Leveraging Deep Spatiotemporal Sequence Prediction Network with Self-Attention for Ground-Based Cloud Dynamics Forecasting

Ground-based cloud image features high-spatiotemporal resolution, presenting detailed local cloud structures and valuable weather information, which are crucial for meteorological forecasting. However, the inherent fuzziness and dynamism of ground-based clouds have hindered the development of effect...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 17; no. 1; p. 18
Main Authors Li, Sheng, Wang, Min, Shi, Minghang, Wang, Jiafeng, Cao, Ran
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2025
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs17010018

Cover

Abstract Ground-based cloud image features high-spatiotemporal resolution, presenting detailed local cloud structures and valuable weather information, which are crucial for meteorological forecasting. However, the inherent fuzziness and dynamism of ground-based clouds have hindered the development of effective prediction algorithms, resulting in low accuracy. This paper presents CloudPredRNN++, a novel method for predicting ground-based cloud dynamics, leveraging a deep spatiotemporal sequence prediction network enhanced with a self-attention mechanism. Initially, a Cascaded Causal LSTM (CCLSTM) with a dual-memory group decoupling structure is designed to enhance the representation of short-term cloud changes. Next, self-attention memory units are incorporated to capture the long-term dependencies and emphasize the non-stationary characteristics of cloud movements. These components are integrated into cloud dynamic feature mining units, which concurrently extract spatiotemporal features to strengthen unified spatiotemporal modeling. Finally, by embedding gradient highway units and adding skip connection, CloudPredRNN++ is constructed into a hierarchical recursive structure, mitigating the gradient vanishing and enhancing the uniform modeling of temporal–spatial features. Experiments on the sequence ground-based cloud dataset demonstrate that CloudPredRNN++ can predict the future cloud state more accurately and quickly. Compared with other spatiotemporal sequence prediction models, CloudPredRNN++ shows significant improvements in evaluation metrics, improving the accuracy of cloud dynamics forecasting and alleviating long-term dependency decay, thus confirming the effectiveness in ground-based cloud prediction tasks.
AbstractList Ground-based cloud image features high-spatiotemporal resolution, presenting detailed local cloud structures and valuable weather information, which are crucial for meteorological forecasting. However, the inherent fuzziness and dynamism of ground-based clouds have hindered the development of effective prediction algorithms, resulting in low accuracy. This paper presents CloudPredRNN++, a novel method for predicting ground-based cloud dynamics, leveraging a deep spatiotemporal sequence prediction network enhanced with a self-attention mechanism. Initially, a Cascaded Causal LSTM (CCLSTM) with a dual-memory group decoupling structure is designed to enhance the representation of short-term cloud changes. Next, self-attention memory units are incorporated to capture the long-term dependencies and emphasize the non-stationary characteristics of cloud movements. These components are integrated into cloud dynamic feature mining units, which concurrently extract spatiotemporal features to strengthen unified spatiotemporal modeling. Finally, by embedding gradient highway units and adding skip connection, CloudPredRNN++ is constructed into a hierarchical recursive structure, mitigating the gradient vanishing and enhancing the uniform modeling of temporal–spatial features. Experiments on the sequence ground-based cloud dataset demonstrate that CloudPredRNN++ can predict the future cloud state more accurately and quickly. Compared with other spatiotemporal sequence prediction models, CloudPredRNN++ shows significant improvements in evaluation metrics, improving the accuracy of cloud dynamics forecasting and alleviating long-term dependency decay, thus confirming the effectiveness in ground-based cloud prediction tasks.
Audience Academic
Author Wang, Jiafeng
Cao, Ran
Wang, Min
Li, Sheng
Shi, Minghang
Author_xml – sequence: 1
  givenname: Sheng
  surname: Li
  fullname: Li, Sheng
– sequence: 2
  givenname: Min
  surname: Wang
  fullname: Wang, Min
– sequence: 3
  givenname: Minghang
  surname: Shi
  fullname: Shi, Minghang
– sequence: 4
  givenname: Jiafeng
  surname: Wang
  fullname: Wang, Jiafeng
– sequence: 5
  givenname: Ran
  surname: Cao
  fullname: Cao, Ran
BookMark eNp9UU1v1DAQjVCRKKUXfoElbqAUfyWOj8uWlkorQCqcI8ceL16ydrCdrpZfj7dBwAnPwdbMm-c3855XZz54qKqXBF8xJvHbmIjABGPSPanOKRa05lTSs3_ez6rLlHa4HMaIxPy8-rmBB4hq6_wWXQNM6H5S2YUM-ylENaJ7-DGD14A-RzBOl5JHHyEfQvyODi5_K4DR1qucwT_WbIjoNobZm_qdSmDQegyzQddHr_ZOJ3QTImiVcvnvRfXUqjHB5e_7ovp68_7L-kO9-XR7t15tas0amWvCG9wYIYmVWhHSyqEF3tG2GyiIjgmmiR5sI8ESTqi1gjPQRnZYC2EJa9lFdbfwmqB2_RTdXsVjH5TrHxMhbnsVs9Mj9JbgoTGy5bwlHDdECa2soUwoyzHjQ-F6s3DNflLHgxrHP4QE9ycX-r8uFPSrBT3FUNaYcr8Lc_Rl2J6RhrUdFfSk72pBbVWR4LwNOSpdwkBZWbHYupJfdZSxhmFxani9NOgYUopg_6fhF21vpcE
Cites_doi 10.1109/TCYB.2021.3080121
10.1109/ACCESS.2019.2916905
10.1109/ICASSP39728.2021.9413901
10.3390/rs10060822
10.1049/iet-ipr.2018.6100
10.5194/amt-14-737-2021
10.1109/CVPR.2018.00068
10.1109/IRSEC.2015.7455105
10.1109/TPAMI.2022.3165153
10.1016/j.atmosres.2012.05.005
10.3390/rs13193876
10.1364/OE.442455
10.1016/j.solener.2017.10.075
10.1175/JTECH-D-19-0189.1
10.1029/2018GL077787
10.1016/j.isprsjprs.2022.03.020
10.1109/TGRS.2017.2712809
10.1016/j.solener.2015.03.030
10.3390/atmos11111151
10.1109/ICCVW54120.2021.00210
10.1162/neco_a_01199
10.3390/s23187957
10.1109/ICTER.2017.8257803
10.1109/JSTARS.2016.2558474
10.1109/ACCESS.2023.3310538
10.3390/rs11192312
10.1109/ICIINFS.2017.8300338
10.5194/acp-16-5763-2016
10.1109/TGRS.2019.2955538
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.3390/rs17010018
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_f10b5d9644614051a7cafd237af4034b
10.3390/rs17010018
A823353076
10_3390_rs17010018
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c359t-14505d791f9ca1169b6e48268b2e78373c1cbf59ef1412ff743ecd980c77f1363
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Fri Oct 03 12:53:10 EDT 2025
Tue Aug 19 21:42:15 EDT 2025
Fri Jul 25 11:57:28 EDT 2025
Mon Oct 20 16:54:05 EDT 2025
Thu Oct 16 04:40:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-14505d791f9ca1169b6e48268b2e78373c1cbf59ef1412ff743ecd980c77f1363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/f10b5d9644614051a7cafd237af4034b
PQID 3153682726
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_f10b5d9644614051a7cafd237af4034b
unpaywall_primary_10_3390_rs17010018
proquest_journals_3153682726
gale_infotracacademiconefile_A823353076
crossref_primary_10_3390_rs17010018
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_14) 2021; 19
Lee (ref_32) 2019; 58
ref_36
Ye (ref_12) 2017; 55
ref_35
ref_34
ref_33
ref_10
ref_31
ref_30
Kazantzidis (ref_11) 2012; 113
Dev (ref_18) 2016; 10
Shakya (ref_24) 2019; 13
ref_19
Tang (ref_1) 2021; 14
ref_37
Yu (ref_25) 2019; 31
Zhang (ref_15) 2018; 45
Wang (ref_28) 2022; 45
Lu (ref_5) 2023; 61
Chow (ref_23) 2015; 115
Wang (ref_13) 2021; 29
Li (ref_16) 2019; 7
ref_21
ref_20
ref_3
Derimian (ref_2) 2016; 16
ref_29
Jamaly (ref_22) 2018; 159
ref_27
ref_26
ref_8
Wang (ref_9) 2020; 37
Zhou (ref_17) 2021; 19
Bai (ref_7) 2021; 52
Wei (ref_6) 2023; 11
Li (ref_4) 2022; 188
References_xml – volume: 52
  start-page: 12538
  year: 2021
  ident: ref_7
  article-title: LSCIDMR: Large-scale satellite cloud image database for meteorological research
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3080121
– volume: 61
  start-page: 1
  year: 2023
  ident: ref_5
  article-title: STANet: A novel predictive neural network for Ground-based remote sensing cloud image sequence extrapolation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 63081
  year: 2019
  ident: ref_16
  article-title: Dual guided loss for ground-based cloud classification in weather station networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916905
– ident: ref_30
– ident: ref_34
  doi: 10.1109/ICASSP39728.2021.9413901
– ident: ref_26
– volume: 19
  start-page: 1
  year: 2021
  ident: ref_14
  article-title: Ground-based cloud detection using multiscale attention convolutional neural network
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: ref_10
  doi: 10.3390/rs10060822
– volume: 13
  start-page: 1375
  year: 2019
  ident: ref_24
  article-title: Characterising and predicting the movement of clouds using fractional-order optical flow
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.6100
– volume: 14
  start-page: 737
  year: 2021
  ident: ref_1
  article-title: Improving cloud type classification of ground-based images using region covariance descriptors
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-737-2021
– ident: ref_37
  doi: 10.1109/CVPR.2018.00068
– ident: ref_20
  doi: 10.1109/IRSEC.2015.7455105
– volume: 45
  start-page: 2208
  year: 2022
  ident: ref_28
  article-title: Predrnn: A recurrent neural network for spatiotemporal predictive learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3165153
– volume: 113
  start-page: 80
  year: 2012
  ident: ref_11
  article-title: Cloud detection and classification with the use of whole-sky ground-based images
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2012.05.005
– ident: ref_33
  doi: 10.3390/rs13193876
– volume: 29
  start-page: 41176
  year: 2021
  ident: ref_13
  article-title: Intelligent classification of ground-based visible cloud images using a transfer convolutional neural network and fine-tuning
  publication-title: Opt. Express
  doi: 10.1364/OE.442455
– volume: 159
  start-page: 306
  year: 2018
  ident: ref_22
  article-title: Robust cloud motion estimation by spatio-temporal correlation analysis of irradiance data
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.10.075
– ident: ref_35
– volume: 37
  start-page: 1661
  year: 2020
  ident: ref_9
  article-title: Clouda: A ground-based cloud classification method with a convolutional neural network
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-19-0189.1
– volume: 45
  start-page: 8665
  year: 2018
  ident: ref_15
  article-title: CloudNet: Ground-based cloud classification with deep convolutional neural network
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL077787
– volume: 188
  start-page: 89
  year: 2022
  ident: ref_4
  article-title: Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.03.020
– volume: 55
  start-page: 5729
  year: 2017
  ident: ref_12
  article-title: DeepCloud: Ground-based cloud image categorization using deep convolutional features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2712809
– volume: 115
  start-page: 645
  year: 2015
  ident: ref_23
  article-title: Cloud motion and stability estimation for intra-hour solar forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.03.030
– volume: 19
  start-page: 1
  year: 2021
  ident: ref_17
  article-title: A novel ground-based cloud image segmentation method by using deep transfer learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: ref_31
  doi: 10.3390/atmos11111151
– ident: ref_36
  doi: 10.1109/ICCVW54120.2021.00210
– volume: 31
  start-page: 1235
  year: 2019
  ident: ref_25
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– ident: ref_3
  doi: 10.3390/s23187957
– ident: ref_29
– ident: ref_27
– ident: ref_19
  doi: 10.1109/ICTER.2017.8257803
– volume: 10
  start-page: 231
  year: 2016
  ident: ref_18
  article-title: Color-based segmentation of sky/cloud images from ground-based cameras
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2558474
– volume: 11
  start-page: 97177
  year: 2023
  ident: ref_6
  article-title: Cloudprednet: An ultra-short-term movement prediction model for ground-based cloud image
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3310538
– ident: ref_8
  doi: 10.3390/rs11192312
– ident: ref_21
  doi: 10.1109/ICIINFS.2017.8300338
– volume: 16
  start-page: 5763
  year: 2016
  ident: ref_2
  article-title: Comprehensive tool for calculation of radiative fluxes: Illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-5763-2016
– volume: 58
  start-page: 2212
  year: 2019
  ident: ref_32
  article-title: Mcsip net: Multichannel satellite image prediction via deep neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2955538
SSID ssj0000331904
Score 2.3946462
Snippet Ground-based cloud image features high-spatiotemporal resolution, presenting detailed local cloud structures and valuable weather information, which are...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 18
SubjectTerms Accuracy
Algorithms
Attention
Clouds
Decoupling
Effectiveness
Embedding
Feature extraction
Forecasting
ground-based cloud prediction
Highway construction
Measurement
Meteorological data
Methods
Modelling
Neural networks
Precipitation
Prediction models
Predictions
Radiation
recurrent neural network
Remote sensing
self-attention mechanism
Spatiotemporal data
spatiotemporal prediction network
Velocity
Weather forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbp5pD2UPqkm6ZF0EBPItbDknwoZTcPQmmX0DSQm5H1SA_Gu_V6Cemv78iWNy2FXI2whOahmdHo-xA6lKEw2uSaGMoUEYUzRFeUE6lDkAqMi_Wl7G8LeX4lvlzn1ztoMb6FiW2Vo0_sHbVb2lgjP-JgmlIzxeTn1S8SWaPi7epIoWEStYL71EOMPUK7LCJjTdDu_HRx8X1bdck4qFwmBpxSDvn-UbuOiOSRm-6fk6kH8P_fTT9Be5tmZe5uTV3_dQ6dPUNPUwCJZ4PEn6Md37xAe4nL_OfdS_T7qwf17MmH8In3K3zZN00nDKoaX6bmaXzRxkuaKBi8GJrBcazKwoA6kFnXDY2QGKJaHCtUjSNzOPIcPq6XG4dPBir7NY7kntasY_v0K3R1dvrj-JwkhgVieV50hAoIgJwqaCisoVQWlfQCEg5dMa8gdeWW2irkhQ9UUBYChBveukJnVqlAueSv0aRZNv4NwgF2lmldKZl7YbkyUqrghau48lXG9RR9GHe3XA1AGiUkIFEG5b0MpmgeN347IoJf9x-W7U2ZbKkMNKtyV0AkB7EFOBWjrAmOwZxBZFxUU_Qxiq2MJtq1xpr00gAWGsGuyplmnOfg3OQUHYySLZPtrst7TZuiw620H1j0_sN_eYses0ga3NdtDtCkazf-HUQyXfU-qecfCV_yqA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagexh74I5WGMgSk3jyUtuJ7TyhbmOaEFSTRqXxFNmOPSZCWiUpqPv1HCfuuEkI8ZrYiqNzPzn5PoT2hc-10pkimjJJ0rzURBnKiVDeCwnGxfpW9vuZOJ2nby-yizib08axSijFr3onzSaSkcCnlFCZ0ISqZFn6119jI4lKnoU_PfPsNtoSGaTiI7Q1n51NPwZCuc3WAZKUQ2mfNG0AHw80dL8EoR6r_0-PvIO2V_VSr7_pqvop5JzcG3hV2x6pMEyafD5YdebAXv-G4_jfb3Mf3Y3JKJ4O2vMA3XL1Q7QdedE_rR-h63cOdvZERvjYuSU-7wewI55Vhc_jIDY-a8IHnyBkPBsGy3Ho8MKCypNp1w1DlRgyZBy6XXVJDiF8lvioWqxKfLyu9Zcr2-JAFGp1G0axH6P5yZsPR6cksjUQC6fuCE0hmSplTn1uNaUiN8KlULwow5yEMphbao3PcudpSpn3kLo4W-ZqYqX0lAv-BI3qRe12EfacQ9hURorMpZZLLYT0Li0Nl85MuBqjlxvxFcsBlKOAYiYIufgh5DE6DJK9WRGAtPsLi-ayiHZZeDoxWZlDVgh5CjgoLa32JYNn-nTCUzNGr4JeFMHcu0ZbHf9agIMG4KxiqhjnGThKMUZ7G9Upoh9oCw4BRSgmGdzev1Gnvxz66b8te4busEBE3PeC9tCoa1buOWRHnXkRbeA7d0oI8Q
  priority: 102
  providerName: Unpaywall
Title Leveraging Deep Spatiotemporal Sequence Prediction Network with Self-Attention for Ground-Based Cloud Dynamics Forecasting
URI https://www.proquest.com/docview/3153682726
https://www.mdpi.com/2072-4292/17/1/18/pdf?version=1735123595
https://doaj.org/article/f10b5d9644614051a7cafd237af4034b
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgHAYHxKcojMoSkzhZiz_ij2O6rkxoqypKpXGKbMfWDlFWtanQ-Ot5TrJRhAQXTlESH578e35fefk9hI5lNFbbXBNLmSLCVJZoRzmROkap4HCxrpR9OZfnK_H5Kr_aG_WVesJ6euB-404izVxeGXDb4EhAg6zyNlaMKxtFxoVL1jfTZi-Z6mwwB9XKRM9HyiGvP9lsE_N4mkH3mwfqiPr_NMdP0OGuWdvb77au9_zN7Bl6OgSKuOgFfI4ehOYFOhxmll_fvkQ_LgKoYTdkCE9DWONl1xw9cE3VeDk0SePFJn2MSQDged_0jVP1FRbUkRRt2zc8YohecapENRWZgGur8Gl9s6vwtB9Zv8VpiKe329Qm_QqtZmdfT8_JMEmBeJ6bllABgU6lDI3GW0qlcTIISCy0Y0FBiso99S7mJkQqKIsRworgK6Mzr1SkXPLX6KC5acIbhCPsLNPaKZkH4QEGKVUMonJcBZdxPUIf7na3XPeEGSUkGgmD8hcGIzRJG3-_IpFcdw8A-nKAvvwX9CP0McFWpqPYbqy3wx8FIGgitSoLzTjPwYjJETq6Q7Yczui25GDspWaKwevje7T_IvTb_yH0O_SYpRHCXRXnCB20m114D3FN68booZ59GqNHxfTyYgnXydl88WXcKTbcreaL4ttPdHv5_Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKewgcEE8RKGCJIk6rrh9rew8VSppWKU2jirZSb4vXD6iUbkKyURV-HL-N8cZJQUi99bqyvNa8ZzyeD6Ed4XOtdKYSTahMeG51okrCEqG8FxKUizal7JOh6F_wL5fZ5Qb6vXoLE9oqVzaxMdR2bEKNfJeBagpFJRWfJz-TgBoVbldXEBo6QivYvWbEWHzYcewWN5DCzfaOesDvj5QeHpzv95OIMpAYluV1QjgEAVbmxOdGEyLyUjgOQbcqqZOQvjFDTOmz3HnCCfUeXK4zNlepkdITJhjs-wBtccZzSP62ugfD06_rKk_KQMRTvpyLylie7k5nYQJ6wML7xxM2gAH_u4VHqDWvJnpxo0ejv_ze4RP0OAasuLOUsKdow1XPUCtip_9YPEe_Bg7UoQE7wj3nJvisadKOM69G-Cw2a-PTabgUCoKAh8vmcxyqwLBg5JNOXS8bLzFE0ThUxCqbdMHFWrw_Gs8t7i0qfX1lZjiAiRo9C-3aL9DFvdD6JdqsxpV7hbAHylKlSikyxw2TWgjpHbclk65MmWqjDyvqFpPl4I4CEp7Ag-KWB23UDYRfrwjDtpsP4-n3Iupu4UlaZjaHyBFiGTBiWhrtLYV_ep4yXrbRp8C2IpiEeqqNji8b4KBhuFbRUZSxDIypaKPtFWeLaCtmxa1kt9HOmtt3HPr13bu8R63--cmgGBwNj9-ghzQAFjc1o220WU_n7i1EUXX5LooqRt_uWzv-AKaFLpE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITF4QHyKwgBLDPEULbYT23lAqFspGxvVpDFpb8FxbEAqaWlTTeVP46_jLkk7ENLe9hpZjnXfPt_dD2BHhcwam5rIcqGjJCttZAouI2VCUBqVSzSp7E8jdXCWfDxPzzfg96oXhsoqVzaxMdTlxFGOfFeiaiojtFC7oSuLOBkM301_RoQgRS-tKziNVkSO_PICr2_zt4cD5PVrIYbvP-8fRB3CQORkmtURTzAAKHXGQ-Ys5yorlE8w4DaF8BqvbtJxV4Q084EnXISA7ta7MjOx0zpwqSTuewNuapriTl3qww_r_E4sUbjjpJ2IKmUW787mNPucUPD-8YENVMD_DuEObC2qqV1e2PH4L483vAd3u1CV9VvZug8bvnoAWx1q-rflQ_h17FERGpgjNvB-yk6b8uxu2tWYnXZl2uxkRs9BJAJs1JadM8r_4oJxiPp13ZZcMoyfGeXCqjLaQ-dasv3xZFGywbKyP767OSMYUWfnVKj9CM6uhdKPYbOaVP4JsICUFcYUWqU-cVJbpXTwSVlI7YtYmh68WlE3n7YjO3K86hAP8kse9GCPCL9eQWO2mw-T2de809o88LhIywxjRoxi0HxZ7WwoBf4zJLFMih68IbblZAzqmXW262nAg9JYrbxvhJQpmlHVg-0VZ_POSszzS5nuwc6a21cc-unVu7yEW6gT-fHh6OgZ3BaEVNwki7Zhs54t_HMMn-riRSOnDL5ct2L8AWCnLCs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagexh74I5WGMgSk3jyUtuJ7TyhbmOaEFSTRqXxFNmOPSZCWiUpqPv1HCfuuEkI8ZrYiqNzPzn5PoT2hc-10pkimjJJ0rzURBnKiVDeCwnGxfpW9vuZOJ2nby-yizib08axSijFr3onzSaSkcCnlFCZ0ISqZFn6119jI4lKnoU_PfPsNtoSGaTiI7Q1n51NPwZCuc3WAZKUQ2mfNG0AHw80dL8EoR6r_0-PvIO2V_VSr7_pqvop5JzcG3hV2x6pMEyafD5YdebAXv-G4_jfb3Mf3Y3JKJ4O2vMA3XL1Q7QdedE_rR-h63cOdvZERvjYuSU-7wewI55Vhc_jIDY-a8IHnyBkPBsGy3Ho8MKCypNp1w1DlRgyZBy6XXVJDiF8lvioWqxKfLyu9Zcr2-JAFGp1G0axH6P5yZsPR6cksjUQC6fuCE0hmSplTn1uNaUiN8KlULwow5yEMphbao3PcudpSpn3kLo4W-ZqYqX0lAv-BI3qRe12EfacQ9hURorMpZZLLYT0Li0Nl85MuBqjlxvxFcsBlKOAYiYIufgh5DE6DJK9WRGAtPsLi-ayiHZZeDoxWZlDVgh5CjgoLa32JYNn-nTCUzNGr4JeFMHcu0ZbHf9agIMG4KxiqhjnGThKMUZ7G9Upoh9oCw4BRSgmGdzev1Gnvxz66b8te4busEBE3PeC9tCoa1buOWRHnXkRbeA7d0oI8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Deep+Spatiotemporal+Sequence+Prediction+Network+with+Self-Attention+for+Ground-Based+Cloud+Dynamics+Forecasting&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Sheng+Li&rft.au=Min+Wang&rft.au=Minghang+Shi&rft.au=Jiafeng+Wang&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=1&rft.spage=18&rft_id=info:doi/10.3390%2Frs17010018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f10b5d9644614051a7cafd237af4034b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon