The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation
This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equ...
Saved in:
Published in | Chinese physics B Vol. 20; no. 1; pp. 69 - 75 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/20/1/010205 |
Cover
Abstract | This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations. |
---|---|
AbstractList | This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations. |
Author | 左进明 张耀明 |
AuthorAffiliation | School of Science, Shandong University of Technology, Zibo 255049, China |
Author_xml | – sequence: 1 fullname: 左进明 张耀明 |
BookMark | eNqNkE9PwyAYh4mZiXP6EUyIZ2uhtIzGk1vUmSzxMs-EFmiZXemgPfjtZX_iYVmil5fk5XleXn7XYNTaVgFwh9EjRozFmE7TCKOMxgmKcYwwSlB2Acahsogwko7A-Je5AtferxGigSJjsF7VCi6Ms72AhWlMq4SDG9XXVkJtHezDdWmHrlESzgZXKeeh2g6iN7aFopV7oDZVHVknlYMzO3gfpvhtdIrfgEstGq9uj-cEfL6-rOaLaPnx9j5_XkYlyVgfaVQkWOOS4oKVmMpcsZxmRZpjpFhSFkX4M0FM4qlmJLQ1nRY0FVpKloVKyQRkh7mls947pXnnzEa4b44R3wXGd2HwXRg8CR1-CCx4Tydeafr95r0TpvnTRgfb2O7fDz6cUc6hvJM64PfH_WrbVlvTVrwQ5Zc2jeKEkjRPGSE_M6Oa6g |
CitedBy_id | crossref_primary_10_3934_dcdss_2024196 crossref_primary_10_7498_aps_62_160203 crossref_primary_10_1142_S0217984922501378 crossref_primary_10_1155_2022_3844031 crossref_primary_10_1142_S0217979219502552 crossref_primary_10_1080_17455030_2021_1953190 crossref_primary_10_1007_s11082_023_05744_2 crossref_primary_10_1007_s11082_022_03830_5 crossref_primary_10_1088_0256_307X_28_8_080201 crossref_primary_10_1016_j_jmaa_2023_127695 crossref_primary_10_1016_j_ijleo_2023_171457 crossref_primary_10_7498_aps_64_010201 crossref_primary_10_1016_j_molliq_2014_04_040 crossref_primary_10_1007_s12043_021_02266_y crossref_primary_10_1007_s12648_018_1201_9 crossref_primary_10_1007_s11082_024_06424_5 crossref_primary_10_1007_s00033_023_01956_4 crossref_primary_10_1007_s11071_024_10685_w crossref_primary_10_1088_1674_1056_23_9_090204 crossref_primary_10_7498_aps_62_090204 crossref_primary_10_1063_5_0160534 crossref_primary_10_1007_s11082_023_05816_3 crossref_primary_10_1142_S0217979223502879 crossref_primary_10_29002_asujse_422554 crossref_primary_10_1088_1674_1056_22_5_050509 crossref_primary_10_1002_mma_10063 crossref_primary_10_1016_j_joes_2017_08_006 crossref_primary_10_1016_j_padiff_2021_100033 crossref_primary_10_1155_2020_5840920 crossref_primary_10_1016_j_aml_2022_108094 crossref_primary_10_1088_1674_1056_22_8_084209 crossref_primary_10_1088_1674_1056_20_12_120202 crossref_primary_10_3390_math8060908 crossref_primary_10_51537_chaos_1320430 crossref_primary_10_1007_s11071_021_07076_w crossref_primary_10_7498_aps_63_230202 crossref_primary_10_1080_17455030_2016_1158885 crossref_primary_10_1088_1402_4896_acc141 crossref_primary_10_1155_2021_5258692 crossref_primary_10_3390_fractalfract9010031 crossref_primary_10_1002_mma_6628 crossref_primary_10_1007_s00366_020_01007_w crossref_primary_10_1007_s12346_021_00541_2 crossref_primary_10_1142_S0217984925500113 crossref_primary_10_1088_1674_1056_22_3_030210 crossref_primary_10_1155_2022_2179375 |
Cites_doi | 10.1143/PTP.52.1498 10.1143/JPSJ.33.1456 10.1088/0253-6102/53/5/05 10.1016/j.physleta.2007.07.051 10.1016/j.amc.2009.06.011 10.1088/1674-1056/18/2/004 10.1017/CBO9780511543043 10.1016/j.na.2009.06.066 10.1103/PhysRevLett.27.1192 10.1016/j.chaos.2006.03.020 10.1143/JPSJ.33.1459 10.1143/JPSJ.52.744 10.7498/aps.47.353 10.7498/aps.52.2359 10.7498/aps.56.3064 10.1143/PTP.51.1355 10.1016/j.amc.2009.01.071 10.1088/1674-1056/18/8/013 10.1088/1674-1056/17/7/002 10.1016/j.na.2009.08.012 10.1016/0375-9601(96)00283-6 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/1674-1056/20/1/010205 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation |
EISSN | 2058-3834 |
EndPage | 75 |
ExternalDocumentID | 10_1088_1674_1056_20_1_010205 36349483 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AAPBV AATNI ABHWH ABPTK ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CDYEO CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 UCJ W28 ~WA UNR -SA -S~ AAYXX ABJNI ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- TCJ TGP U1G U5K |
ID | FETCH-LOGICAL-c358t-f0b21f1c61b8c16d9e8965b4910e82cbb108308d17f83b49f67b64afdd85afd63 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu Apr 24 22:52:15 EDT 2025 Tue Jul 01 03:59:53 EDT 2025 Mon May 13 15:46:22 EDT 2019 Tue Nov 10 14:20:20 EST 2020 Thu Nov 24 20:34:00 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-f0b21f1c61b8c16d9e8965b4910e82cbb108308d17f83b49f67b64afdd85afd63 |
Notes | coupled Burgers equation, high-order Boussinesq-Burgers equation, Hirota's bilinear method O241.82 O411.1 11-5639/O4 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_20_1_010205 iop_primary_10_1088_1674_1056_20_1_010205 chongqing_backfile_36349483 crossref_citationtrail_10_1088_1674_1056_20_1_010205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011 20110101 2011-01-00 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2011 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 11 13 Deng X J (22) 2009; 18 14 Zhaqilao (10) 2008; 17 15 17 19 Wu J P (12) 2010; 53 Kadomtsev B B (7) 1970; 15 1 2 3 4 5 Yang H J (18) 2007; 56 6 8 Li W A (21) 2009; 18 Fan E G (16) 1998; 47 Zhang J F (9) 2003; 52 20 |
References_xml | – ident: 1 doi: 10.1143/PTP.52.1498 – ident: 4 doi: 10.1143/JPSJ.33.1456 – volume: 53 start-page: 812 issn: 0253-6102 year: 2010 ident: 12 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/53/5/05 – ident: 19 doi: 10.1016/j.physleta.2007.07.051 – ident: 20 doi: 10.1016/j.amc.2009.06.011 – volume: 18 start-page: 400 issn: 1674-1056 year: 2009 ident: 21 publication-title: Chin. Phys. doi: 10.1088/1674-1056/18/2/004 – ident: 2 doi: 10.1017/CBO9780511543043 – ident: 13 doi: 10.1016/j.na.2009.06.066 – ident: 3 doi: 10.1103/PhysRevLett.27.1192 – ident: 17 doi: 10.1016/j.chaos.2006.03.020 – ident: 5 doi: 10.1143/JPSJ.33.1459 – ident: 8 doi: 10.1143/JPSJ.52.744 – volume: 15 start-page: 539 year: 1970 ident: 7 publication-title: Sov. Phys. Dokl. – volume: 47 start-page: 353 year: 1998 ident: 16 publication-title: Acta Phys. Sin. doi: 10.7498/aps.47.353 – volume: 52 start-page: 2359 issn: 0372-736X year: 2003 ident: 9 publication-title: Acta Phys. Sin. doi: 10.7498/aps.52.2359 – volume: 56 start-page: 3064 issn: 0372-736X year: 2007 ident: 18 publication-title: Acta Phys. Sin. doi: 10.7498/aps.56.3064 – ident: 6 doi: 10.1143/PTP.51.1355 – ident: 11 doi: 10.1016/j.amc.2009.01.071 – volume: 18 start-page: 3169 issn: 1674-1056 year: 2009 ident: 22 publication-title: Chin. Phys. doi: 10.1088/1674-1056/18/8/013 – volume: 17 start-page: 2333 issn: 1674-1056 year: 2008 ident: 10 publication-title: Chin. Phys. doi: 10.1088/1674-1056/17/7/002 – ident: 14 doi: 10.1016/j.na.2009.08.012 – ident: 15 doi: 10.1016/0375-9601(96)00283-6 |
SSID | ssj0061023 |
Score | 2.1039257 |
Snippet | This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two... |
SourceID | crossref iop chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 69 |
SubjectTerms | Burgers方程 双线性方法 可积方程 |
Title | The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation |
URI | http://lib.cqvip.com/qk/85823A/20111/36349483.html http://iopscience.iop.org/1674-1056/20/1/010205 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6qIHjxLdYXe9CDh61Nst1ujlYsVfBxUPAWsi-VlqSP9OLJH-Ev9Jc4kzRitWCFEMIyk5Cdyc432d1vCDkKQ16HsddnFqAb487nTFkbMz8UYRzWjZEBbhS-vhGdB3712HiskLIy3Uvan4z8NbgsZvJFkzOsDw95-ql3ihxoOWcpxH706Mvbu3LkFUhDgAlWqVHu2IEkb-ZdkE_hOU2eBhAlpuLSAjz8W5hpr5K7crNOsbqkWxtnqqZff3M3zvsGa2RlAjnpWeEj66Rikw2ylC_91KNN0gNPoZ2XYZrFFFfKJuD7tCgsTQHRUkCIVKfjfs8a2so3UY-oHRQM4TROTC6ArMcsp_GkrXQ8yhfTDz7e3n8qbJGH9sX9eYdNajAwHTRkxlxd-Z7ztPCU1J4woZWhaCgOKMNKXysFvRvUpfGaTgbQ7ERTCR47MHIDziLYJotJmtgdQp0P2bYBROfgw4wR-xmB-ARUBPe0rpK9L2tADNddZKaKAoEEOjKoEl7aJ9IT-nKsotGL8ml0KSPs5gi7OfKhJSq6uUpqX2r9gr_jL4UTsNu8ssdTsrNkor5xu_-45x5ZLn5b47FPFrPh2B4A7snUYe7sn-0o8oA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IRAXaHmIpVB8gAMH7-bpOkdKWS2v0gOVerPiF6Cukt1u9sKJH9Ff2F_CTJys2gpUEFIURZYnsmdsz-dk5jPAi6LIIlx7E-4QuvHMJxnXzpU8KURRFpG1MqVE4U-HYnKcvT_JT9bgYJULU8-6pX-Ij4EoOKiwC4iTI4qb53RgPG7cR_GISNGifDSzfh028xQdKKXxfT7q12NB5AS07erF-jyeP72KWBa-1dXXOfqOK95qHVt0yfmM74Hrmx1iTk6Hy0YPzY9rjI7_268tuNuhU_Y6yGzDmqvuw602StQsHsAUBxWbfD-rm5JRUG2F04SFM6gZgl-GYJKZejmbOsv223zrBXPzQCbOysq2FYggmbeMn2y_Xi7auPv5xc_z6wIP4Xj89subCe-Oa-AmzWXDfaST2MdGxFqaWNjCyULkOkNA4mRitMZeppG08Z6XKRZ7sadFVnocDzneRfoINqq6co-B-QQ35hbBn8c5XBJMtIKgDIqILDZmADsrE6G7N6dEYqXQ9kR2kw4g642mTMd0TgduTFX7x11KRapWpGqVYIkKqh7AcCU2C1QfNwm8Qlv-bd2XV-r-ro5CWz_5h3c-h9tHB2P18d3hhx24Ez520_UUNpqzpXuGaKnRu-1k-AXDBgJ6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Hirota+bilinear+method+for+the+coupled+Burgers+equation+and+the+high-order+Boussinesq-Burgers+equation&rft.jtitle=Chinese+physics+B&rft.au=%E5%B7%A6%E8%BF%9B%E6%98%8E+%E5%BC%A0%E8%80%80%E6%98%8E&rft.date=2011&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=20&rft.issue=1&rft.spage=69&rft.epage=75&rft_id=info:doi/10.1088%2F1674-1056%2F20%2F1%2F010205&rft.externalDocID=36349483 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |