Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms

Proton exchange membrane fuel cell (PEMFC) is considered as propitious solution for an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its polarization curve and in-depth understanding of all its operating characteristics attracted the interest of many...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 33; no. 11; pp. 5555 - 5570
Main Authors Mossa, Mahmoud A., Kamel, Omar Makram, Sultan, Hamdy M., Diab, Ahmed A. Zaki
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-020-05333-4

Cover

Abstract Proton exchange membrane fuel cell (PEMFC) is considered as propitious solution for an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its polarization curve and in-depth understanding of all its operating characteristics attracted the interest of many researchers. In this paper, novel meta-heuristic optimization methods have been successfully applied to evaluate the unknown parameters of PEMFC models, particularly Harris Hawks’ optimization (HHO) and atom search optimization (ASO) techniques. The proposed optimization algorithms have been tested on three different commercial PEMFC stacks, namely BCS 500-W PEM, 500W SR-12PEM and 250W stack, under various operating conditions. The sum of square errors (SSE) between the results obtained by the application of the estimated parameters and the experimentally measured results of the fuel cell stacks was considered as the objective function of the optimization problem. In order to validate the effectiveness of the proposed methods, the results are compared with that obtained in studies. Moreover, the I / V curves obtained by the application of HHO and ASO showed a clear matching with data sheet curves for all the studied cases. Finally, PEMFC model based on HHO technique surpasses all compared algorithms in terms of the solution accuracy and the convergence speed.
AbstractList Proton exchange membrane fuel cell (PEMFC) is considered as propitious solution for an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its polarization curve and in-depth understanding of all its operating characteristics attracted the interest of many researchers. In this paper, novel meta-heuristic optimization methods have been successfully applied to evaluate the unknown parameters of PEMFC models, particularly Harris Hawks’ optimization (HHO) and atom search optimization (ASO) techniques. The proposed optimization algorithms have been tested on three different commercial PEMFC stacks, namely BCS 500-W PEM, 500W SR-12PEM and 250W stack, under various operating conditions. The sum of square errors (SSE) between the results obtained by the application of the estimated parameters and the experimentally measured results of the fuel cell stacks was considered as the objective function of the optimization problem. In order to validate the effectiveness of the proposed methods, the results are compared with that obtained in studies. Moreover, the I / V curves obtained by the application of HHO and ASO showed a clear matching with data sheet curves for all the studied cases. Finally, PEMFC model based on HHO technique surpasses all compared algorithms in terms of the solution accuracy and the convergence speed.
Proton exchange membrane fuel cell (PEMFC) is considered as propitious solution for an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its polarization curve and in-depth understanding of all its operating characteristics attracted the interest of many researchers. In this paper, novel meta-heuristic optimization methods have been successfully applied to evaluate the unknown parameters of PEMFC models, particularly Harris Hawks’ optimization (HHO) and atom search optimization (ASO) techniques. The proposed optimization algorithms have been tested on three different commercial PEMFC stacks, namely BCS 500-W PEM, 500W SR-12PEM and 250W stack, under various operating conditions. The sum of square errors (SSE) between the results obtained by the application of the estimated parameters and the experimentally measured results of the fuel cell stacks was considered as the objective function of the optimization problem. In order to validate the effectiveness of the proposed methods, the results are compared with that obtained in studies. Moreover, the I/V curves obtained by the application of HHO and ASO showed a clear matching with data sheet curves for all the studied cases. Finally, PEMFC model based on HHO technique surpasses all compared algorithms in terms of the solution accuracy and the convergence speed.
Author Diab, Ahmed A. Zaki
Kamel, Omar Makram
Sultan, Hamdy M.
Mossa, Mahmoud A.
Author_xml – sequence: 1
  givenname: Mahmoud A.
  surname: Mossa
  fullname: Mossa, Mahmoud A.
  organization: Electrical Engineering Department, Faculty of Engineering, Minia University
– sequence: 2
  givenname: Omar Makram
  surname: Kamel
  fullname: Kamel, Omar Makram
  organization: Electrical and Computer Department, El Minia High Institute of Engineering and Technology
– sequence: 3
  givenname: Hamdy M.
  surname: Sultan
  fullname: Sultan, Hamdy M.
  organization: Electrical Engineering Department, Faculty of Engineering, Minia University
– sequence: 4
  givenname: Ahmed A. Zaki
  orcidid: 0000-0002-8598-9983
  surname: Diab
  fullname: Diab, Ahmed A. Zaki
  email: a.diab@mu.edu.eg
  organization: Electrical Engineering Department, Faculty of Engineering, Minia University, Department of Electrical and Electronic Engineering, Kyushu University
BookMark eNp9kMFOwzAMQCM0JLbBD3CKxLngJk2bHtG0MaQhdoBzlLbu1tE2W9IJwYnf4Pf4EsKKhLQDJ0e2nx2_ERm0pkVCLkO4DgGSGwcgWBgAgwAE5zyITsgwjPyDg5ADMoQ08uU44mdk5NwGAKJYiiHZLbXVDXZoKbquanRXmZaaki6nD7MJbUyBNc20w4L6_FxbWzkfXl_c18cnNVuPVO89pNuC6s401KG2-fqoWK-Mrbp1487Jaalrhxe_cUyeZ9OnyTxYPN7dT24XQc6F7IIyK3SqC5nGXLKUocg1QIxRyrIkwURkcVKyDCRPBGKKTGOY6rDAROc8klnGx-Sqn7u1Zrf3x6mN2dvWr1RMsBRCFkvpu1jflVvjnMVSba23YN9UCOpHrerVKq9WHdSqyEPyCMqr7nBnZ3VV_4_yHnV-T7tC-_erf6hvUdWSJg
CitedBy_id crossref_primary_10_35414_akufemubid_1387447
crossref_primary_10_1016_j_fuel_2023_127586
crossref_primary_10_1016_j_eswa_2022_117255
crossref_primary_10_1016_j_energy_2022_123830
crossref_primary_10_1016_j_ijhydene_2022_09_129
crossref_primary_10_3389_fenrg_2022_964042
crossref_primary_10_1007_s00500_023_08092_1
crossref_primary_10_1016_j_energy_2023_126705
crossref_primary_10_1016_j_enconman_2024_119231
crossref_primary_10_1016_j_measurement_2024_115302
crossref_primary_10_3390_en16145246
crossref_primary_10_1371_journal_pone_0290117
crossref_primary_10_3390_electronics11121919
crossref_primary_10_1016_j_geits_2022_100040
crossref_primary_10_1002_er_8399
crossref_primary_10_1016_j_asej_2022_101749
crossref_primary_10_1016_j_energy_2021_122096
crossref_primary_10_1016_j_egyai_2022_100170
crossref_primary_10_1088_2631_8695_ad53a3
crossref_primary_10_3934_mbe_2022344
crossref_primary_10_1016_j_egyr_2023_11_007
crossref_primary_10_1016_j_ijhydene_2024_12_381
crossref_primary_10_1007_s00521_021_06611_5
crossref_primary_10_1016_j_energy_2022_124454
crossref_primary_10_1007_s00521_022_07146_z
crossref_primary_10_1002_er_7863
crossref_primary_10_1142_S0129183124501584
crossref_primary_10_1371_journal_pone_0286060
crossref_primary_10_1049_rpg2_12621
crossref_primary_10_1016_j_egyr_2024_03_006
crossref_primary_10_1038_s41598_025_87695_0
crossref_primary_10_1007_s11831_022_09721_y
crossref_primary_10_1016_j_ijhydene_2024_09_027
crossref_primary_10_3389_fenrg_2024_1384649
crossref_primary_10_1002_er_7576
crossref_primary_10_1007_s00521_024_10909_5
crossref_primary_10_1049_rpg2_12359
crossref_primary_10_1016_j_cma_2024_116781
crossref_primary_10_1016_j_eswa_2024_125601
crossref_primary_10_3390_en16124743
crossref_primary_10_1007_s00202_024_02935_2
crossref_primary_10_1016_j_seta_2022_102657
crossref_primary_10_3390_su151310590
crossref_primary_10_3934_math_2024622
crossref_primary_10_1002_ese3_1238
crossref_primary_10_1007_s10825_024_02204_2
crossref_primary_10_1016_j_energy_2023_128935
crossref_primary_10_1016_j_bspc_2022_104534
crossref_primary_10_1016_j_jclepro_2023_139339
Cites_doi 10.4324/9781315769431
10.1016/j.asej.2015.05.003
10.1016/j.ijheatmasstransfer.2017.03.120
10.1016/j.future.2019.02.028
10.1109/TEC.2003.821821
10.1016/j.tsep.2018.12.008
10.1016/S0378-7753(99)00484-X
10.1016/j.knosys.2018.08.030
10.1109/access.2019.2930831
10.1016/j.renene.2017.04.036
10.1016/j.renene.2017.12.051
10.1016/j.ijhydene.2012.10.026
10.1038/nature06518
10.1016/j.enconman.2019.04.005
10.1002/er.1170
10.1016/j.energy.2019.02.106
10.1016/j.energy.2015.06.081
10.1049/iet-rpg.2017.0232
10.1016/j.future.2018.05.037
10.1016/j.enconman.2018.12.057
10.1109/ACCESS.2019.2921545
10.1016/j.ijhydene.2018.11.140
10.1016/j.ijhydene.2011.01.070
10.1038/381413a0
10.1149/1.2043959
10.1016/j.ijepes.2014.04.043
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-05333-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 5570
ExternalDocumentID 10_1007_s00521_020_05333_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c358t-fbda9ad89638292e5ca006e492b77e75b67f2b08375ee9e2ae19a1de7ac348bb3
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Sun Oct 05 00:33:04 EDT 2025
Thu Apr 24 22:55:57 EDT 2025
Wed Oct 01 02:26:02 EDT 2025
Fri Feb 21 02:48:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Meta-heuristic algorithms
Parameter estimation
Fuel cell modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-fbda9ad89638292e5ca006e492b77e75b67f2b08375ee9e2ae19a1de7ac348bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8598-9983
PQID 2529012688
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_2529012688
crossref_primary_10_1007_s00521_020_05333_4
crossref_citationtrail_10_1007_s00521_020_05333_4
springer_journals_10_1007_s00521_020_05333_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References MannRFAmphlettJCHooperMAIJensenHMPeppleyBARobergePRDevelopment and application of a generalized steady-state electrochemical model for a PEM fuel cellJ Power Sour2000861–217318010.1016/S0378-7753(99)00484-X
ArshadAAliHMHabibABashirMAJabbalMYanYEnergy and exergy analysis of fuel cells: a reviewTherm Sci Eng Progr2019930832110.1016/j.tsep.2018.12.008
LiuZZengXGeYShenJLiuWMulti-objective optimization of operating conditions and channel structure for a proton exchange membrane fuel cellInt J Heat Mass Transf201711128929810.1016/j.ijheatmasstransfer.2017.03.120
Lennard-JonesJEOn the determination of molecular fieldsProc R Soc Lond A Math Phys Eng Sci R Soc1924106738463477
ZhangLWangNAn adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cellsInt J Hydrogen Energy201338121922810.1016/j.ijhydene.2012.10.026
SunZWangNBiYSrinivasanDParameter identification of PEMFC model based on hybrid adaptive differential evolution algorithmEnergy2015901334134110.1016/j.energy.2015.06.081
MoZZhuXWeiLCaoGParameter optimization for a PEMFC model with a hybrid genetic algorithmInt J Energy Res20063058559710.1002/er.1170
ViswanathanGMAfanasyevVBuldyrevSMurphyEPrincePStanleyHEL´evy flight search patterns of wandering albatrossesNature199638141310.1038/381413a0
AmphlettJCBaumertRMMannRFPeppleyBARobergePRPerformance modeling of the Ballard mark IV solid polymer electrolyte fuel cell: empirical model developmentJ Electrochem Soc199514291510.1149/1.2043959
SimsDWSouthallEJHumphriesNEHaysGCBradshawCJPitchfordJWJamesAAhmedMZBrierleyASHindellMAScaling laws of marine predator search behaviourNature20084511098110210.1038/nature06518
El-FerganyAAElectrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimizerIET Renew Power Gener201812191710.1049/iet-rpg.2017.0232
BaoXJiaHLangCA novel hybrid harris hawks optimization for color image multilevel thresholding segmentationIEEE Access201910.1109/ACCESS.2019.2921545
QuaschningVUnderstanding Renewable Energy Systems20162MunichHan ser. Verlag10.4324/9781315769431
GaberHASmart Energy Grid Engineering20171AmsterdamElsiver Inc
AskarzadehARezazadehAA grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cellInt J Hydrogen Energy2011365047505310.1016/j.ijhydene.2011.01.070
El-FerganyAAExtracting optimal parameters of PEM fuel cells using Salp Swarm OptimizerRenew Energy201811964164810.1016/j.renene.2017.12.051
GaingZ-LA particle swarm optimization approach for optimum design of PID controller in AVR systemIEEE Trans Energy Convers200419238439110.1109/TEC.2003.821821
ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl Based Syst201916328330410.1016/j.knosys.2018.08.030
MoZ-JParameter optimization for a PEMFC model with a hybrid genetic algorithmInt J Energy Res200630858559710.1002/er.1170
TurgutOECobanMTOptimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization—differential evolution algorithmAin Shams Eng J20167134736010.1016/j.asej.2015.05.003
RaoYShaoZAhangarnejadAHGholamalizadehESobhaniBShark smell optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell modelEnergy Convers Manag20191821810.1016/j.enconman.2018.12.057
AliMEl-HameedMAFarahatMAEffective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizerRenew Energy201711145546210.1016/j.renene.2017.04.036
SohaniANaderiSTorabiFComprehensive comparative evaluation of different possible optimization scenarios for a polymer electrolyte membrane fuel cellEnergy Convers Manag2019191124726010.1016/j.enconman.2019.04.005
PriyaKBabuTSBalasubramanianKKumarKSRajasekarNA novel approach for fuel cell parameter estimation using simple genetic algorithmSustain Energy Technol Assess2015124652
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFuture Gener Computer Syst20199784987210.1016/j.future.2019.02.028
El-TamallyHHSultanHMAzzamMControl and operation of a solidoxide fuel-cell power plant in an isolated systemAdv Res J2017231020
ZhaoWWangLZhangZA novel atom search optimization for dispersion coeffcient estimation in groundwaterFuture Gener Comput Syst20199160161010.1016/j.future.2018.05.037
ShuhuiXWangYWangZParameter estimation of proton exchange membrane fuel cells using Eagle strategy based on JAYA algorithm and nelder-mead simplex methodEnergy201910.1016/j.energy.2019.02.106
Abdel AleemSZobaaABalciMIsmaelSHarmonic overloading minimization of frequency-dependent components in harmonics polluted distribution systems using Harris Hawks optimization algorithmIEEE Access201910.1109/access.2019.2930831
ChengJZhangGParameter fitting of PEMFC models based on adaptive differential evolutionInt J Electr Power Energy Syst20146218919810.1016/j.ijepes.2014.04.043
ChenYWangNCuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cellsInt J Hydrogen Energy201910.1016/j.ijhydene.2018.11.140
A Askarzadeh (5333_CR7) 2011; 36
HA Gaber (5333_CR1) 2017
Z Liu (5333_CR18) 2017; 111
W Zhao (5333_CR29) 2019; 91
S Abdel Aleem (5333_CR26) 2019
J Cheng (5333_CR5) 2014; 62
K Priya (5333_CR8) 2015; 12
RF Mann (5333_CR24) 2000; 86
AA El-Fergany (5333_CR14) 2018; 119
GM Viswanathan (5333_CR27) 1996; 381
A Sohani (5333_CR4) 2019; 191
V Quaschning (5333_CR2) 2016
A Arshad (5333_CR3) 2019; 9
X Bao (5333_CR25) 2019
AA El-Fergany (5333_CR13) 2018; 12
Z-L Gaing (5333_CR30) 2004; 19
Y Chen (5333_CR17) 2019
HH El-Tamally (5333_CR21) 2017; 2
Z Mo (5333_CR23) 2006; 30
JE Lennard-Jones (5333_CR31) 1924; 106
DW Sims (5333_CR28) 2008; 451
W Zhao (5333_CR19) 2019; 163
Y Rao (5333_CR15) 2019; 182
X Shuhui (5333_CR16) 2019
JC Amphlett (5333_CR22) 1995; 142
L Zhang (5333_CR10) 2013; 38
Z Sun (5333_CR6) 2015; 90
OE Turgut (5333_CR11) 2016; 7
M Ali (5333_CR12) 2017; 111
Z-J Mo (5333_CR9) 2006; 30
AA Heidari (5333_CR20) 2019; 97
References_xml – reference: QuaschningVUnderstanding Renewable Energy Systems20162MunichHan ser. Verlag10.4324/9781315769431
– reference: ChenYWangNCuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cellsInt J Hydrogen Energy201910.1016/j.ijhydene.2018.11.140
– reference: ViswanathanGMAfanasyevVBuldyrevSMurphyEPrincePStanleyHEL´evy flight search patterns of wandering albatrossesNature199638141310.1038/381413a0
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: Algorithm and applicationsFuture Gener Computer Syst20199784987210.1016/j.future.2019.02.028
– reference: El-FerganyAAElectrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimizerIET Renew Power Gener201812191710.1049/iet-rpg.2017.0232
– reference: SimsDWSouthallEJHumphriesNEHaysGCBradshawCJPitchfordJWJamesAAhmedMZBrierleyASHindellMAScaling laws of marine predator search behaviourNature20084511098110210.1038/nature06518
– reference: AliMEl-HameedMAFarahatMAEffective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizerRenew Energy201711145546210.1016/j.renene.2017.04.036
– reference: ChengJZhangGParameter fitting of PEMFC models based on adaptive differential evolutionInt J Electr Power Energy Syst20146218919810.1016/j.ijepes.2014.04.043
– reference: ZhangLWangNAn adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cellsInt J Hydrogen Energy201338121922810.1016/j.ijhydene.2012.10.026
– reference: ZhaoWWangLZhangZA novel atom search optimization for dispersion coeffcient estimation in groundwaterFuture Gener Comput Syst20199160161010.1016/j.future.2018.05.037
– reference: MannRFAmphlettJCHooperMAIJensenHMPeppleyBARobergePRDevelopment and application of a generalized steady-state electrochemical model for a PEM fuel cellJ Power Sour2000861–217318010.1016/S0378-7753(99)00484-X
– reference: SohaniANaderiSTorabiFComprehensive comparative evaluation of different possible optimization scenarios for a polymer electrolyte membrane fuel cellEnergy Convers Manag2019191124726010.1016/j.enconman.2019.04.005
– reference: ArshadAAliHMHabibABashirMAJabbalMYanYEnergy and exergy analysis of fuel cells: a reviewTherm Sci Eng Progr2019930832110.1016/j.tsep.2018.12.008
– reference: El-TamallyHHSultanHMAzzamMControl and operation of a solidoxide fuel-cell power plant in an isolated systemAdv Res J2017231020
– reference: TurgutOECobanMTOptimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization—differential evolution algorithmAin Shams Eng J20167134736010.1016/j.asej.2015.05.003
– reference: Abdel AleemSZobaaABalciMIsmaelSHarmonic overloading minimization of frequency-dependent components in harmonics polluted distribution systems using Harris Hawks optimization algorithmIEEE Access201910.1109/access.2019.2930831
– reference: AmphlettJCBaumertRMMannRFPeppleyBARobergePRPerformance modeling of the Ballard mark IV solid polymer electrolyte fuel cell: empirical model developmentJ Electrochem Soc199514291510.1149/1.2043959
– reference: AskarzadehARezazadehAA grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cellInt J Hydrogen Energy2011365047505310.1016/j.ijhydene.2011.01.070
– reference: RaoYShaoZAhangarnejadAHGholamalizadehESobhaniBShark smell optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell modelEnergy Convers Manag20191821810.1016/j.enconman.2018.12.057
– reference: GaberHASmart Energy Grid Engineering20171AmsterdamElsiver Inc
– reference: LiuZZengXGeYShenJLiuWMulti-objective optimization of operating conditions and channel structure for a proton exchange membrane fuel cellInt J Heat Mass Transf201711128929810.1016/j.ijheatmasstransfer.2017.03.120
– reference: MoZZhuXWeiLCaoGParameter optimization for a PEMFC model with a hybrid genetic algorithmInt J Energy Res20063058559710.1002/er.1170
– reference: ShuhuiXWangYWangZParameter estimation of proton exchange membrane fuel cells using Eagle strategy based on JAYA algorithm and nelder-mead simplex methodEnergy201910.1016/j.energy.2019.02.106
– reference: MoZ-JParameter optimization for a PEMFC model with a hybrid genetic algorithmInt J Energy Res200630858559710.1002/er.1170
– reference: El-FerganyAAExtracting optimal parameters of PEM fuel cells using Salp Swarm OptimizerRenew Energy201811964164810.1016/j.renene.2017.12.051
– reference: SunZWangNBiYSrinivasanDParameter identification of PEMFC model based on hybrid adaptive differential evolution algorithmEnergy2015901334134110.1016/j.energy.2015.06.081
– reference: BaoXJiaHLangCA novel hybrid harris hawks optimization for color image multilevel thresholding segmentationIEEE Access201910.1109/ACCESS.2019.2921545
– reference: PriyaKBabuTSBalasubramanianKKumarKSRajasekarNA novel approach for fuel cell parameter estimation using simple genetic algorithmSustain Energy Technol Assess2015124652
– reference: ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl Based Syst201916328330410.1016/j.knosys.2018.08.030
– reference: GaingZ-LA particle swarm optimization approach for optimum design of PID controller in AVR systemIEEE Trans Energy Convers200419238439110.1109/TEC.2003.821821
– reference: Lennard-JonesJEOn the determination of molecular fieldsProc R Soc Lond A Math Phys Eng Sci R Soc1924106738463477
– volume-title: Understanding Renewable Energy Systems
  year: 2016
  ident: 5333_CR2
  doi: 10.4324/9781315769431
– volume: 7
  start-page: 347
  issue: 1
  year: 2016
  ident: 5333_CR11
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2015.05.003
– volume: 2
  start-page: 10
  issue: 3
  year: 2017
  ident: 5333_CR21
  publication-title: Adv Res J
– volume: 106
  start-page: 463
  issue: 738
  year: 1924
  ident: 5333_CR31
  publication-title: Proc R Soc Lond A Math Phys Eng Sci R Soc
– volume: 111
  start-page: 289
  year: 2017
  ident: 5333_CR18
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.03.120
– volume: 97
  start-page: 849
  year: 2019
  ident: 5333_CR20
  publication-title: Future Gener Computer Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 19
  start-page: 384
  issue: 2
  year: 2004
  ident: 5333_CR30
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2003.821821
– volume: 9
  start-page: 308
  year: 2019
  ident: 5333_CR3
  publication-title: Therm Sci Eng Progr
  doi: 10.1016/j.tsep.2018.12.008
– volume: 86
  start-page: 173
  issue: 1–2
  year: 2000
  ident: 5333_CR24
  publication-title: J Power Sour
  doi: 10.1016/S0378-7753(99)00484-X
– volume: 163
  start-page: 283
  year: 2019
  ident: 5333_CR19
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.08.030
– year: 2019
  ident: 5333_CR26
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2930831
– volume: 111
  start-page: 455
  year: 2017
  ident: 5333_CR12
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.04.036
– volume: 12
  start-page: 46
  year: 2015
  ident: 5333_CR8
  publication-title: Sustain Energy Technol Assess
– volume: 119
  start-page: 641
  year: 2018
  ident: 5333_CR14
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.12.051
– volume: 38
  start-page: 219
  issue: 1
  year: 2013
  ident: 5333_CR10
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.10.026
– volume: 451
  start-page: 1098
  year: 2008
  ident: 5333_CR28
  publication-title: Nature
  doi: 10.1038/nature06518
– volume-title: Smart Energy Grid Engineering
  year: 2017
  ident: 5333_CR1
– volume: 191
  start-page: 247
  issue: 1
  year: 2019
  ident: 5333_CR4
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.04.005
– volume: 30
  start-page: 585
  issue: 8
  year: 2006
  ident: 5333_CR9
  publication-title: Int J Energy Res
  doi: 10.1002/er.1170
– year: 2019
  ident: 5333_CR16
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.106
– volume: 90
  start-page: 1334
  year: 2015
  ident: 5333_CR6
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.081
– volume: 12
  start-page: 9
  issue: 1
  year: 2018
  ident: 5333_CR13
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2017.0232
– volume: 91
  start-page: 601
  year: 2019
  ident: 5333_CR29
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2018.05.037
– volume: 182
  start-page: 1
  year: 2019
  ident: 5333_CR15
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.12.057
– volume: 30
  start-page: 585
  year: 2006
  ident: 5333_CR23
  publication-title: Int J Energy Res
  doi: 10.1002/er.1170
– year: 2019
  ident: 5333_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921545
– year: 2019
  ident: 5333_CR17
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.140
– volume: 36
  start-page: 5047
  year: 2011
  ident: 5333_CR7
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.070
– volume: 381
  start-page: 413
  year: 1996
  ident: 5333_CR27
  publication-title: Nature
  doi: 10.1038/381413a0
– volume: 142
  start-page: 9
  year: 1995
  ident: 5333_CR22
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2043959
– volume: 62
  start-page: 189
  year: 2014
  ident: 5333_CR5
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.04.043
SSID ssj0004685
Score 2.5161805
Snippet Proton exchange membrane fuel cell (PEMFC) is considered as propitious solution for an environmentally friendly energy source. A precise model of PEMFC for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5555
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Data sheets
Fuel cells
Heuristic methods
Image Processing and Computer Vision
Mathematical models
Optimization
Optimization algorithms
Original Article
Parameter estimation
Probability and Statistics in Computer Science
Proton exchange membrane fuel cells
Stacks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxEB7RcOFSKFARSpEP3KhF115ndw8IUZQoqkQUoSJxW9nrWZAgCZAgrrxGX48nYcbxEopUTit5d33weH7smW8-gD1b-7zW_qdMa1QyJQcsHVojOw6REcza54x3Ph10-ufp7wtzsQSDBgvDZZWNTQyG2k8qviM_UIYzfqqT50e3d5JZozi72lBo2Eit4A9Di7FPsKy4M1YLln91B8OzN0jJQNJJZxqu90l1hNEEMB3fkNKo4uSw1lqm_7qqRfz5LmUaPFFvDT7HEFIcz2X-BZZwvA6rDT2DiNq6AXdDy5VXPMatNOYYRTGpxbB72jsRgQNHsBfzgsb79p70nR6P19Pnp79iQrZkFEGawo69oNP5SMwV493Lm0taqNnVaLoJ573un5O-jAwLstImn8naeVtYn7MWqkKhqSxpIZLIXJZhZlwnq5WjKC0ziAUqi0lhE4-ZrXSaO6e_Qms8GeMWCLILlfe6MlhQhIW5JUPgjU_QUUiauKwNSbOYZRXbjzMLxk352jg5CKAkAZRBAGXahv3Xf27nzTc-_HqnkVEZFXFaLrZNG340clu8_v9s2x_P9g1WFFe3hPuYHWjN7h_wO4UnM7cb99wLLknisg
  priority: 102
  providerName: ProQuest
Title Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms
URI https://link.springer.com/article/10.1007/s00521-020-05333-4
https://www.proquest.com/docview/2529012688
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241031
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4XLjwRozHlAM3qESTZk2PG6xMINCEmASnKmlcQLANtiGu_A3-Hr8Ep2vHQ4DEKVKS5tAvjp3Ynw2wozOrMmH3vSBD7gWkgD2DWno1g-gYzMIqx3c-Pau1OsHxpbwsSGHDMtq9dEnmJ_WE7OZeMOnqy53zVgjhBdMwK106L9rFHV7_xIbMC3HSvcXF9ASioMr8vMZXdfRhY35zi-baJl6E-cJMZPUxrkswhb1lWChLMLBCIlfgsa1ddJXrc-kyxjxE1s9Yu3kaH7C8zg1zmsoy6m_pAck0Nc93w7eXV9an86JbEDGZ7llGN_AuG2_-b4P31_3B7eimO1yFTty8OGh5RRUFLxVSjbzMWB1pq5yk8YijTDVJGhIsJgwxlKYWZtyQJRZKxAi5Rj_SvsVQpyJQxog1mOn1e7gOjGQ_tVakEiOyolBpEnYrrY-GzE7fhBXwy5-ZpEWKcVfp4j6ZJEfOAUgIgCQHIAkqsDv55mGcYOPP2VslRkkhbMOES-cM5jWlKrBX4vYx_PtqG_-bvglz3EW05G8wWzAzGjzhNpkkI1OFaRUfVWG23jhsxK49ujppUttonrXPq_n-fAeOEd54
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gAXyq-60IIPcAIL4p9NcqhQKbva0u5qhVqpt2DHE5Dobtpuqoobr8HL9GH6JIy9Thcq0VtPkZzEijyTmbFnvvkAXpnKZZV077mqUHBFDphbNJp3LaJHMEuXebzzcNQdHKjPh_pwCS5aLIwvq2xtYjDUri79Gfk7oX3GT3Sz7MPxCfesUT672lJomEit4DZDi7EI7NjFn-e0hZtt7nwieb8Wot_b3x7wyDLAS6mzhlfWmdy4zGuiyAXq0pAmIn22TVNMte2mlbAUqaQaMUdhMMlN4jA1pVSZtZLmvQMrSqqcNn8rH3uj8Ze_kJmBFJT2UL6-SMkI2wngPX8iS6PCJ6OllFz96xoX8e61FG3wfP0HcD-GrGxrrmMPYQmnj2C1pYNg0To8hpOx8ZVefsy37phjIlldsXFv2N9mgXOHea_pGI0PzCnZF7qc_5hd_vrNarJdkwgKZWbqmGnqCZuv8LWbR99IMM33yewJHNzKWj-F5Wk9xTVgZIdK52SpMaeIDjNDhsdpl6ClEDixaQeSdjGLMrY796wbR8VVo-YggIIEUAQBFKoDb67eOZ43-7jx6fVWRkX88WfFQk078LaV2-L2_2d7dvNsL-HuYH-4V-ztjHafwz3hK2vCWdA6LDenZ7hBoVFjX0T9Y_D1tlX-D6brIMk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6KsPnCDCGLHWY4VEJWt6oFK3CI7ngCiTaAN4spv8Ht8CeMspSBA4hTJ2yHP4xl75s0QsicT7SdcH1lOAsxyUAFbCqSwXAVgGMxc-4bvfNVx2z3n_EbcTLD4i2j32iVZchpMlqY0P3zUyeGY-GZeM_EazIwjl3NuOdNkxjGJEnBH91hrghlZFOXEO4yJ73F4RZv5eY2vqunT3vzmIi00T7hI5iuTkbZKjJfIFKTLZKEux0Ar6VwhT11pIq1Mm0mdUXISaZbQ7ulVeEyLmjfUaC1Nsb0thyjf-Hl5GL2_vtEMz45BRcqkMtUUb-MDWgrCt87-bTa8z-8Go1XSC0-vj9tWVVHBirnwcytRWgZS-0bqWMBAxBKlDhAi5XngCeV6CVNolXkCIAAmwQ6krcGTMXd8pfgaaaRZCuuE4jkQa81jAQFaVOBLFHwttA0KTVBbeU1i1z8ziqt046bqRT8aJ0ouAIgQgKgAIHKaZH8857FMtvHn6K0ao6gSvFHEhHEMM9f3m-Sgxu2z-_fVNv43fJfMdk_C6PKsc7FJ5pgJdCmeZrZIIx8-wzZaKrnaKTbjB-bB4Bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+of+PEMFC+model+based+on+Harris+Hawks%E2%80%99+optimization+and+atom+search+optimization+algorithms&rft.jtitle=Neural+computing+%26+applications&rft.au=Mossa%2C+Mahmoud+A.&rft.au=Kamel%2C+Omar+Makram&rft.au=Sultan%2C+Hamdy+M.&rft.au=Diab%2C+Ahmed+A.+Zaki&rft.date=2021-06-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=11&rft.spage=5555&rft.epage=5570&rft_id=info:doi/10.1007%2Fs00521-020-05333-4&rft.externalDocID=10_1007_s00521_020_05333_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon