Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems

In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named Approximate Douglas–Rachford (Ap...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 86; no. 3; pp. 621 - 636
Main Authors Díaz Millán, R., Ferreira, O. P., Ugon, J.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-5001
1573-2916
DOI10.1007/s10898-022-01264-7

Cover

Abstract In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named Approximate Douglas–Rachford (ApDR) algorithm , the CondG method is used as a subroutine to compute feasible inexact projections on the sets under consideration, and the ApDR iteration is defined based on the DR iteration. The ApDR algorithm generates two sequences, the main sequence, based on the DR iteration, and its corresponding shadow sequence. When the intersection of the feasible sets is nonempty, the main sequence converges to a fixed point of the usual DR operator, and the shadow sequence converges to the solution set. We provide some numerical experiments to illustrate the behaviour of the sequences produced by the proposed algorithm.
AbstractList In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named Approximate Douglas–Rachford (ApDR) algorithm, the CondG method is used as a subroutine to compute feasible inexact projections on the sets under consideration, and the ApDR iteration is defined based on the DR iteration. The ApDR algorithm generates two sequences, the main sequence, based on the DR iteration, and its corresponding shadow sequence. When the intersection of the feasible sets is nonempty, the main sequence converges to a fixed point of the usual DR operator, and the shadow sequence converges to the solution set. We provide some numerical experiments to illustrate the behaviour of the sequences produced by the proposed algorithm.
In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named Approximate Douglas–Rachford (ApDR) algorithm , the CondG method is used as a subroutine to compute feasible inexact projections on the sets under consideration, and the ApDR iteration is defined based on the DR iteration. The ApDR algorithm generates two sequences, the main sequence, based on the DR iteration, and its corresponding shadow sequence. When the intersection of the feasible sets is nonempty, the main sequence converges to a fixed point of the usual DR operator, and the shadow sequence converges to the solution set. We provide some numerical experiments to illustrate the behaviour of the sequences produced by the proposed algorithm.
Audience Academic
Author Ferreira, O. P.
Díaz Millán, R.
Ugon, J.
Author_xml – sequence: 1
  givenname: R.
  orcidid: 0000-0001-6384-5949
  surname: Díaz Millán
  fullname: Díaz Millán, R.
  email: r.diazmillan@deakin.edu.au
  organization: School of Information Technology, Deakin University
– sequence: 2
  givenname: O. P.
  surname: Ferreira
  fullname: Ferreira, O. P.
  organization: IME, Universidade Federal de Goiás
– sequence: 3
  givenname: J.
  surname: Ugon
  fullname: Ugon, J.
  organization: School of Information Technology, Deakin University
BookMark eNp9kMtqGzEUhkVIILbTF-hqIGslR5oZSbM0zhUMpSVZC40ujsJ45Epyk-zyDn3DPknUTCHQRdBCSJzv_Od8c3Q4htEi9JXAGQHg54mA6AQGSjEQyhrMD9CMtLzGtCPsEM2goy1uAcgxmqf0CACdaOkMfV_udjE8-63KtroI-82g0p_X3z-UfnAhmkoNmxB9fthW5Vnlp4CTzanSYfxlnytnVfK9H3x-qUqbfrDbdIKOnBqS_fLvXqD7q8u71Q1ef7u-XS3XWNetyNgoYRgHRg0hVDPXtEZ3gkFDqbKu47pv-ob2WtGmY1oIQzQDJ1hruOmo1fUCnU59S_DPvU1ZPoZ9HEukpIJyIKRmrFSdTVUbNVjpRxdyVLocY7e-bGGdL_9L3ta1KMNAAegE6BhSitbJXSx24oskIP-6lpNrWVzLd9eSF0j8B2mfVfZhLGl--BytJzSVnHFj48can1BvNw2W6A
CitedBy_id crossref_primary_10_1007_s10589_024_00592_6
Cites_doi 10.1007/s10589-019-00165-y
10.1137/0318035
10.1007/s10589-018-0040-0
10.1007/s10107-017-1160-5
10.1137/S1052623400380365
10.1016/0041-5553(66)90114-5
10.1007/s10107-014-0841-6
10.1007/s00186-019-00691-9
10.1002/nav.3800030109
10.1017/S1446181114000145
10.1109/78.782189
10.1007/s10589-021-00293-4
10.1145/3127497
10.1007/s11075-018-0604-1
10.1090/S0002-9947-1956-0084194-4
10.1109/TSP.2014.2339801
10.1007/s001860300327
10.1137/140992382
10.1016/j.cam.2016.08.009
10.1007/978-3-030-36568-4_5
10.1007/978-1-4419-9467-7
10.1080/10556788.2020.1734806
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-022-01264-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 636
ExternalDocumentID A753380620
10_1007_s10898_022_01264_7
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP180100602
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 305158/2014-7, 302473/2017-3
  funderid: http://dx.doi.org/10.13039/501100003593
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-da8d67062d112c6f45dc9860422aef97cb4b42bca2496c88d1c60f865d7d92ec3
IEDL.DBID U2A
ISSN 0925-5001
IngestDate Sat Aug 23 14:17:20 EDT 2025
Mon Oct 20 16:58:18 EDT 2025
Wed Oct 01 01:34:47 EDT 2025
Thu Apr 24 23:12:49 EDT 2025
Fri Feb 21 02:43:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Convex feasibility problem
Conditional gradient method
65K05
90C30
Frank–Wolfe algorithm
90C25
Inexact projections
Douglas–Rachford algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-da8d67062d112c6f45dc9860422aef97cb4b42bca2496c88d1c60f865d7d92ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6384-5949
PQID 2827011366
PQPubID 29930
PageCount 16
ParticipantIDs proquest_journals_2827011366
gale_infotracacademiconefile_A753380620
crossref_primary_10_1007_s10898_022_01264_7
crossref_citationtrail_10_1007_s10898_022_01264_7
springer_journals_10_1007_s10898_022_01264_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2023
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Combettes (CR7) 1999; 47
Nocedal, Wright (CR24) 2006
Fukushima, Luo, Tseng (CR16) 2002; 12
CR19
CR17
Marques Alves, Eckstein, Geremia, Melo (CR26) 2020; 75
CR10
Dunn (CR12) 1980; 18
Eckstein, Yao (CR13) 2018; 170
Gonçalves, Melo (CR18) 2017; 311
Combettes, Hawkes (CR6) 1996
Díaz Millán, Ferreira, Prudente (CR9) 2021; 80
Freund, Grigas (CR15) 2016; 155
Hesse, Luke, Neumann (CR20) 2014; 62
Rothvoss (CR28) 2017; 64
CR3
Beck, Teboulle (CR4) 2004; 59
Marques Alves, Geremia (CR25) 2019; 82
CR5
CR27
CR21
Levitin, Poljak (CR23) 1966; 6
Artacho, Campoy, Tam (CR2) 2019; 91
Frank, Wolfe (CR14) 1956; 3
Aragón Artacho, Borwein, Tam (CR1) 2014; 55
Douglas, Rachford (CR11) 1956; 82
Lan, Zhou (CR22) 2016; 26
de Oliveira, Ferreira, Silva (CR8) 2019; 72
FJA Artacho (1264_CR2) 2019; 91
J Douglas Jr (1264_CR11) 1956; 82
M Marques Alves (1264_CR26) 2020; 75
FR de Oliveira (1264_CR8) 2019; 72
PL Combettes (1264_CR6) 1996
1264_CR19
1264_CR17
R Hesse (1264_CR20) 2014; 62
T Rothvoss (1264_CR28) 2017; 64
R Díaz Millán (1264_CR9) 2021; 80
1264_CR10
J Nocedal (1264_CR24) 2006
FJ Aragón Artacho (1264_CR1) 2014; 55
G Lan (1264_CR22) 2016; 26
RM Freund (1264_CR15) 2016; 155
JC Dunn (1264_CR12) 1980; 18
ES Levitin (1264_CR23) 1966; 6
MLN Gonçalves (1264_CR18) 2017; 311
1264_CR27
M Frank (1264_CR14) 1956; 3
A Beck (1264_CR4) 2004; 59
PL Combettes (1264_CR7) 1999; 47
1264_CR21
J Eckstein (1264_CR13) 2018; 170
1264_CR5
1264_CR3
M Fukushima (1264_CR16) 2002; 12
M Marques Alves (1264_CR25) 2019; 82
References_xml – volume: 75
  start-page: 389
  year: 2020
  end-page: 422
  ident: CR26
  article-title: Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00165-y
– volume: 18
  start-page: 473
  issue: 5
  year: 1980
  end-page: 487
  ident: CR12
  article-title: Convergence rates for conditional gradient sequences generated by implicit step length rules
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0318035
– volume: 72
  start-page: 159
  issue: 1
  year: 2019
  end-page: 177
  ident: CR8
  article-title: Newton’s method with feasible inexact projections for solving constrained generalized equations
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-018-0040-0
– volume: 170
  start-page: 417
  year: 2018
  end-page: 444
  ident: CR13
  article-title: Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-017-1160-5
– volume: 12
  start-page: 436
  issue: 2
  year: 2002
  end-page: 460
  ident: CR16
  article-title: Smoothing functions for second-order-cone complementarity problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400380365
– volume: 6
  start-page: 1
  year: 1966
  end-page: 50
  ident: CR23
  article-title: Minimization methods in the presence of constraints
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(66)90114-5
– volume: 155
  start-page: 199
  issue: 1–2, Ser. A
  year: 2016
  end-page: 230
  ident: CR15
  article-title: New analysis and results for the Frank-Wolfe method
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0841-6
– ident: CR10
– volume: 91
  start-page: 201
  issue: 2
  year: 2019
  end-page: 240
  ident: CR2
  article-title: The Douglas-Rachford algorithm for convex and nonconvex feasibility problems
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-019-00691-9
– year: 2006
  ident: CR24
  publication-title: Numerical optimization. Springer Series in Operations Research and Financial Engineering
– start-page: 155
  year: 1996
  end-page: 270
  ident: CR6
  article-title: The convex feasibility problem in image recovery
  publication-title: Advances in imaging and electron physics
– volume: 3
  start-page: 95
  year: 1956
  end-page: 110
  ident: CR14
  article-title: An algorithm for quadratic programming
  publication-title: Nav. Res. Log.
  doi: 10.1002/nav.3800030109
– ident: CR27
– ident: CR21
– ident: CR19
– volume: 55
  start-page: 299
  issue: 4
  year: 2014
  end-page: 326
  ident: CR1
  article-title: Douglas-Rachford feasibility methods for matrix completion problems
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181114000145
– ident: CR3
– volume: 47
  start-page: 2460
  year: 1999
  end-page: 2468
  ident: CR7
  article-title: Hard-constrained inconsistent signal feasibility problems
  publication-title: EEE Trans. Signal Process.
  doi: 10.1109/78.782189
– volume: 80
  start-page: 245
  year: 2021
  end-page: 269
  ident: CR9
  article-title: Alternating conditional gradient method for convex feasibility problems
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-021-00293-4
– volume: 64
  start-page: Art. 41, 19
  issue: 6
  year: 2017
  ident: CR28
  article-title: The matching polytope has exponential extension complexity
  publication-title: J. ACM
  doi: 10.1145/3127497
– ident: CR17
– volume: 82
  start-page: 263
  year: 2019
  end-page: 295
  ident: CR25
  article-title: Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0604-1
– volume: 82
  start-page: 421
  year: 1956
  end-page: 439
  ident: CR11
  article-title: On the numerical solution of heat conduction problems in two and three space variables
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1956-0084194-4
– ident: CR5
– volume: 62
  start-page: 4868
  issue: 18
  year: 2014
  end-page: 4881
  ident: CR20
  article-title: Alternating projections and Douglas-Rachford for sparse affine feasibility
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2339801
– volume: 59
  start-page: 235
  issue: 2
  year: 2004
  end-page: 247
  ident: CR4
  article-title: A conditional gradient method with linear rate of convergence for solving convex linear systems
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s001860300327
– volume: 26
  start-page: 1379
  issue: 2
  year: 2016
  end-page: 1409
  ident: CR22
  article-title: Conditional gradient sliding for convex optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/140992382
– volume: 311
  start-page: 473
  year: 2017
  end-page: 483
  ident: CR18
  article-title: A Newton conditional gradient method for constrained nonlinear systems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.08.009
– ident: 1264_CR10
  doi: 10.1007/978-3-030-36568-4_5
– volume: 55
  start-page: 299
  issue: 4
  year: 2014
  ident: 1264_CR1
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181114000145
– volume: 82
  start-page: 263
  year: 2019
  ident: 1264_CR25
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-018-0604-1
– volume: 82
  start-page: 421
  year: 1956
  ident: 1264_CR11
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1956-0084194-4
– ident: 1264_CR27
– ident: 1264_CR21
– volume: 91
  start-page: 201
  issue: 2
  year: 2019
  ident: 1264_CR2
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-019-00691-9
– ident: 1264_CR5
– volume: 64
  start-page: Art. 41, 19
  issue: 6
  year: 2017
  ident: 1264_CR28
  publication-title: J. ACM
  doi: 10.1145/3127497
– volume: 80
  start-page: 245
  year: 2021
  ident: 1264_CR9
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-021-00293-4
– volume: 170
  start-page: 417
  year: 2018
  ident: 1264_CR13
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-017-1160-5
– volume: 6
  start-page: 1
  year: 1966
  ident: 1264_CR23
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(66)90114-5
– volume: 18
  start-page: 473
  issue: 5
  year: 1980
  ident: 1264_CR12
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0318035
– volume: 59
  start-page: 235
  issue: 2
  year: 2004
  ident: 1264_CR4
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s001860300327
– volume-title: Numerical optimization. Springer Series in Operations Research and Financial Engineering
  year: 2006
  ident: 1264_CR24
– volume: 12
  start-page: 436
  issue: 2
  year: 2002
  ident: 1264_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400380365
– volume: 26
  start-page: 1379
  issue: 2
  year: 2016
  ident: 1264_CR22
  publication-title: SIAM J. Optim.
  doi: 10.1137/140992382
– volume: 3
  start-page: 95
  year: 1956
  ident: 1264_CR14
  publication-title: Nav. Res. Log.
  doi: 10.1002/nav.3800030109
– volume: 72
  start-page: 159
  issue: 1
  year: 2019
  ident: 1264_CR8
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-018-0040-0
– volume: 75
  start-page: 389
  year: 2020
  ident: 1264_CR26
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00165-y
– volume: 311
  start-page: 473
  year: 2017
  ident: 1264_CR18
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.08.009
– ident: 1264_CR3
  doi: 10.1007/978-1-4419-9467-7
– volume: 47
  start-page: 2460
  year: 1999
  ident: 1264_CR7
  publication-title: EEE Trans. Signal Process.
  doi: 10.1109/78.782189
– volume: 155
  start-page: 199
  issue: 1–2, Ser. A
  year: 2016
  ident: 1264_CR15
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0841-6
– volume: 62
  start-page: 4868
  issue: 18
  year: 2014
  ident: 1264_CR20
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2339801
– ident: 1264_CR19
  doi: 10.1080/10556788.2020.1734806
– start-page: 155
  volume-title: Advances in imaging and electron physics
  year: 1996
  ident: 1264_CR6
– ident: 1264_CR17
SSID ssj0009852
Score 2.3711464
Snippet In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient...
In this paper, we propose a new algorithm combining the Douglas-Rachford (DR) algorithm and the Frank-Wolfe algorithm, also known as the conditional gradient...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 621
SubjectTerms Algorithms
Approximation
Computer Science
Convergence
Feasibility
Iterative methods
Linear programming
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
Shadows
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QUOiBYQC6XyAQkQWLh5OPYBVVvUqkJiBRWVerP8bJHKbtsEUW78B_4hv6QzWYflIXqMEjvxjD2eiWe-D-BJEjImFyXXIgle2bqg893Ace-JwZXC6h5d_91U7h9Wb4_qoxWYDrUwlFY52MTeUIe5p3_krzA0aAQRkMjts3NOrFF0ujpQaNhMrRBe9xBjN2C1IGSsEazu7E7fHyxheFXPwSN0UfMaLXQuo8nFdIrKzQpKVUA3gTd_bFV_G-x_Tk77DWnvDtzOniSbLFS_Bitxtg63fsMXXIe1vHJb9izDSz-_Cx8mBCN--Qld1ciy__zz-48D608o0Z3Z02Mcd3fymeEl677OeRu7lvXp6ZcsRZsTar-xTEbT3oPDvd2Pb_Z5JlbgvqxVx4NVQTZCFgG9LS9TVQevlSQ4MBuTbryrXFU4bzE2k16psOWlSErWoQm6iL68D6PZfBYfAHNOViJhWFJrR86VTiWahaBFCNjYFWPYGmRofEYdJ_KLU7PESya5G5S76eVumjG8-NXmbIG5ce3TT0k1hhYk9uxtrivA7yNoKzPBgKxUOFgxho1Beyav1NYs59UYXg4aXd7-_3sfXt_bI7hJzPSLzN4NGHUXX-Jj9F86t5kn5RXKqOri
  priority: 102
  providerName: ProQuest
Title Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems
URI https://link.springer.com/article/10.1007/s10898-022-01264-7
https://www.proquest.com/docview/2827011366
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: AMVHM
  dateStart: 20080329
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: AFBBN
  dateStart: 19910301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-2916
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gKHQhcQW8rKByRAEMlNYsc-BrTbCtQKKlYqJ8tPWqndrZog2lv_A_-QX8I463TLU-IUWRk7j7HnoZn5BuBpoNwH43kmaaBZqVke47suQ93jnSmolh26_t4-352Wbw_ZYSoKa_ps9z4k2UnqG8VuIpaD5TGVANV4Vq3AGotwXriLp3m9hNoVXZ8dKnOWMZTCqVTmz2v8pI5-Fcq_RUc7pTO5B-vJWiT1gr0bcMvPBnC378RA0sEcwJ0bsII42rvGYm0GsJGoGvI8YUy_uA8f6oglfnGMRJ4kI_r71bcDbY9itjvRJ5_n58ft0SnBIWm_zrPGtw3pctQvSPA6ZdVektSRpnkA08n445vdLHVXyGzBRJs5LRyvKM8dmlyWh5I5KwWPmGDaB1lZU5oyN1ajg8atEG7bchoEZ65yMve2eAirs_nMPwJiDC9pQN-ESRMtLBkKlA1OUudwssmHsN3_ZGUT9HjsgHGilqDJkTEKGaM6xqhqCC-v55wtgDf-Sf0s8k7FU4krW52KC_D9Ir6VqtErKwR-LB3CVs9elY5ro9DvrGjsbsOH8Kpn-fL235-7-X_kj-F2bFe_SPfdgtX2_It_gkZNa0awIiY7I1irdz69G-P19Xj__cGo29k_AIPl8Eo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gA9VLSAurSADyBAYOE6iRMfKrRAqy1tV1C1Um_GvxSp7BYS1PbGO_A-PAxPwjjrsPyI3nqMEjvJjDPzTTzzDcD9wIQPxgsqWWA01wWP-7uOou_xzmRMy5Zdf3coBgf568PicAa-d7UwMa2ys4mtoXZjG_-RP8PQoGSxAYl4fvKJxq5RcXe1a6GhU2sFt95SjKXCjm1_foohXL2-9Qr1_YDzzY39lwOaugxQmxVVQ52unCiZ4A6hhxUhL5yVlYjcWNoHWVqTm5wbqzFQEbaq3JoVLFSicKWT3NsM570Cc3mWSwz-5l5sDN_sTWl_q7bnD5O8oAV6hFS2k4r3qljexmNqBMISWv7hGv92EP_s1LYOcPM6LCTkSvqTpbYIM360BPO_8RkuwWKyFDV5lOisH9-At_1IW372AaGxJwmv__j6bU_bo5hYT_Txe5Rzc_SR4CFpTse09k1N2nT4MxK8Tgm85yQ1v6lvwsGliPgWzI7GI78MxBiRs4BhUCFNBHMyZGiGnGTO4WDDe7DWyVDZxHIem20cqyk_c5S7QrmrVu6q7MGTX2NOJhwfF179MKpGRQOAM1ud6hjw-SKVlupjAJhV-LKsB6ud9lSyDLWaruMePO00Oj39__vevni2e3B1sL-7o3a2htsrcI0jFptkFa_CbPP5i7-D2Kkxd9MCJfDusr-Jn2HdKC0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IFpAbCngAwgQWHWdxHEOCK0oS0uhAkSl3tz4jyK1u4UEtb3xDrwNj8OTMJN1WH5Ebz1GSZxkxp75Jp75BuBuFCpEGxSvRBQ8rwtJ-7ueo-8J3mairjp2_ddban07f7lT7MzB974WhtIqe5vYGWo_cfSPfAVDg1JQAxK1ElNaxJu10dPDT5w6SNFOa99OYzpFNsPJEYZvzZONNdT1PSlHz98_W-epwwB3WaFb7mvtVSmU9Ag7nIp54V2lFfFi1SFWpbO5zaV1NQYpymntV50SUavCl76SwWU47jk4XxKLO1Wpj17MCH911-1HVLLgBfqCVLCTyvY0FbZJSopAQMLLP5zi367hnz3azvWNrsDlhFnZcDrJFmAujBfh0m9MhouwkGxEwx4kIuuHV-HtkAjLjz8iKA4sIfUfX7-9q90epdSzev8DSrXdO2B4yNqjCW9C27AuEf6YxVCn1N0TltreNNdg-0wEfB3mx5NxuAHMWpWLiAFQUVmCcVXM0AD5SniPN1s5gNVehsYlfnNqs7FvZszMJHeDcjed3E05gEe_7jmcsnucevV9Uo2hpY8juzpVMOD7EYmWGWLol2n8WDGA5V57JtmExsxm8AAe9xqdnf7_c5dOH-0OXMCVYF5tbG3ehIsSQdg0nXgZ5tvPX8ItBE2tvd3NTga7Z70cfgI6GCXH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Douglas%E2%80%93Rachford+algorithm+for+two-sets+convex+feasibility+problems&rft.jtitle=Journal+of+global+optimization&rft.au=D%C3%ADaz+Mill%C3%A1n%2C+R.&rft.au=Ferreira%2C+O.+P.&rft.au=Ugon%2C+J.&rft.date=2023-07-01&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=86&rft.issue=3&rft.spage=621&rft.epage=636&rft_id=info:doi/10.1007%2Fs10898-022-01264-7&rft.externalDocID=10_1007_s10898_022_01264_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon