The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation

This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equ...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 1; pp. 69 - 75
Main Author 左进明 张耀明
Format Journal Article
LanguageEnglish
Published IOP Publishing 2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/20/1/010205

Cover

Abstract This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.
AbstractList This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.
Author 左进明 张耀明
AuthorAffiliation School of Science, Shandong University of Technology, Zibo 255049, China
Author_xml – sequence: 1
  fullname: 左进明 张耀明
BookMark eNqNkE9PwyAYh4mZiXP6EUyIZ2uhtIzGk1vUmSzxMs-EFmiZXemgPfjtZX_iYVmil5fk5XleXn7XYNTaVgFwh9EjRozFmE7TCKOMxgmKcYwwSlB2Acahsogwko7A-Je5AtferxGigSJjsF7VCi6Ms72AhWlMq4SDG9XXVkJtHezDdWmHrlESzgZXKeeh2g6iN7aFopV7oDZVHVknlYMzO3gfpvhtdIrfgEstGq9uj-cEfL6-rOaLaPnx9j5_XkYlyVgfaVQkWOOS4oKVmMpcsZxmRZpjpFhSFkX4M0FM4qlmJLQ1nRY0FVpKloVKyQRkh7mls947pXnnzEa4b44R3wXGd2HwXRg8CR1-CCx4Tydeafr95r0TpvnTRgfb2O7fDz6cUc6hvJM64PfH_WrbVlvTVrwQ5Zc2jeKEkjRPGSE_M6Oa6g
CitedBy_id crossref_primary_10_3934_dcdss_2024196
crossref_primary_10_7498_aps_62_160203
crossref_primary_10_1142_S0217984922501378
crossref_primary_10_1155_2022_3844031
crossref_primary_10_1142_S0217979219502552
crossref_primary_10_1080_17455030_2021_1953190
crossref_primary_10_1007_s11082_023_05744_2
crossref_primary_10_1007_s11082_022_03830_5
crossref_primary_10_1088_0256_307X_28_8_080201
crossref_primary_10_1016_j_jmaa_2023_127695
crossref_primary_10_1016_j_ijleo_2023_171457
crossref_primary_10_7498_aps_64_010201
crossref_primary_10_1016_j_molliq_2014_04_040
crossref_primary_10_1007_s12043_021_02266_y
crossref_primary_10_1007_s12648_018_1201_9
crossref_primary_10_1007_s11082_024_06424_5
crossref_primary_10_1007_s00033_023_01956_4
crossref_primary_10_1007_s11071_024_10685_w
crossref_primary_10_1088_1674_1056_23_9_090204
crossref_primary_10_7498_aps_62_090204
crossref_primary_10_1063_5_0160534
crossref_primary_10_1007_s11082_023_05816_3
crossref_primary_10_1142_S0217979223502879
crossref_primary_10_29002_asujse_422554
crossref_primary_10_1088_1674_1056_22_5_050509
crossref_primary_10_1002_mma_10063
crossref_primary_10_1016_j_joes_2017_08_006
crossref_primary_10_1016_j_padiff_2021_100033
crossref_primary_10_1155_2020_5840920
crossref_primary_10_1016_j_aml_2022_108094
crossref_primary_10_1088_1674_1056_22_8_084209
crossref_primary_10_1088_1674_1056_20_12_120202
crossref_primary_10_3390_math8060908
crossref_primary_10_51537_chaos_1320430
crossref_primary_10_1007_s11071_021_07076_w
crossref_primary_10_7498_aps_63_230202
crossref_primary_10_1080_17455030_2016_1158885
crossref_primary_10_1088_1402_4896_acc141
crossref_primary_10_1155_2021_5258692
crossref_primary_10_3390_fractalfract9010031
crossref_primary_10_1002_mma_6628
crossref_primary_10_1007_s00366_020_01007_w
crossref_primary_10_1007_s12346_021_00541_2
crossref_primary_10_1142_S0217984925500113
crossref_primary_10_1088_1674_1056_22_3_030210
crossref_primary_10_1155_2022_2179375
Cites_doi 10.1143/PTP.52.1498
10.1143/JPSJ.33.1456
10.1088/0253-6102/53/5/05
10.1016/j.physleta.2007.07.051
10.1016/j.amc.2009.06.011
10.1088/1674-1056/18/2/004
10.1017/CBO9780511543043
10.1016/j.na.2009.06.066
10.1103/PhysRevLett.27.1192
10.1016/j.chaos.2006.03.020
10.1143/JPSJ.33.1459
10.1143/JPSJ.52.744
10.7498/aps.47.353
10.7498/aps.52.2359
10.7498/aps.56.3064
10.1143/PTP.51.1355
10.1016/j.amc.2009.01.071
10.1088/1674-1056/18/8/013
10.1088/1674-1056/17/7/002
10.1016/j.na.2009.08.012
10.1016/0375-9601(96)00283-6
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1088/1674-1056/20/1/010205
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation
EISSN 2058-3834
EndPage 75
ExternalDocumentID 10_1088_1674_1056_20_1_010205
36349483
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AAPBV
AATNI
ABHWH
ABPTK
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CDYEO
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
UCJ
W28
~WA
UNR
-SA
-S~
AAYXX
ABJNI
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TCJ
TGP
U1G
U5K
ID FETCH-LOGICAL-c358t-f0b21f1c61b8c16d9e8965b4910e82cbb108308d17f83b49f67b64afdd85afd63
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu Apr 24 22:52:15 EDT 2025
Tue Jul 01 03:59:53 EDT 2025
Mon May 13 15:46:22 EDT 2019
Tue Nov 10 14:20:20 EST 2020
Thu Nov 24 20:34:00 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-f0b21f1c61b8c16d9e8965b4910e82cbb108308d17f83b49f67b64afdd85afd63
Notes coupled Burgers equation, high-order Boussinesq-Burgers equation, Hirota's bilinear method
O241.82
O411.1
11-5639/O4
PageCount 7
ParticipantIDs crossref_primary_10_1088_1674_1056_20_1_010205
iop_primary_10_1088_1674_1056_20_1_010205
chongqing_backfile_36349483
crossref_citationtrail_10_1088_1674_1056_20_1_010205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011
20110101
2011-01-00
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2011
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
13
Deng X J (22) 2009; 18
14
Zhaqilao (10) 2008; 17
15
17
19
Wu J P (12) 2010; 53
Kadomtsev B B (7) 1970; 15
1
2
3
4
5
Yang H J (18) 2007; 56
6
8
Li W A (21) 2009; 18
Fan E G (16) 1998; 47
Zhang J F (9) 2003; 52
20
References_xml – ident: 1
  doi: 10.1143/PTP.52.1498
– ident: 4
  doi: 10.1143/JPSJ.33.1456
– volume: 53
  start-page: 812
  issn: 0253-6102
  year: 2010
  ident: 12
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/53/5/05
– ident: 19
  doi: 10.1016/j.physleta.2007.07.051
– ident: 20
  doi: 10.1016/j.amc.2009.06.011
– volume: 18
  start-page: 400
  issn: 1674-1056
  year: 2009
  ident: 21
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/18/2/004
– ident: 2
  doi: 10.1017/CBO9780511543043
– ident: 13
  doi: 10.1016/j.na.2009.06.066
– ident: 3
  doi: 10.1103/PhysRevLett.27.1192
– ident: 17
  doi: 10.1016/j.chaos.2006.03.020
– ident: 5
  doi: 10.1143/JPSJ.33.1459
– ident: 8
  doi: 10.1143/JPSJ.52.744
– volume: 15
  start-page: 539
  year: 1970
  ident: 7
  publication-title: Sov. Phys. Dokl.
– volume: 47
  start-page: 353
  year: 1998
  ident: 16
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.47.353
– volume: 52
  start-page: 2359
  issn: 0372-736X
  year: 2003
  ident: 9
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.52.2359
– volume: 56
  start-page: 3064
  issn: 0372-736X
  year: 2007
  ident: 18
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.56.3064
– ident: 6
  doi: 10.1143/PTP.51.1355
– ident: 11
  doi: 10.1016/j.amc.2009.01.071
– volume: 18
  start-page: 3169
  issn: 1674-1056
  year: 2009
  ident: 22
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/18/8/013
– volume: 17
  start-page: 2333
  issn: 1674-1056
  year: 2008
  ident: 10
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/17/7/002
– ident: 14
  doi: 10.1016/j.na.2009.08.012
– ident: 15
  doi: 10.1016/0375-9601(96)00283-6
SSID ssj0061023
Score 2.1039257
Snippet This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two...
SourceID crossref
iop
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 69
SubjectTerms Burgers方程
双线性方法
可积方程
Title The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq-Burgers equation
URI http://lib.cqvip.com/qk/85823A/20111/36349483.html
http://iopscience.iop.org/1674-1056/20/1/010205
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6qIHjxLdYXe9CDh61Nst1ujlYsVfBxUPAWsi-VlqSP9OLJH-Ev9Jc4kzRitWCFEMIyk5Cdyc432d1vCDkKQ16HsddnFqAb487nTFkbMz8UYRzWjZEBbhS-vhGdB3712HiskLIy3Uvan4z8NbgsZvJFkzOsDw95-ql3ihxoOWcpxH706Mvbu3LkFUhDgAlWqVHu2IEkb-ZdkE_hOU2eBhAlpuLSAjz8W5hpr5K7crNOsbqkWxtnqqZff3M3zvsGa2RlAjnpWeEj66Rikw2ylC_91KNN0gNPoZ2XYZrFFFfKJuD7tCgsTQHRUkCIVKfjfs8a2so3UY-oHRQM4TROTC6ArMcsp_GkrXQ8yhfTDz7e3n8qbJGH9sX9eYdNajAwHTRkxlxd-Z7ztPCU1J4woZWhaCgOKMNKXysFvRvUpfGaTgbQ7ERTCR47MHIDziLYJotJmtgdQp0P2bYBROfgw4wR-xmB-ARUBPe0rpK9L2tADNddZKaKAoEEOjKoEl7aJ9IT-nKsotGL8ml0KSPs5gi7OfKhJSq6uUpqX2r9gr_jL4UTsNu8ssdTsrNkor5xu_-45x5ZLn5b47FPFrPh2B4A7snUYe7sn-0o8oA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IRAXaHmIpVB8gAMH7-bpOkdKWS2v0gOVerPiF6Cukt1u9sKJH9Ff2F_CTJys2gpUEFIURZYnsmdsz-dk5jPAi6LIIlx7E-4QuvHMJxnXzpU8KURRFpG1MqVE4U-HYnKcvT_JT9bgYJULU8-6pX-Ij4EoOKiwC4iTI4qb53RgPG7cR_GISNGifDSzfh028xQdKKXxfT7q12NB5AS07erF-jyeP72KWBa-1dXXOfqOK95qHVt0yfmM74Hrmx1iTk6Hy0YPzY9rjI7_268tuNuhU_Y6yGzDmqvuw602StQsHsAUBxWbfD-rm5JRUG2F04SFM6gZgl-GYJKZejmbOsv223zrBXPzQCbOysq2FYggmbeMn2y_Xi7auPv5xc_z6wIP4Xj89subCe-Oa-AmzWXDfaST2MdGxFqaWNjCyULkOkNA4mRitMZeppG08Z6XKRZ7sadFVnocDzneRfoINqq6co-B-QQ35hbBn8c5XBJMtIKgDIqILDZmADsrE6G7N6dEYqXQ9kR2kw4g642mTMd0TgduTFX7x11KRapWpGqVYIkKqh7AcCU2C1QfNwm8Qlv-bd2XV-r-ro5CWz_5h3c-h9tHB2P18d3hhx24Ez520_UUNpqzpXuGaKnRu-1k-AXDBgJ6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Hirota+bilinear+method+for+the+coupled+Burgers+equation+and+the+high-order+Boussinesq-Burgers+equation&rft.jtitle=Chinese+physics+B&rft.au=%E5%B7%A6%E8%BF%9B%E6%98%8E+%E5%BC%A0%E8%80%80%E6%98%8E&rft.date=2011&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=20&rft.issue=1&rft.spage=69&rft.epage=75&rft_id=info:doi/10.1088%2F1674-1056%2F20%2F1%2F010205&rft.externalDocID=36349483
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg