Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems
In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named Approximate Douglas–Rachford (Ap...
Saved in:
| Published in | Journal of global optimization Vol. 86; no. 3; pp. 621 - 636 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.07.2023
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-5001 1573-2916 |
| DOI | 10.1007/s10898-022-01264-7 |
Cover
| Abstract | In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named
Approximate Douglas–Rachford (ApDR) algorithm
, the CondG method is used as a subroutine to compute feasible inexact projections on the sets under consideration, and the ApDR iteration is defined based on the DR iteration. The ApDR algorithm generates two sequences, the main sequence, based on the DR iteration, and its corresponding shadow sequence. When the intersection of the feasible sets is nonempty, the main sequence converges to a fixed point of the usual DR operator, and the shadow sequence converges to the solution set. We provide some numerical experiments to illustrate the behaviour of the sequences produced by the proposed algorithm. |
|---|---|
| AbstractList | In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named Approximate Douglas–Rachford (ApDR) algorithm, the CondG method is used as a subroutine to compute feasible inexact projections on the sets under consideration, and the ApDR iteration is defined based on the DR iteration. The ApDR algorithm generates two sequences, the main sequence, based on the DR iteration, and its corresponding shadow sequence. When the intersection of the feasible sets is nonempty, the main sequence converges to a fixed point of the usual DR operator, and the shadow sequence converges to the solution set. We provide some numerical experiments to illustrate the behaviour of the sequences produced by the proposed algorithm. In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient (CondG) method, for solving the classic convex feasibility problem. Within the algorithm, which will be named Approximate Douglas–Rachford (ApDR) algorithm , the CondG method is used as a subroutine to compute feasible inexact projections on the sets under consideration, and the ApDR iteration is defined based on the DR iteration. The ApDR algorithm generates two sequences, the main sequence, based on the DR iteration, and its corresponding shadow sequence. When the intersection of the feasible sets is nonempty, the main sequence converges to a fixed point of the usual DR operator, and the shadow sequence converges to the solution set. We provide some numerical experiments to illustrate the behaviour of the sequences produced by the proposed algorithm. |
| Audience | Academic |
| Author | Ferreira, O. P. Díaz Millán, R. Ugon, J. |
| Author_xml | – sequence: 1 givenname: R. orcidid: 0000-0001-6384-5949 surname: Díaz Millán fullname: Díaz Millán, R. email: r.diazmillan@deakin.edu.au organization: School of Information Technology, Deakin University – sequence: 2 givenname: O. P. surname: Ferreira fullname: Ferreira, O. P. organization: IME, Universidade Federal de Goiás – sequence: 3 givenname: J. surname: Ugon fullname: Ugon, J. organization: School of Information Technology, Deakin University |
| BookMark | eNp9kMtqGzEUhkVIILbTF-hqIGslR5oZSbM0zhUMpSVZC40ujsJ45Epyk-zyDn3DPknUTCHQRdBCSJzv_Od8c3Q4htEi9JXAGQHg54mA6AQGSjEQyhrMD9CMtLzGtCPsEM2goy1uAcgxmqf0CACdaOkMfV_udjE8-63KtroI-82g0p_X3z-UfnAhmkoNmxB9fthW5Vnlp4CTzanSYfxlnytnVfK9H3x-qUqbfrDbdIKOnBqS_fLvXqD7q8u71Q1ef7u-XS3XWNetyNgoYRgHRg0hVDPXtEZ3gkFDqbKu47pv-ob2WtGmY1oIQzQDJ1hruOmo1fUCnU59S_DPvU1ZPoZ9HEukpIJyIKRmrFSdTVUbNVjpRxdyVLocY7e-bGGdL_9L3ta1KMNAAegE6BhSitbJXSx24oskIP-6lpNrWVzLd9eSF0j8B2mfVfZhLGl--BytJzSVnHFj48can1BvNw2W6A |
| CitedBy_id | crossref_primary_10_1007_s10589_024_00592_6 |
| Cites_doi | 10.1007/s10589-019-00165-y 10.1137/0318035 10.1007/s10589-018-0040-0 10.1007/s10107-017-1160-5 10.1137/S1052623400380365 10.1016/0041-5553(66)90114-5 10.1007/s10107-014-0841-6 10.1007/s00186-019-00691-9 10.1002/nav.3800030109 10.1017/S1446181114000145 10.1109/78.782189 10.1007/s10589-021-00293-4 10.1145/3127497 10.1007/s11075-018-0604-1 10.1090/S0002-9947-1956-0084194-4 10.1109/TSP.2014.2339801 10.1007/s001860300327 10.1137/140992382 10.1016/j.cam.2016.08.009 10.1007/978-3-030-36568-4_5 10.1007/978-1-4419-9467-7 10.1080/10556788.2020.1734806 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10898-022-01264-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Sciences (General) Computer Science |
| EISSN | 1573-2916 |
| EndPage | 636 |
| ExternalDocumentID | A753380620 10_1007_s10898_022_01264_7 |
| GrantInformation_xml | – fundername: Australian Research Council grantid: DP180100602 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 305158/2014-7, 302473/2017-3 funderid: http://dx.doi.org/10.13039/501100003593 |
| GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c358t-da8d67062d112c6f45dc9860422aef97cb4b42bca2496c88d1c60f865d7d92ec3 |
| IEDL.DBID | U2A |
| ISSN | 0925-5001 |
| IngestDate | Sat Aug 23 14:17:20 EDT 2025 Mon Oct 20 16:58:18 EDT 2025 Wed Oct 01 01:34:47 EDT 2025 Thu Apr 24 23:12:49 EDT 2025 Fri Feb 21 02:43:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Convex feasibility problem Conditional gradient method 65K05 90C30 Frank–Wolfe algorithm 90C25 Inexact projections Douglas–Rachford algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-da8d67062d112c6f45dc9860422aef97cb4b42bca2496c88d1c60f865d7d92ec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6384-5949 |
| PQID | 2827011366 |
| PQPubID | 29930 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2827011366 gale_infotracacademiconefile_A753380620 crossref_primary_10_1007_s10898_022_01264_7 crossref_citationtrail_10_1007_s10898_022_01264_7 springer_journals_10_1007_s10898_022_01264_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230700 2023-07-00 20230701 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 7 year: 2023 text: 20230700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
| PublicationTitle | Journal of global optimization |
| PublicationTitleAbbrev | J Glob Optim |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Combettes (CR7) 1999; 47 Nocedal, Wright (CR24) 2006 Fukushima, Luo, Tseng (CR16) 2002; 12 CR19 CR17 Marques Alves, Eckstein, Geremia, Melo (CR26) 2020; 75 CR10 Dunn (CR12) 1980; 18 Eckstein, Yao (CR13) 2018; 170 Gonçalves, Melo (CR18) 2017; 311 Combettes, Hawkes (CR6) 1996 Díaz Millán, Ferreira, Prudente (CR9) 2021; 80 Freund, Grigas (CR15) 2016; 155 Hesse, Luke, Neumann (CR20) 2014; 62 Rothvoss (CR28) 2017; 64 CR3 Beck, Teboulle (CR4) 2004; 59 Marques Alves, Geremia (CR25) 2019; 82 CR5 CR27 CR21 Levitin, Poljak (CR23) 1966; 6 Artacho, Campoy, Tam (CR2) 2019; 91 Frank, Wolfe (CR14) 1956; 3 Aragón Artacho, Borwein, Tam (CR1) 2014; 55 Douglas, Rachford (CR11) 1956; 82 Lan, Zhou (CR22) 2016; 26 de Oliveira, Ferreira, Silva (CR8) 2019; 72 FJA Artacho (1264_CR2) 2019; 91 J Douglas Jr (1264_CR11) 1956; 82 M Marques Alves (1264_CR26) 2020; 75 FR de Oliveira (1264_CR8) 2019; 72 PL Combettes (1264_CR6) 1996 1264_CR19 1264_CR17 R Hesse (1264_CR20) 2014; 62 T Rothvoss (1264_CR28) 2017; 64 R Díaz Millán (1264_CR9) 2021; 80 1264_CR10 J Nocedal (1264_CR24) 2006 FJ Aragón Artacho (1264_CR1) 2014; 55 G Lan (1264_CR22) 2016; 26 RM Freund (1264_CR15) 2016; 155 JC Dunn (1264_CR12) 1980; 18 ES Levitin (1264_CR23) 1966; 6 MLN Gonçalves (1264_CR18) 2017; 311 1264_CR27 M Frank (1264_CR14) 1956; 3 A Beck (1264_CR4) 2004; 59 PL Combettes (1264_CR7) 1999; 47 1264_CR21 J Eckstein (1264_CR13) 2018; 170 1264_CR5 1264_CR3 M Fukushima (1264_CR16) 2002; 12 M Marques Alves (1264_CR25) 2019; 82 |
| References_xml | – volume: 75 start-page: 389 year: 2020 end-page: 422 ident: CR26 article-title: Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-019-00165-y – volume: 18 start-page: 473 issue: 5 year: 1980 end-page: 487 ident: CR12 article-title: Convergence rates for conditional gradient sequences generated by implicit step length rules publication-title: SIAM J. Control Optim. doi: 10.1137/0318035 – volume: 72 start-page: 159 issue: 1 year: 2019 end-page: 177 ident: CR8 article-title: Newton’s method with feasible inexact projections for solving constrained generalized equations publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-018-0040-0 – volume: 170 start-page: 417 year: 2018 end-page: 444 ident: CR13 article-title: Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM publication-title: Math. Program. Ser. A doi: 10.1007/s10107-017-1160-5 – volume: 12 start-page: 436 issue: 2 year: 2002 end-page: 460 ident: CR16 article-title: Smoothing functions for second-order-cone complementarity problems publication-title: SIAM J. Optim. doi: 10.1137/S1052623400380365 – volume: 6 start-page: 1 year: 1966 end-page: 50 ident: CR23 article-title: Minimization methods in the presence of constraints publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(66)90114-5 – volume: 155 start-page: 199 issue: 1–2, Ser. A year: 2016 end-page: 230 ident: CR15 article-title: New analysis and results for the Frank-Wolfe method publication-title: Math. Program. doi: 10.1007/s10107-014-0841-6 – ident: CR10 – volume: 91 start-page: 201 issue: 2 year: 2019 end-page: 240 ident: CR2 article-title: The Douglas-Rachford algorithm for convex and nonconvex feasibility problems publication-title: Math. Methods Oper. Res. doi: 10.1007/s00186-019-00691-9 – year: 2006 ident: CR24 publication-title: Numerical optimization. Springer Series in Operations Research and Financial Engineering – start-page: 155 year: 1996 end-page: 270 ident: CR6 article-title: The convex feasibility problem in image recovery publication-title: Advances in imaging and electron physics – volume: 3 start-page: 95 year: 1956 end-page: 110 ident: CR14 article-title: An algorithm for quadratic programming publication-title: Nav. Res. Log. doi: 10.1002/nav.3800030109 – ident: CR27 – ident: CR21 – ident: CR19 – volume: 55 start-page: 299 issue: 4 year: 2014 end-page: 326 ident: CR1 article-title: Douglas-Rachford feasibility methods for matrix completion problems publication-title: ANZIAM J. doi: 10.1017/S1446181114000145 – ident: CR3 – volume: 47 start-page: 2460 year: 1999 end-page: 2468 ident: CR7 article-title: Hard-constrained inconsistent signal feasibility problems publication-title: EEE Trans. Signal Process. doi: 10.1109/78.782189 – volume: 80 start-page: 245 year: 2021 end-page: 269 ident: CR9 article-title: Alternating conditional gradient method for convex feasibility problems publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-021-00293-4 – volume: 64 start-page: Art. 41, 19 issue: 6 year: 2017 ident: CR28 article-title: The matching polytope has exponential extension complexity publication-title: J. ACM doi: 10.1145/3127497 – ident: CR17 – volume: 82 start-page: 263 year: 2019 end-page: 295 ident: CR25 article-title: Iteration complexity of an inexact Douglas-Rachford method and of a Douglas-Rachford-Tseng’s F-B four-operator splitting method for solving monotone inclusions publication-title: Numer. Algorithms doi: 10.1007/s11075-018-0604-1 – volume: 82 start-page: 421 year: 1956 end-page: 439 ident: CR11 article-title: On the numerical solution of heat conduction problems in two and three space variables publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1956-0084194-4 – ident: CR5 – volume: 62 start-page: 4868 issue: 18 year: 2014 end-page: 4881 ident: CR20 article-title: Alternating projections and Douglas-Rachford for sparse affine feasibility publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2339801 – volume: 59 start-page: 235 issue: 2 year: 2004 end-page: 247 ident: CR4 article-title: A conditional gradient method with linear rate of convergence for solving convex linear systems publication-title: Math. Methods Oper. Res. doi: 10.1007/s001860300327 – volume: 26 start-page: 1379 issue: 2 year: 2016 end-page: 1409 ident: CR22 article-title: Conditional gradient sliding for convex optimization publication-title: SIAM J. Optim. doi: 10.1137/140992382 – volume: 311 start-page: 473 year: 2017 end-page: 483 ident: CR18 article-title: A Newton conditional gradient method for constrained nonlinear systems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.08.009 – ident: 1264_CR10 doi: 10.1007/978-3-030-36568-4_5 – volume: 55 start-page: 299 issue: 4 year: 2014 ident: 1264_CR1 publication-title: ANZIAM J. doi: 10.1017/S1446181114000145 – volume: 82 start-page: 263 year: 2019 ident: 1264_CR25 publication-title: Numer. Algorithms doi: 10.1007/s11075-018-0604-1 – volume: 82 start-page: 421 year: 1956 ident: 1264_CR11 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1956-0084194-4 – ident: 1264_CR27 – ident: 1264_CR21 – volume: 91 start-page: 201 issue: 2 year: 2019 ident: 1264_CR2 publication-title: Math. Methods Oper. Res. doi: 10.1007/s00186-019-00691-9 – ident: 1264_CR5 – volume: 64 start-page: Art. 41, 19 issue: 6 year: 2017 ident: 1264_CR28 publication-title: J. ACM doi: 10.1145/3127497 – volume: 80 start-page: 245 year: 2021 ident: 1264_CR9 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-021-00293-4 – volume: 170 start-page: 417 year: 2018 ident: 1264_CR13 publication-title: Math. Program. Ser. A doi: 10.1007/s10107-017-1160-5 – volume: 6 start-page: 1 year: 1966 ident: 1264_CR23 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(66)90114-5 – volume: 18 start-page: 473 issue: 5 year: 1980 ident: 1264_CR12 publication-title: SIAM J. Control Optim. doi: 10.1137/0318035 – volume: 59 start-page: 235 issue: 2 year: 2004 ident: 1264_CR4 publication-title: Math. Methods Oper. Res. doi: 10.1007/s001860300327 – volume-title: Numerical optimization. Springer Series in Operations Research and Financial Engineering year: 2006 ident: 1264_CR24 – volume: 12 start-page: 436 issue: 2 year: 2002 ident: 1264_CR16 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400380365 – volume: 26 start-page: 1379 issue: 2 year: 2016 ident: 1264_CR22 publication-title: SIAM J. Optim. doi: 10.1137/140992382 – volume: 3 start-page: 95 year: 1956 ident: 1264_CR14 publication-title: Nav. Res. Log. doi: 10.1002/nav.3800030109 – volume: 72 start-page: 159 issue: 1 year: 2019 ident: 1264_CR8 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-018-0040-0 – volume: 75 start-page: 389 year: 2020 ident: 1264_CR26 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-019-00165-y – volume: 311 start-page: 473 year: 2017 ident: 1264_CR18 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.08.009 – ident: 1264_CR3 doi: 10.1007/978-1-4419-9467-7 – volume: 47 start-page: 2460 year: 1999 ident: 1264_CR7 publication-title: EEE Trans. Signal Process. doi: 10.1109/78.782189 – volume: 155 start-page: 199 issue: 1–2, Ser. A year: 2016 ident: 1264_CR15 publication-title: Math. Program. doi: 10.1007/s10107-014-0841-6 – volume: 62 start-page: 4868 issue: 18 year: 2014 ident: 1264_CR20 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2339801 – ident: 1264_CR19 doi: 10.1080/10556788.2020.1734806 – start-page: 155 volume-title: Advances in imaging and electron physics year: 1996 ident: 1264_CR6 – ident: 1264_CR17 |
| SSID | ssj0009852 |
| Score | 2.3711464 |
| Snippet | In this paper, we propose a new algorithm combining the Douglas–Rachford (DR) algorithm and the Frank–Wolfe algorithm, also known as the conditional gradient... In this paper, we propose a new algorithm combining the Douglas-Rachford (DR) algorithm and the Frank-Wolfe algorithm, also known as the conditional gradient... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 621 |
| SubjectTerms | Algorithms Approximation Computer Science Convergence Feasibility Iterative methods Linear programming Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Real Functions Shadows |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QUOiBYQC6XyAQkQWLh5OPYBVVvUqkJiBRWVerP8bJHKbtsEUW78B_4hv6QzWYflIXqMEjvxjD2eiWe-D-BJEjImFyXXIgle2bqg893Ace-JwZXC6h5d_91U7h9Wb4_qoxWYDrUwlFY52MTeUIe5p3_krzA0aAQRkMjts3NOrFF0ujpQaNhMrRBe9xBjN2C1IGSsEazu7E7fHyxheFXPwSN0UfMaLXQuo8nFdIrKzQpKVUA3gTd_bFV_G-x_Tk77DWnvDtzOniSbLFS_Bitxtg63fsMXXIe1vHJb9izDSz-_Cx8mBCN--Qld1ciy__zz-48D608o0Z3Z02Mcd3fymeEl677OeRu7lvXp6ZcsRZsTar-xTEbT3oPDvd2Pb_Z5JlbgvqxVx4NVQTZCFgG9LS9TVQevlSQ4MBuTbryrXFU4bzE2k16psOWlSErWoQm6iL68D6PZfBYfAHNOViJhWFJrR86VTiWahaBFCNjYFWPYGmRofEYdJ_KLU7PESya5G5S76eVumjG8-NXmbIG5ce3TT0k1hhYk9uxtrivA7yNoKzPBgKxUOFgxho1Beyav1NYs59UYXg4aXd7-_3sfXt_bI7hJzPSLzN4NGHUXX-Jj9F86t5kn5RXKqOri priority: 102 providerName: ProQuest |
| Title | Approximate Douglas–Rachford algorithm for two-sets convex feasibility problems |
| URI | https://link.springer.com/article/10.1007/s10898-022-01264-7 https://www.proquest.com/docview/2827011366 |
| Volume | 86 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1573-2916 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: AMVHM dateStart: 20080329 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: AFBBN dateStart: 19910301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-2916 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-2916 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gKHQhcQW8rKByRAEMlNYsc-BrTbCtQKKlYqJ8tPWqndrZog2lv_A_-QX8I463TLU-IUWRk7j7HnoZn5BuBpoNwH43kmaaBZqVke47suQ93jnSmolh26_t4-352Wbw_ZYSoKa_ps9z4k2UnqG8VuIpaD5TGVANV4Vq3AGotwXriLp3m9hNoVXZ8dKnOWMZTCqVTmz2v8pI5-Fcq_RUc7pTO5B-vJWiT1gr0bcMvPBnC378RA0sEcwJ0bsII42rvGYm0GsJGoGvI8YUy_uA8f6oglfnGMRJ4kI_r71bcDbY9itjvRJ5_n58ft0SnBIWm_zrPGtw3pctQvSPA6ZdVektSRpnkA08n445vdLHVXyGzBRJs5LRyvKM8dmlyWh5I5KwWPmGDaB1lZU5oyN1ajg8atEG7bchoEZ65yMve2eAirs_nMPwJiDC9pQN-ESRMtLBkKlA1OUudwssmHsN3_ZGUT9HjsgHGilqDJkTEKGaM6xqhqCC-v55wtgDf-Sf0s8k7FU4krW52KC_D9Ir6VqtErKwR-LB3CVs9elY5ro9DvrGjsbsOH8Kpn-fL235-7-X_kj-F2bFe_SPfdgtX2_It_gkZNa0awIiY7I1irdz69G-P19Xj__cGo29k_AIPl8Eo |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gA9VLSAurSADyBAYOE6iRMfKrRAqy1tV1C1Um_GvxSp7BYS1PbGO_A-PAxPwjjrsPyI3nqMEjvJjDPzTTzzDcD9wIQPxgsqWWA01wWP-7uOou_xzmRMy5Zdf3coBgf568PicAa-d7UwMa2ys4mtoXZjG_-RP8PQoGSxAYl4fvKJxq5RcXe1a6GhU2sFt95SjKXCjm1_foohXL2-9Qr1_YDzzY39lwOaugxQmxVVQ52unCiZ4A6hhxUhL5yVlYjcWNoHWVqTm5wbqzFQEbaq3JoVLFSicKWT3NsM570Cc3mWSwz-5l5sDN_sTWl_q7bnD5O8oAV6hFS2k4r3qljexmNqBMISWv7hGv92EP_s1LYOcPM6LCTkSvqTpbYIM360BPO_8RkuwWKyFDV5lOisH9-At_1IW372AaGxJwmv__j6bU_bo5hYT_Txe5Rzc_SR4CFpTse09k1N2nT4MxK8Tgm85yQ1v6lvwsGliPgWzI7GI78MxBiRs4BhUCFNBHMyZGiGnGTO4WDDe7DWyVDZxHIem20cqyk_c5S7QrmrVu6q7MGTX2NOJhwfF179MKpGRQOAM1ud6hjw-SKVlupjAJhV-LKsB6ud9lSyDLWaruMePO00Oj39__vevni2e3B1sL-7o3a2htsrcI0jFptkFa_CbPP5i7-D2Kkxd9MCJfDusr-Jn2HdKC0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIiE4IFpAbCngAwgQWHWdxHEOCK0oS0uhAkSl3tz4jyK1u4UEtb3xDrwNj8OTMJN1WH5Ebz1GSZxkxp75Jp75BuBuFCpEGxSvRBQ8rwtJ-7ueo-8J3mairjp2_ddban07f7lT7MzB974WhtIqe5vYGWo_cfSPfAVDg1JQAxK1ElNaxJu10dPDT5w6SNFOa99OYzpFNsPJEYZvzZONNdT1PSlHz98_W-epwwB3WaFb7mvtVSmU9Ag7nIp54V2lFfFi1SFWpbO5zaV1NQYpymntV50SUavCl76SwWU47jk4XxKLO1Wpj17MCH911-1HVLLgBfqCVLCTyvY0FbZJSopAQMLLP5zi367hnz3azvWNrsDlhFnZcDrJFmAujBfh0m9MhouwkGxEwx4kIuuHV-HtkAjLjz8iKA4sIfUfX7-9q90epdSzev8DSrXdO2B4yNqjCW9C27AuEf6YxVCn1N0TltreNNdg-0wEfB3mx5NxuAHMWpWLiAFQUVmCcVXM0AD5SniPN1s5gNVehsYlfnNqs7FvZszMJHeDcjed3E05gEe_7jmcsnucevV9Uo2hpY8juzpVMOD7EYmWGWLol2n8WDGA5V57JtmExsxm8AAe9xqdnf7_c5dOH-0OXMCVYF5tbG3ehIsSQdg0nXgZ5tvPX8ItBE2tvd3NTga7Z70cfgI6GCXH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Douglas%E2%80%93Rachford+algorithm+for+two-sets+convex+feasibility+problems&rft.jtitle=Journal+of+global+optimization&rft.au=D%C3%ADaz+Mill%C3%A1n%2C+R.&rft.au=Ferreira%2C+O.+P.&rft.au=Ugon%2C+J.&rft.date=2023-07-01&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=86&rft.issue=3&rft.spage=621&rft.epage=636&rft_id=info:doi/10.1007%2Fs10898-022-01264-7&rft.externalDocID=10_1007_s10898_022_01264_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |