1021/acsaem.1c02796 10.1126/science.aav8680 10.1016/j.matlet.2018.03.095 10.1016/j.solmat.2023.112289 10.1126/science.abd4016 10.1021/acsaem.2c02649 10.1016/j.mtener.2024.101593 10.1038/s42256-019-0138-9 10.1002/ente.202400034 10.1016/j.solener.2020.02.052 10.1039/C6TA05053K 10.1039/D3CC00972F 10.3390/en16165977 10.1016/j.mssp.2022.107100 10.1021/acs.jpclett.6b01176 10.1021/acsenergylett.2c02555 10.1039/C4TA05033A 10.1016/j.jallcom.2023.171890 10.1002/adma.201606363 10.1039/C8TA06689B 10.1039/D3YA00065F 10.1038/s41598-017-00866-6 10.1021/acsenergylett.3c01952 10.1038/srep38150 10.1016/j.optmat.2021.111258 10.1021/acsami.4c01864 10.1016/S0040-6090(99)00825-1 10.1016/j.joule.2020.01.008 10.1002/crat.202100116 10.1002/aenm.201700012 10.1021/nl400349b 10.1038/s41560-023-01358-w |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en17235998 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_4449ac9f983b42ddaf367fd149112b8d A819848656 10_3390_en17235998 |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c359t-14ce85b3af18e1b066e616d0d9e91bbee0be223d1413e05cf04ebdf0339b7cdc3 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:19:35 EDT 2025 Mon Jun 30 13:38:41 EDT 2025 Tue Jul 01 05:40:28 EDT 2025 Tue Jul 01 04:13:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-14ce85b3af18e1b066e616d0d9e91bbee0be223d1413e05cf04ebdf0339b7cdc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5428-5572 0000-0002-8094-0443 0009-0002-4364-8272 0000-0001-8324-1624 0000-0003-3754-0185 0000-0002-0559-8465 |
OpenAccessLink | https://doaj.org/article/4449ac9f983b42ddaf367fd149112b8d |
PQID | 3144098108 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4449ac9f983b42ddaf367fd149112b8d proquest_journals_3144098108 gale_infotracacademiconefile_A819848656 crossref_primary_10_3390_en17235998 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Scarpulla (ref_38) 2023; 255 Grinsztajn (ref_47) 2022; 35 Zeng (ref_19) 2023; 59 Yin (ref_3) 2015; 3 Hsu (ref_26) 2022; 152 ref_13 Li (ref_6) 2020; 370 Wang (ref_41) 2019; 365 Lundberg (ref_49) 2020; 2 Min (ref_1) 2021; 598 Berhe (ref_24) 2016; 9 Lee (ref_50) 2023; 261 Bae (ref_12) 2024; 43 ref_25 Burst (ref_37) 2016; 1 Srivastava (ref_32) 2023; 8 Noh (ref_2) 2013; 13 Kojima (ref_4) 2009; 131 Chouhan (ref_43) 2018; 221 Yan (ref_18) 2023; 8 Chen (ref_42) 2017; 7 Burgelman (ref_45) 2000; 361 Boro (ref_22) 2024; 12 Mammeri (ref_33) 2024; 1 Ghosh (ref_21) 2023; 2 Chen (ref_7) 2020; 4 Kartopu (ref_39) 2019; 194 Ablekim (ref_40) 2018; 1 Cheng (ref_28) 2016; 4 ref_35 Pyun (ref_9) 2023; 6 Cai (ref_44) 2021; 9 Zheng (ref_20) 2024; 15 Scott (ref_48) 2017; 30 Liu (ref_27) 2023; 7 Mesquita (ref_23) 2020; 199 Ko (ref_34) 2018; 6 Kim (ref_14) 2022; 1 Hyun (ref_8) 2022; 5 Toloueinia (ref_30) 2020; 3 Hwang (ref_15) 2023; 7 Pyun (ref_10) 2024; 16 Bae (ref_36) 2016; 7 Lee (ref_16) 2017; 29 Manspeaker (ref_29) 2022; 57 Howard (ref_31) 2022; 13 Abnavi (ref_46) 2021; 118 ref_5 Kim (ref_17) 2023; 8 Jeong (ref_11) 2023; 968 |
References_xml | – volume: 131 start-page: 6050 year: 2009 ident: ref_4 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – ident: ref_5 – volume: 15 start-page: 4907 year: 2024 ident: ref_20 article-title: Solvent engineering for scalable fabrication of perovskite/silicon tandem solar cells in air publication-title: Nat. Commun. doi: 10.1038/s41467-024-49351-5 – volume: 1 start-page: 252 year: 2022 ident: ref_14 article-title: Simple approach for an electron extraction layer in an all-vacuum processed nip perovskite solar cell publication-title: Energy Adv. doi: 10.1039/D1YA00084E – volume: 13 start-page: 2254 year: 2022 ident: ref_31 article-title: Quantitative predictions of moisture-driven photoemission dynamics in metal halide perovskites via machine learning publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00131 – volume: 598 start-page: 444 year: 2021 ident: ref_1 article-title: Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes publication-title: Nature doi: 10.1038/s41586-021-03964-8 – volume: 3 start-page: 8240 year: 2020 ident: ref_30 article-title: Moisture-induced structural degradation in methylammonium lead iodide perovskite thin films publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00638 – volume: 7 start-page: 2300127 year: 2023 ident: ref_27 article-title: Oxygen-Induced Reversible Degradation of Perovskite Solar Cells publication-title: Solar RRL doi: 10.1002/solr.202300127 – volume: 194 start-page: 259 year: 2019 ident: ref_39 article-title: Study of thin film poly-crystalline CdTe solar cells presenting high acceptor concentrations achieved by in-situ arsenic doping publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.02.025 – volume: 9 start-page: 13001 year: 2021 ident: ref_44 article-title: Improvement performance of planar perovskite solar cells by bulk and surface defect passivation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c04615 – volume: 1 start-page: 16015 year: 2016 ident: ref_37 article-title: CdTe solar cells with open-circuit voltage breaking the 1 V barrier publication-title: Nat. Energy doi: 10.1038/nenergy.2016.15 – volume: 1 start-page: 5135 year: 2018 ident: ref_40 article-title: Interface engineering for 25% CdTe solar cells publication-title: ACS Appl. Energy Mater. – volume: 9 start-page: 323 year: 2016 ident: ref_24 article-title: Organometal halide perovskite solar cells: Degradation and stability publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02733K – volume: 7 start-page: 2300214 year: 2023 ident: ref_15 article-title: Sputtered PbI2 with Post-Processing for Perovskite Solar Cells publication-title: Solar RRL doi: 10.1002/solr.202300214 – volume: 261 start-page: 7 year: 2023 ident: ref_50 article-title: Interpretable machine-learning for predicting power conversion efficiency of non-halogenated green solvent-processed organic solar cells based on Hansen solubility parameters and molecular weights of polymers publication-title: Sol. Energy doi: 10.1016/j.solener.2023.05.050 – volume: 5 start-page: 5449 year: 2022 ident: ref_8 article-title: Perovskite/Silicon Tandem Solar Cells with a Voc of 1784 mV Based on an Industrially Feasible 25 cm2 TOPCon Silicon Cell publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c02796 – volume: 365 start-page: 591 year: 2019 ident: ref_41 article-title: Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18% publication-title: Science doi: 10.1126/science.aav8680 – volume: 221 start-page: 150 year: 2018 ident: ref_43 article-title: Effect of interface defect density on performance of perovskite solar cell: Correlation of simulation and experiment publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.03.095 – volume: 255 start-page: 112289 year: 2023 ident: ref_38 article-title: CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2023.112289 – volume: 370 start-page: 1300 year: 2020 ident: ref_6 article-title: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction publication-title: Science doi: 10.1126/science.abd4016 – volume: 6 start-page: 2687 year: 2023 ident: ref_9 article-title: First Demonstration of Top Contact-Free Perovskite/Silicon Two-Terminal Tandem Solar Cells for Overcoming the Current Density Hurdle publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c02649 – volume: 43 start-page: 101593 year: 2024 ident: ref_12 article-title: Enhanced chemical interaction between ionic liquid and halide perovskite to improve performance of perovskite solar cells publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2024.101593 – volume: 2 start-page: 56 year: 2020 ident: ref_49 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – volume: 1 start-page: 1 year: 2024 ident: ref_33 article-title: Stability forecasting of perovskite solar cells utilizing various machine learning and deep learning techniques publication-title: J. Opt. – volume: 30 start-page: 4765 year: 2017 ident: ref_48 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 12 start-page: 2400034 year: 2024 ident: ref_22 article-title: Thermal Stability Analysis of Formamidinium–Cesium-Based Lead Halide Perovskite Solar Cells Fabricated under Air Ambient Conditions publication-title: Energy Technol. doi: 10.1002/ente.202400034 – volume: 199 start-page: 474 year: 2020 ident: ref_23 article-title: Effect of relative humidity during the preparation of perovskite solar cells: Performance and stability publication-title: Solar Energy doi: 10.1016/j.solener.2020.02.052 – volume: 4 start-page: 12748 year: 2016 ident: ref_28 article-title: The detrimental effect of excess mobile ions in planar CH3NH3PbI3 perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05053K – volume: 59 start-page: 5269 year: 2023 ident: ref_19 article-title: Tailoring particle size of PbI2 towards efficient perovskite solar cells under ambient air conditions publication-title: Chem. Commun. doi: 10.1039/D3CC00972F – ident: ref_13 doi: 10.3390/en16165977 – volume: 152 start-page: 107100 year: 2022 ident: ref_26 article-title: Impact of humidity in triple cation perovskite solar cells: Surface analysis publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2022.107100 – volume: 7 start-page: 3091 year: 2016 ident: ref_36 article-title: Electric-field-induced degradation of methylammonium lead iodide perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01176 – volume: 8 start-page: 1716 year: 2023 ident: ref_32 article-title: Machine learning enables prediction of halide perovskites’ optical behavior with >90% accuracy publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02555 – volume: 3 start-page: 8926 year: 2015 ident: ref_3 article-title: Halide perovskite materials for solar cells: A theoretical review publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05033A – volume: 968 start-page: 171890 year: 2023 ident: ref_11 article-title: Potassium chloride passivation for sputtered SnO2 to eliminate hysteresis and enhance the efficiency of perovskite solar cells publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.171890 – volume: 29 start-page: 1606363 year: 2017 ident: ref_16 article-title: Achieving large-area planar perovskite solar cells by introducing an interfacial compatibilizer publication-title: Adv. Mater. doi: 10.1002/adma.201606363 – volume: 6 start-page: 20695 year: 2018 ident: ref_34 article-title: Dew point temperature as an invariant replacement for relative humidity for advanced perovskite solar cell fabrication systems publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06689B – volume: 2 start-page: 1155 year: 2023 ident: ref_21 article-title: Role of antisolvent temperature and quaternary ammonium cation-based ionic liquid engineering in the performance of perovskite solar cells processed under air ambient conditions publication-title: Energy Adv. doi: 10.1039/D3YA00065F – ident: ref_35 doi: 10.1038/s41598-017-00866-6 – volume: 8 start-page: 4777 year: 2023 ident: ref_17 article-title: Reducing Humidity Dependency of Ambient-Air-Processed Wide-Bandgap Inverted Perovskite Solar Cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c01952 – ident: ref_25 doi: 10.1038/srep38150 – volume: 118 start-page: 111258 year: 2021 ident: ref_46 article-title: Performance analysis of several electron/hole transport layers in thin film MAPbI3-based perovskite solar cells: A simulation study publication-title: Opt. Mater. doi: 10.1016/j.optmat.2021.111258 – volume: 16 start-page: 28379 year: 2024 ident: ref_10 article-title: Titanium Silicide: A Promising Candidate of Recombination Layer for Perovskite/Tunnel Oxide Passivated Contact Silicon Two-Terminal Tandem Solar Cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c01864 – volume: 361 start-page: 527 year: 2000 ident: ref_45 article-title: Modelling polycrystalline semiconductor solar cells publication-title: Thin Solid Film. doi: 10.1016/S0040-6090(99)00825-1 – volume: 4 start-page: 850 year: 2020 ident: ref_7 article-title: Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells publication-title: Joule doi: 10.1016/j.joule.2020.01.008 – volume: 35 start-page: 507 year: 2022 ident: ref_47 article-title: Why do tree-based models still outperform deep learning on typical tabular data? publication-title: Adv. Neural Inf. Process. Syst. – volume: 57 start-page: 2100116 year: 2022 ident: ref_29 article-title: Ambient processing conditions and their effects on perovskite device performance publication-title: Cryst. Res. Technol. doi: 10.1002/crat.202100116 – volume: 7 start-page: 1700012 year: 2017 ident: ref_42 article-title: Molecular engineered hole-extraction materials to enable dopant-free, efficient p-i-n perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700012 – volume: 13 start-page: 1764 year: 2013 ident: ref_2 article-title: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells publication-title: Nano Lett. doi: 10.1021/nl400349b – volume: 8 start-page: 1158 year: 2023 ident: ref_18 article-title: Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt publication-title: Nat. Energy doi: 10.1038/s41560-023-01358-w |
SSID | ssj0000331333 |
Score | 2.3898501 |
Snippet | As we move towards the commercialization and upscaling of perovskite solar cells, it is essential to fabricate them in ambient environment rather than in the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 5998 |
SubjectTerms | ambient processed Artificial intelligence Dew dew point Efficiency Glass substrates Humidity Machine learning Perovskite perovskite solar cells Precipitation Solar batteries Solar cells |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwELb4ucABFVrEUqgigcTJIo6dxD6hLWKLKoGQAImbG9tjLnRDk23PfY2-Xp-EmawX2gNc40RJZuz5s79vGDssmtrUzmseZKi58iFy4wkFEgzhPnWVRwInX1xW57fq6115lwpufTpWubCJg6EOraca-bGkXUijRa5PHn9w6hpFu6uphcYyWxUF-lpCik--PNdYcikxBZNzVlKJ2f0xTNFhyxJzjP_80EDX_5pRHjzN5B3bSCFiNp7rdJMtwXSLrf9DHPiefbsYzkBCluhR7zmKmRQWsquOtl5I3Fkbs_F3R4BHnvAANA5d-6unmm12TWltdgoPD_3f339oZIEh6D-w28nZzek5T70SuMffmXGhqP-ok00UGoTDQAIqUYU8GDDCOYDcAUYCQaDTgrz0MVfgQkQJGVf74OU2W5m2U9hhmS6LGIQwUIJQRHdf-tIJ05hYB3y-HrGDheTs45wSw2IqQfK1L_Idsc8k1Oc7iMZ6uNB29zatCquUMo030WjpVBFCE2VV48sVmuDC6TBiR6QSS4tt1jW-SZgB_FCirbJjjGe00hiTjtjeQms2rcLevsyZ3beHP7K1AoOV-TGVPbYy637CPgYbM_dpmFFPqjzV7g priority: 102 providerName: ProQuest |
Title | Machine Learning-Assisted Prediction of Ambient-Processed Perovskite Solar Cells’ Performances |
URI | https://www.proquest.com/docview/3144098108 https://doaj.org/article/4449ac9f983b42ddaf367fd149112b8d |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFH7augs7TDCY1gFVJCZxiohrJ7GPpaIgJBDaQOrNxPbzLtCitnDmb-zv7ZfwXpJCOaBduOQQJ5Lzvdj-nu3vM8DPflWa0nmdBhnKVPkQU-NZBRIM6z51kUUWJ5-dFydX6nScj1eO-uI9YY09cAPcgVLKVN5Eo6VT_RCqKIsyBiL2xBScDtz7ZiZbSabqPlhKSr5k40cqKa8_wAkN1TKn7OLVCFQb9b_VHddjzGgdvrTkMBk0ldqADzj5Cp9XLAM34fqs3v2ISWuM-iclgDlUIbmY8aILA51MYzK4dSx1TFslAJfjbPow59na5DcntMkQb27m_x7_cslSPTDfgqvR0eXwJG1PSUg9fc4iFYpPHnWyikKjcEQhsBBFyIJBI5xDzBwSByDEhMQs9zFT6EIkhIwrffDyG3Qm0wl-h0TnfUJWGMxRKDa6z33uhKlMLAO9X3Zhb4mcvWvMMCwlEYyvfcG3C4cM6vMTbGBd36Cw2jas9n9h7cI-h8RyM1vMKl-1agGqKBtW2QExGa00sdEu7CyjZtv2N7eS16yNFpn-8R612Ya1PpGZZhvLDnQWs3vcJTKycD34qEfHPfh0eHR-8atX_4V0PR6LJ7Cw4hY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKGAJEKeocewk9gGhpbBsabdCopV6c-NXL2VTkgXEjb_Bn-BH8UuYyaOFA9x6jZ04mhnPw55vBuBpVpW6tE4lXvgykc7HRDtCgXhNuE9VpJHAyYu9Yn4g3x3mh2vwc8TCUFrlqBM7Re1rR2fkm4JuIbXiqXp5-imhrlF0uzq20OjFYid8-4ohW_ti-zXy91mWzd7sb82ToatA4kSuVwmX1KnTiipyFbhFkxsKXvjU66C5tSGkNqDN9BzVe0hzF1MZrI-pENqWzjuB370El6UQglII1ezt2ZkOzsGQT_RVUHF-uhmW6CDgslr9Zfe69gD_MgKdZZvdgOuDS8qmvQzdhLWwvAXX_ihUeBuOFl3OZWBDOdbjBNlKAuLZ-4aueoi9rI5s-tESwDIZ8Ac0Hpr6S0tnxOwDhdFsK5yctL--_6CREbPQ3oGDC6HiXVhf1stwD5jKs-g51yEPXFJ5_dzllutKx9Lj--UEnoyUM6d9CQ6DoQvR15zTdwKviKhnM6hsdvegbo7NsAuNlFJXTkethJWZ91UURYmLS1T5mVV-As-JJYY296qpXDVgFPBHqUyWmaL_pKRCH3gCGyPXzLDrW3Muo_f_P_wYrsz3F7tmd3tv5wFczdBR6lNkNmB91XwOD9HRWdlHnXQxOLpocf4NyMIUUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VIiFYIJ7ilgKRALGyGsdOYi8QurRcWkqrSlCpOzd-ddPelOTSih2_wa_wOXwJM3m0sIBdt7ETRzPjedhzZgBeZFWpS-sU88KXTDofmXaEAvGacJ-qSCOBk3d2i819-eEgP1iCnyMWhtIqR53YKWpfOzojXxN0C6kVda2JQ1rE3sbszekXRh2k6KZ1bKfRi8h2-HaO4Vv7emsDef0yy2bvPq9vsqHDAHMi1wvGJXXttKKKXAVu0fyGghc-9Tpobm0IqQ1oPz1HVR_S3MVUButjKoS2pfNO4HevwfVS4D4hlPrs_cX5Ds7B8E_0FVFxfroW5ugs4LJa_WUDu1YB_zIInZWb3YHbg3uaTHt5ugtLYX4Pbv1RtPA-HO50-ZchGUqzHjFkMQmLT_YauvYhVid1TKYnlsCWbMAi0Hho6rOWzouTTxRSJ-vh-Lj99f0HjYz4hfYB7F8JFR_C8ryeh0eQqDyLnnMd8sAlldrPXW65rnQsPb5fTuD5SDlz2pfjMBjGEH3NJX0n8JaIejGDSmh3D-rmyAw70kgpdeV01EpYmXlfRVGUuLhE9Z9Z5SfwilhiaKMvmspVA14Bf5RKZpkp-lJKKvSHJ7A6cs0MGqA1l_K68v_hZ3ADBdl83Nrdfgw3M_SZ-myZVVheNF_DE_R5FvZpJ1wJHF61NP8GMt4Yhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Assisted+Prediction+of+Ambient-Processed+Perovskite+Solar+Cells%E2%80%99+Performances&rft.jtitle=Energies+%28Basel%29&rft.au=Dowon+Pyun&rft.au=Seungtae+Lee&rft.au=Solhee+Lee&rft.au=Seok-Hyun+Jeong&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=17&rft.issue=23&rft.spage=5998&rft_id=info:doi/10.3390%2Fen17235998&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4449ac9f983b42ddaf367fd149112b8d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |