Leveraging Deep Spatiotemporal Sequence Prediction Network with Self-Attention for Ground-Based Cloud Dynamics Forecasting
Ground-based cloud image features high-spatiotemporal resolution, presenting detailed local cloud structures and valuable weather information, which are crucial for meteorological forecasting. However, the inherent fuzziness and dynamism of ground-based clouds have hindered the development of effect...
        Saved in:
      
    
          | Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 1; p. 18 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.01.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2072-4292 2072-4292  | 
| DOI | 10.3390/rs17010018 | 
Cover
| Abstract | Ground-based cloud image features high-spatiotemporal resolution, presenting detailed local cloud structures and valuable weather information, which are crucial for meteorological forecasting. However, the inherent fuzziness and dynamism of ground-based clouds have hindered the development of effective prediction algorithms, resulting in low accuracy. This paper presents CloudPredRNN++, a novel method for predicting ground-based cloud dynamics, leveraging a deep spatiotemporal sequence prediction network enhanced with a self-attention mechanism. Initially, a Cascaded Causal LSTM (CCLSTM) with a dual-memory group decoupling structure is designed to enhance the representation of short-term cloud changes. Next, self-attention memory units are incorporated to capture the long-term dependencies and emphasize the non-stationary characteristics of cloud movements. These components are integrated into cloud dynamic feature mining units, which concurrently extract spatiotemporal features to strengthen unified spatiotemporal modeling. Finally, by embedding gradient highway units and adding skip connection, CloudPredRNN++ is constructed into a hierarchical recursive structure, mitigating the gradient vanishing and enhancing the uniform modeling of temporal–spatial features. Experiments on the sequence ground-based cloud dataset demonstrate that CloudPredRNN++ can predict the future cloud state more accurately and quickly. Compared with other spatiotemporal sequence prediction models, CloudPredRNN++ shows significant improvements in evaluation metrics, improving the accuracy of cloud dynamics forecasting and alleviating long-term dependency decay, thus confirming the effectiveness in ground-based cloud prediction tasks. | 
    
|---|---|
| AbstractList | Ground-based cloud image features high-spatiotemporal resolution, presenting detailed local cloud structures and valuable weather information, which are crucial for meteorological forecasting. However, the inherent fuzziness and dynamism of ground-based clouds have hindered the development of effective prediction algorithms, resulting in low accuracy. This paper presents CloudPredRNN++, a novel method for predicting ground-based cloud dynamics, leveraging a deep spatiotemporal sequence prediction network enhanced with a self-attention mechanism. Initially, a Cascaded Causal LSTM (CCLSTM) with a dual-memory group decoupling structure is designed to enhance the representation of short-term cloud changes. Next, self-attention memory units are incorporated to capture the long-term dependencies and emphasize the non-stationary characteristics of cloud movements. These components are integrated into cloud dynamic feature mining units, which concurrently extract spatiotemporal features to strengthen unified spatiotemporal modeling. Finally, by embedding gradient highway units and adding skip connection, CloudPredRNN++ is constructed into a hierarchical recursive structure, mitigating the gradient vanishing and enhancing the uniform modeling of temporal–spatial features. Experiments on the sequence ground-based cloud dataset demonstrate that CloudPredRNN++ can predict the future cloud state more accurately and quickly. Compared with other spatiotemporal sequence prediction models, CloudPredRNN++ shows significant improvements in evaluation metrics, improving the accuracy of cloud dynamics forecasting and alleviating long-term dependency decay, thus confirming the effectiveness in ground-based cloud prediction tasks. | 
    
| Audience | Academic | 
    
| Author | Wang, Jiafeng Cao, Ran Wang, Min Li, Sheng Shi, Minghang  | 
    
| Author_xml | – sequence: 1 givenname: Sheng surname: Li fullname: Li, Sheng – sequence: 2 givenname: Min surname: Wang fullname: Wang, Min – sequence: 3 givenname: Minghang surname: Shi fullname: Shi, Minghang – sequence: 4 givenname: Jiafeng surname: Wang fullname: Wang, Jiafeng – sequence: 5 givenname: Ran surname: Cao fullname: Cao, Ran  | 
    
| BookMark | eNp9UU1v1DAQjVCRKKUXfoElbqAUfyWOj8uWlkorQCqcI8ceL16ydrCdrpZfj7dBwAnPwdbMm-c3855XZz54qKqXBF8xJvHbmIjABGPSPanOKRa05lTSs3_ez6rLlHa4HMaIxPy8-rmBB4hq6_wWXQNM6H5S2YUM-ylENaJ7-DGD14A-RzBOl5JHHyEfQvyODi5_K4DR1qucwT_WbIjoNobZm_qdSmDQegyzQddHr_ZOJ3QTImiVcvnvRfXUqjHB5e_7ovp68_7L-kO9-XR7t15tas0amWvCG9wYIYmVWhHSyqEF3tG2GyiIjgmmiR5sI8ESTqi1gjPQRnZYC2EJa9lFdbfwmqB2_RTdXsVjH5TrHxMhbnsVs9Mj9JbgoTGy5bwlHDdECa2soUwoyzHjQ-F6s3DNflLHgxrHP4QE9ycX-r8uFPSrBT3FUNaYcr8Lc_Rl2J6RhrUdFfSk72pBbVWR4LwNOSpdwkBZWbHYupJfdZSxhmFxani9NOgYUopg_6fhF21vpcE | 
    
| Cites_doi | 10.1109/TCYB.2021.3080121 10.1109/ACCESS.2019.2916905 10.1109/ICASSP39728.2021.9413901 10.3390/rs10060822 10.1049/iet-ipr.2018.6100 10.5194/amt-14-737-2021 10.1109/CVPR.2018.00068 10.1109/IRSEC.2015.7455105 10.1109/TPAMI.2022.3165153 10.1016/j.atmosres.2012.05.005 10.3390/rs13193876 10.1364/OE.442455 10.1016/j.solener.2017.10.075 10.1175/JTECH-D-19-0189.1 10.1029/2018GL077787 10.1016/j.isprsjprs.2022.03.020 10.1109/TGRS.2017.2712809 10.1016/j.solener.2015.03.030 10.3390/atmos11111151 10.1109/ICCVW54120.2021.00210 10.1162/neco_a_01199 10.3390/s23187957 10.1109/ICTER.2017.8257803 10.1109/JSTARS.2016.2558474 10.1109/ACCESS.2023.3310538 10.3390/rs11192312 10.1109/ICIINFS.2017.8300338 10.5194/acp-16-5763-2016 10.1109/TGRS.2019.2955538  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/rs17010018 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2072-4292 | 
    
| ExternalDocumentID | oai_doaj_org_article_f10b5d9644614051a7cafd237af4034b 10.3390/rs17010018 A823353076 10_3390_rs17010018  | 
    
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c359t-14505d791f9ca1169b6e48268b2e78373c1cbf59ef1412ff743ecd980c77f1363 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2072-4292 | 
    
| IngestDate | Fri Oct 03 12:53:10 EDT 2025 Tue Aug 19 21:42:15 EDT 2025 Fri Jul 25 11:57:28 EDT 2025 Mon Oct 20 16:54:05 EDT 2025 Thu Oct 16 04:40:51 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c359t-14505d791f9ca1169b6e48268b2e78373c1cbf59ef1412ff743ecd980c77f1363 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doaj.org/article/f10b5d9644614051a7cafd237af4034b | 
    
| PQID | 3153682726 | 
    
| PQPubID | 2032338 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f10b5d9644614051a7cafd237af4034b unpaywall_primary_10_3390_rs17010018 proquest_journals_3153682726 gale_infotracacademiconefile_A823353076 crossref_primary_10_3390_rs17010018  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-01-01 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Remote sensing (Basel, Switzerland) | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Zhang (ref_14) 2021; 19 Lee (ref_32) 2019; 58 ref_36 Ye (ref_12) 2017; 55 ref_35 ref_34 ref_33 ref_10 ref_31 ref_30 Kazantzidis (ref_11) 2012; 113 Dev (ref_18) 2016; 10 Shakya (ref_24) 2019; 13 ref_19 Tang (ref_1) 2021; 14 ref_37 Yu (ref_25) 2019; 31 Zhang (ref_15) 2018; 45 Wang (ref_28) 2022; 45 Lu (ref_5) 2023; 61 Chow (ref_23) 2015; 115 Wang (ref_13) 2021; 29 Li (ref_16) 2019; 7 ref_21 ref_20 ref_3 Derimian (ref_2) 2016; 16 ref_29 Jamaly (ref_22) 2018; 159 ref_27 ref_26 ref_8 Wang (ref_9) 2020; 37 Zhou (ref_17) 2021; 19 Bai (ref_7) 2021; 52 Wei (ref_6) 2023; 11 Li (ref_4) 2022; 188  | 
    
| References_xml | – volume: 52 start-page: 12538 year: 2021 ident: ref_7 article-title: LSCIDMR: Large-scale satellite cloud image database for meteorological research publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3080121 – volume: 61 start-page: 1 year: 2023 ident: ref_5 article-title: STANet: A novel predictive neural network for Ground-based remote sensing cloud image sequence extrapolation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 63081 year: 2019 ident: ref_16 article-title: Dual guided loss for ground-based cloud classification in weather station networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916905 – ident: ref_30 – ident: ref_34 doi: 10.1109/ICASSP39728.2021.9413901 – ident: ref_26 – volume: 19 start-page: 1 year: 2021 ident: ref_14 article-title: Ground-based cloud detection using multiscale attention convolutional neural network publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_10 doi: 10.3390/rs10060822 – volume: 13 start-page: 1375 year: 2019 ident: ref_24 article-title: Characterising and predicting the movement of clouds using fractional-order optical flow publication-title: IET Image Process. doi: 10.1049/iet-ipr.2018.6100 – volume: 14 start-page: 737 year: 2021 ident: ref_1 article-title: Improving cloud type classification of ground-based images using region covariance descriptors publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-737-2021 – ident: ref_37 doi: 10.1109/CVPR.2018.00068 – ident: ref_20 doi: 10.1109/IRSEC.2015.7455105 – volume: 45 start-page: 2208 year: 2022 ident: ref_28 article-title: Predrnn: A recurrent neural network for spatiotemporal predictive learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3165153 – volume: 113 start-page: 80 year: 2012 ident: ref_11 article-title: Cloud detection and classification with the use of whole-sky ground-based images publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2012.05.005 – ident: ref_33 doi: 10.3390/rs13193876 – volume: 29 start-page: 41176 year: 2021 ident: ref_13 article-title: Intelligent classification of ground-based visible cloud images using a transfer convolutional neural network and fine-tuning publication-title: Opt. Express doi: 10.1364/OE.442455 – volume: 159 start-page: 306 year: 2018 ident: ref_22 article-title: Robust cloud motion estimation by spatio-temporal correlation analysis of irradiance data publication-title: Sol. Energy doi: 10.1016/j.solener.2017.10.075 – ident: ref_35 – volume: 37 start-page: 1661 year: 2020 ident: ref_9 article-title: Clouda: A ground-based cloud classification method with a convolutional neural network publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-19-0189.1 – volume: 45 start-page: 8665 year: 2018 ident: ref_15 article-title: CloudNet: Ground-based cloud classification with deep convolutional neural network publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL077787 – volume: 188 start-page: 89 year: 2022 ident: ref_4 article-title: Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.03.020 – volume: 55 start-page: 5729 year: 2017 ident: ref_12 article-title: DeepCloud: Ground-based cloud image categorization using deep convolutional features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2712809 – volume: 115 start-page: 645 year: 2015 ident: ref_23 article-title: Cloud motion and stability estimation for intra-hour solar forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2015.03.030 – volume: 19 start-page: 1 year: 2021 ident: ref_17 article-title: A novel ground-based cloud image segmentation method by using deep transfer learning publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_31 doi: 10.3390/atmos11111151 – ident: ref_36 doi: 10.1109/ICCVW54120.2021.00210 – volume: 31 start-page: 1235 year: 2019 ident: ref_25 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – ident: ref_3 doi: 10.3390/s23187957 – ident: ref_29 – ident: ref_27 – ident: ref_19 doi: 10.1109/ICTER.2017.8257803 – volume: 10 start-page: 231 year: 2016 ident: ref_18 article-title: Color-based segmentation of sky/cloud images from ground-based cameras publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2558474 – volume: 11 start-page: 97177 year: 2023 ident: ref_6 article-title: Cloudprednet: An ultra-short-term movement prediction model for ground-based cloud image publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3310538 – ident: ref_8 doi: 10.3390/rs11192312 – ident: ref_21 doi: 10.1109/ICIINFS.2017.8300338 – volume: 16 start-page: 5763 year: 2016 ident: ref_2 article-title: Comprehensive tool for calculation of radiative fluxes: Illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-5763-2016 – volume: 58 start-page: 2212 year: 2019 ident: ref_32 article-title: Mcsip net: Multichannel satellite image prediction via deep neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2955538  | 
    
| SSID | ssj0000331904 | 
    
| Score | 2.3946462 | 
    
| Snippet | Ground-based cloud image features high-spatiotemporal resolution, presenting detailed local cloud structures and valuable weather information, which are... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 18 | 
    
| SubjectTerms | Accuracy Algorithms Attention Clouds Decoupling Effectiveness Embedding Feature extraction Forecasting ground-based cloud prediction Highway construction Measurement Meteorological data Methods Modelling Neural networks Precipitation Prediction models Predictions Radiation recurrent neural network Remote sensing self-attention mechanism Spatiotemporal data spatiotemporal prediction network Velocity Weather forecasting  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbp5pD2UPqkm6ZF0EBPItbDknwoZTcPQmmX0DSQm5H1SA_Gu_V6Cemv78iWNy2FXI2whOahmdHo-xA6lKEw2uSaGMoUEYUzRFeUE6lDkAqMi_Wl7G8LeX4lvlzn1ztoMb6FiW2Vo0_sHbVb2lgjP-JgmlIzxeTn1S8SWaPi7epIoWEStYL71EOMPUK7LCJjTdDu_HRx8X1bdck4qFwmBpxSDvn-UbuOiOSRm-6fk6kH8P_fTT9Be5tmZe5uTV3_dQ6dPUNPUwCJZ4PEn6Md37xAe4nL_OfdS_T7qwf17MmH8In3K3zZN00nDKoaX6bmaXzRxkuaKBi8GJrBcazKwoA6kFnXDY2QGKJaHCtUjSNzOPIcPq6XG4dPBir7NY7kntasY_v0K3R1dvrj-JwkhgVieV50hAoIgJwqaCisoVQWlfQCEg5dMa8gdeWW2irkhQ9UUBYChBveukJnVqlAueSv0aRZNv4NwgF2lmldKZl7YbkyUqrghau48lXG9RR9GHe3XA1AGiUkIFEG5b0MpmgeN347IoJf9x-W7U2ZbKkMNKtyV0AkB7EFOBWjrAmOwZxBZFxUU_Qxiq2MJtq1xpr00gAWGsGuyplmnOfg3OQUHYySLZPtrst7TZuiw620H1j0_sN_eYses0ga3NdtDtCkazf-HUQyXfU-qecfCV_yqA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagexh74I5WGMgSk3jyUtuJ7TyhbmOaEFSTRqXxFNmOPSZCWiUpqPv1HCfuuEkI8ZrYiqNzPzn5PoT2hc-10pkimjJJ0rzURBnKiVDeCwnGxfpW9vuZOJ2nby-yizib08axSijFr3onzSaSkcCnlFCZ0ISqZFn6119jI4lKnoU_PfPsNtoSGaTiI7Q1n51NPwZCuc3WAZKUQ2mfNG0AHw80dL8EoR6r_0-PvIO2V_VSr7_pqvop5JzcG3hV2x6pMEyafD5YdebAXv-G4_jfb3Mf3Y3JKJ4O2vMA3XL1Q7QdedE_rR-h63cOdvZERvjYuSU-7wewI55Vhc_jIDY-a8IHnyBkPBsGy3Ho8MKCypNp1w1DlRgyZBy6XXVJDiF8lvioWqxKfLyu9Zcr2-JAFGp1G0axH6P5yZsPR6cksjUQC6fuCE0hmSplTn1uNaUiN8KlULwow5yEMphbao3PcudpSpn3kLo4W-ZqYqX0lAv-BI3qRe12EfacQ9hURorMpZZLLYT0Li0Nl85MuBqjlxvxFcsBlKOAYiYIufgh5DE6DJK9WRGAtPsLi-ayiHZZeDoxWZlDVgh5CjgoLa32JYNn-nTCUzNGr4JeFMHcu0ZbHf9agIMG4KxiqhjnGThKMUZ7G9Upoh9oCw4BRSgmGdzev1Gnvxz66b8te4busEBE3PeC9tCoa1buOWRHnXkRbeA7d0oI8Q priority: 102 providerName: Unpaywall  | 
    
| Title | Leveraging Deep Spatiotemporal Sequence Prediction Network with Self-Attention for Ground-Based Cloud Dynamics Forecasting | 
    
| URI | https://www.proquest.com/docview/3153682726 https://www.mdpi.com/2072-4292/17/1/18/pdf?version=1735123595 https://doaj.org/article/f10b5d9644614051a7cafd237af4034b  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgHAYHxKcojMoSkzhZiz_ij2O6rkxoqypKpXGKbMfWDlFWtanQ-Ot5TrJRhAQXTlESH578e35fefk9hI5lNFbbXBNLmSLCVJZoRzmROkap4HCxrpR9OZfnK_H5Kr_aG_WVesJ6euB-404izVxeGXDb4EhAg6zyNlaMKxtFxoVL1jfTZi-Z6mwwB9XKRM9HyiGvP9lsE_N4mkH3mwfqiPr_NMdP0OGuWdvb77au9_zN7Bl6OgSKuOgFfI4ehOYFOhxmll_fvkQ_LgKoYTdkCE9DWONl1xw9cE3VeDk0SePFJn2MSQDged_0jVP1FRbUkRRt2zc8YohecapENRWZgGur8Gl9s6vwtB9Zv8VpiKe329Qm_QqtZmdfT8_JMEmBeJ6bllABgU6lDI3GW0qlcTIISCy0Y0FBiso99S7mJkQqKIsRworgK6Mzr1SkXPLX6KC5acIbhCPsLNPaKZkH4QEGKVUMonJcBZdxPUIf7na3XPeEGSUkGgmD8hcGIzRJG3-_IpFcdw8A-nKAvvwX9CP0McFWpqPYbqy3wx8FIGgitSoLzTjPwYjJETq6Q7Yczui25GDspWaKwevje7T_IvTb_yH0O_SYpRHCXRXnCB20m114D3FN68booZ59GqNHxfTyYgnXydl88WXcKTbcreaL4ttPdHv5_Q | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKewgcEE8RKGCJIk6rrh9rew8VSppWKU2jirZSb4vXD6iUbkKyURV-HL-N8cZJQUi99bqyvNa8ZzyeD6Ed4XOtdKYSTahMeG51okrCEqG8FxKUizal7JOh6F_wL5fZ5Qb6vXoLE9oqVzaxMdR2bEKNfJeBagpFJRWfJz-TgBoVbldXEBo6QivYvWbEWHzYcewWN5DCzfaOesDvj5QeHpzv95OIMpAYluV1QjgEAVbmxOdGEyLyUjgOQbcqqZOQvjFDTOmz3HnCCfUeXK4zNlepkdITJhjs-wBtccZzSP62ugfD06_rKk_KQMRTvpyLylie7k5nYQJ6wML7xxM2gAH_u4VHqDWvJnpxo0ejv_ze4RP0OAasuLOUsKdow1XPUCtip_9YPEe_Bg7UoQE7wj3nJvisadKOM69G-Cw2a-PTabgUCoKAh8vmcxyqwLBg5JNOXS8bLzFE0ThUxCqbdMHFWrw_Gs8t7i0qfX1lZjiAiRo9C-3aL9DFvdD6JdqsxpV7hbAHylKlSikyxw2TWgjpHbclk65MmWqjDyvqFpPl4I4CEp7Ag-KWB23UDYRfrwjDtpsP4-n3Iupu4UlaZjaHyBFiGTBiWhrtLYV_ep4yXrbRp8C2IpiEeqqNji8b4KBhuFbRUZSxDIypaKPtFWeLaCtmxa1kt9HOmtt3HPr13bu8R63--cmgGBwNj9-ghzQAFjc1o220WU_n7i1EUXX5LooqRt_uWzv-AKaFLpE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITF4QHyKwgBLDPEULbYT23lAqFspGxvVpDFpb8FxbEAqaWlTTeVP46_jLkk7ENLe9hpZjnXfPt_dD2BHhcwam5rIcqGjJCttZAouI2VCUBqVSzSp7E8jdXCWfDxPzzfg96oXhsoqVzaxMdTlxFGOfFeiaiojtFC7oSuLOBkM301_RoQgRS-tKziNVkSO_PICr2_zt4cD5PVrIYbvP-8fRB3CQORkmtURTzAAKHXGQ-Ys5yorlE8w4DaF8BqvbtJxV4Q084EnXISA7ta7MjOx0zpwqSTuewNuapriTl3qww_r_E4sUbjjpJ2IKmUW787mNPucUPD-8YENVMD_DuEObC2qqV1e2PH4L483vAd3u1CV9VvZug8bvnoAWx1q-rflQ_h17FERGpgjNvB-yk6b8uxu2tWYnXZl2uxkRs9BJAJs1JadM8r_4oJxiPp13ZZcMoyfGeXCqjLaQ-dasv3xZFGywbKyP767OSMYUWfnVKj9CM6uhdKPYbOaVP4JsICUFcYUWqU-cVJbpXTwSVlI7YtYmh68WlE3n7YjO3K86hAP8kse9GCPCL9eQWO2mw-T2de809o88LhIywxjRoxi0HxZ7WwoBf4zJLFMih68IbblZAzqmXW262nAg9JYrbxvhJQpmlHVg-0VZ_POSszzS5nuwc6a21cc-unVu7yEW6gT-fHh6OgZ3BaEVNwki7Zhs54t_HMMn-riRSOnDL5ct2L8AWCnLCs | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagexh74I5WGMgSk3jyUtuJ7TyhbmOaEFSTRqXxFNmOPSZCWiUpqPv1HCfuuEkI8ZrYiqNzPzn5PoT2hc-10pkimjJJ0rzURBnKiVDeCwnGxfpW9vuZOJ2nby-yizib08axSijFr3onzSaSkcCnlFCZ0ISqZFn6119jI4lKnoU_PfPsNtoSGaTiI7Q1n51NPwZCuc3WAZKUQ2mfNG0AHw80dL8EoR6r_0-PvIO2V_VSr7_pqvop5JzcG3hV2x6pMEyafD5YdebAXv-G4_jfb3Mf3Y3JKJ4O2vMA3XL1Q7QdedE_rR-h63cOdvZERvjYuSU-7wewI55Vhc_jIDY-a8IHnyBkPBsGy3Ho8MKCypNp1w1DlRgyZBy6XXVJDiF8lvioWqxKfLyu9Zcr2-JAFGp1G0axH6P5yZsPR6cksjUQC6fuCE0hmSplTn1uNaUiN8KlULwow5yEMphbao3PcudpSpn3kLo4W-ZqYqX0lAv-BI3qRe12EfacQ9hURorMpZZLLYT0Li0Nl85MuBqjlxvxFcsBlKOAYiYIufgh5DE6DJK9WRGAtPsLi-ayiHZZeDoxWZlDVgh5CjgoLa32JYNn-nTCUzNGr4JeFMHcu0ZbHf9agIMG4KxiqhjnGThKMUZ7G9Upoh9oCw4BRSgmGdzev1Gnvxz66b8te4busEBE3PeC9tCoa1buOWRHnXkRbeA7d0oI8Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Deep+Spatiotemporal+Sequence+Prediction+Network+with+Self-Attention+for+Ground-Based+Cloud+Dynamics+Forecasting&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Sheng+Li&rft.au=Min+Wang&rft.au=Minghang+Shi&rft.au=Jiafeng+Wang&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=1&rft.spage=18&rft_id=info:doi/10.3390%2Frs17010018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f10b5d9644614051a7cafd237af4034b | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |