Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms

Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a so time-consuming task which engages valuable human resources, automatic MRI segmentation have been received an enormous amount of attention. For...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 16; no. 4; pp. 840 - 848
Main Authors Yousefi, Sahar, Azmi, Reza, Zahedi, Morteza
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2012
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2012.01.001

Cover

Abstract Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a so time-consuming task which engages valuable human resources, automatic MRI segmentation have been received an enormous amount of attention. For this purpose various techniques have been applied however Markov Random Field (MRF) based algorithms have produced better results in noisy images compared to other methods. MRF seeks for a label field which minimizes energy function. Traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason MRFs never be used in real time processing environments. This paper proposed a novel method based on MRF and hybrid of social algorithms contains ant colony optimization (ACO) and Gossiping algorithm. Combining ACO with Gossiping algorithm assists ants to find the better path using the information of their neighbors. Therefore, this interaction causes the algorithm converges to optimum solution faster. Several experiments on phantom and real images were performed. Results indicate the proposed algorithm outperforms the traditional MRF in speed and accuracy. [Display omitted] ► This article presents a novel unsupervised MRF-based model for MRI segmentation. ► The proposed method uses ACO and gossiping algorithm to speed up the classic MRF. ► Tackling Gossiping algorithm, the proposed method assists ants in smart decision. ► The IBSR and Brainweb datasets have been used for testing the method. ► Results demonstrate the novel method outperforms other models in speed and quality. Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy.
AbstractList Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy.Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy.
Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a so time-consuming task which engages valuable human resources, automatic MRI segmentation have been received an enormous amount of attention. For this purpose various techniques have been applied however Markov Random Field (MRF) based algorithms have produced better results in noisy images compared to other methods. MRF seeks for a label field which minimizes energy function. Traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason MRFs never be used in real time processing environments. This paper proposed a novel method based on MRF and hybrid of social algorithms contains ant colony optimization (ACO) and Gossiping algorithm. Combining ACO with Gossiping algorithm assists ants to find the better path using the information of their neighbors. Therefore, this interaction causes the algorithm converges to optimum solution faster. Several experiments on phantom and real images were performed. Results indicate the proposed algorithm outperforms the traditional MRF in speed and accuracy. [Display omitted] ► This article presents a novel unsupervised MRF-based model for MRI segmentation. ► The proposed method uses ACO and gossiping algorithm to speed up the classic MRF. ► Tackling Gossiping algorithm, the proposed method assists ants in smart decision. ► The IBSR and Brainweb datasets have been used for testing the method. ► Results demonstrate the novel method outperforms other models in speed and quality. Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy.
Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy.
Author Zahedi, Morteza
Yousefi, Sahar
Azmi, Reza
Author_xml – sequence: 1
  givenname: Sahar
  surname: Yousefi
  fullname: Yousefi, Sahar
  email: sahar_yousefi@ymail.com
  organization: Department of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iran
– sequence: 2
  givenname: Reza
  surname: Azmi
  fullname: Azmi, Reza
  email: azmi@alzahra.ac.ir
  organization: Department of Computer Engineering, Alzahra University, Tehran, Iran
– sequence: 3
  givenname: Morteza
  surname: Zahedi
  fullname: Zahedi, Morteza
  email: zahedi@shahroodut.ac.ir
  organization: Department of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22377656$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNU1Kq_QJDcPHWdJJv9OHhQsSpUBNFzmM1Oa8p-1GQr-O9NrXrwIDlkmDzvMHnGbNT1HTF2IiARILLzZdJS7TCRIGQCIgEQO-xAqExMilSq0W8t9D4bh7AEgDxNYY_tS6nyPNPZAXu58ug6PrgQ1sQDLVrqBhxc3_HYfnjirsUFBV5hoJrHLvLXj8q7WM_j85RjV_PQW4cNx2bReze8tuGI7c6xCXT8fR-yl-nN8_XdZPZ4e399OZtYpYthUmNcByzoCnNEyDCXlOoKqqxKyxrKPEOkWmVWREBpSlOd6xSKeGRRKK0O2dl27sr3b2sKg2ldsNQ02FG_DqYslQCZg4zk6Te5rqI2s_LxY_7D_JiIQLkFrO9D8DQ31m1FDNFQYwSYjXWzNF_Wzca6AWGi9ZhVf7I_4_9PXWxTFA29O_ImWEedjaAnO5i6d__mPwHTxJpD
CitedBy_id crossref_primary_10_1080_03772063_2021_1906765
crossref_primary_10_1007_s13246_015_0352_7
crossref_primary_10_1002_ima_22130
crossref_primary_10_1155_2021_5289128
crossref_primary_10_1007_s11042_017_4696_8
crossref_primary_10_1002_ima_22212
crossref_primary_10_3390_app10051894
crossref_primary_10_1007_s10278_013_9596_5
crossref_primary_10_1142_S0219519415500761
crossref_primary_10_1016_j_bspc_2017_07_007
crossref_primary_10_1002_mp_12511
crossref_primary_10_1007_s10916_016_0434_4
crossref_primary_10_2139_ssrn_4010416
crossref_primary_10_1002_ima_22637
crossref_primary_10_1080_24699322_2017_1389398
crossref_primary_10_1007_s11760_014_0734_4
crossref_primary_10_1016_j_eswa_2019_05_038
crossref_primary_10_1177_155892501601100305
crossref_primary_10_1371_journal_pone_0115527
crossref_primary_10_1177_0040517515606378
crossref_primary_10_1007_s10732_014_9270_1
crossref_primary_10_1109_TIP_2020_2990346
crossref_primary_10_1080_0952813X_2017_1409280
crossref_primary_10_1016_j_amc_2015_01_053
crossref_primary_10_26634_jip_6_3_16322
crossref_primary_10_2174_1573405617666211215111937
crossref_primary_10_1016_j_compmedimag_2021_101991
crossref_primary_10_1109_ACCESS_2018_2882848
crossref_primary_10_1515_bmt_2015_0226
crossref_primary_10_3390_s20154203
crossref_primary_10_1007_s10586_024_04601_5
crossref_primary_10_1016_j_eswa_2014_01_021
crossref_primary_10_1016_j_jestch_2015_12_009
crossref_primary_10_1093_jcde_qwac141
Cites_doi 10.2307/1932409
10.1016/0730-725X(94)00124-L
10.1111/j.2517-6161.1974.tb00999.x
10.1109/ICASSP.1992.226148
10.1109/3477.484436
10.1109/72.238324
10.1111/j.2517-6161.1977.tb01600.x
10.2307/2987782
10.1109/TEVC.2004.835521
10.1109/ISBI.2009.5193041
10.1063/1.1699114
10.1109/ICBME.2010.5704956
10.1109/51.195944
10.1109/97.873564
10.1109/TPAMI.1984.4767596
10.1109/42.906424
10.1117/12.913743
10.1109/ICCSIT.2008.102
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.media.2012.01.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 848
ExternalDocumentID 22377656
10_1016_j_media_2012_01_001
S1361841512000023
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c358t-da4400c05ba7aa06a72e45b0b6b49d0976aaed36c1ba735e44575408080288353
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Sat Sep 27 17:18:05 EDT 2025
Wed Feb 19 01:55:53 EST 2025
Thu Apr 24 22:56:40 EDT 2025
Wed Oct 01 03:29:46 EDT 2025
Fri Feb 23 02:28:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Brain segmentation
Gossiping algorithm
Markov random field (MRF)
Magnetic resonance image (MRI)
Ant colony optimization (ACO)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-da4400c05ba7aa06a72e45b0b6b49d0976aaed36c1ba735e44575408080288353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22377656
PQID 993102702
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_993102702
pubmed_primary_22377656
crossref_citationtrail_10_1016_j_media_2012_01_001
crossref_primary_10_1016_j_media_2012_01_001
elsevier_sciencedirect_doi_10_1016_j_media_2012_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2012
2012-05-00
2012-May
20120501
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: May 2012
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bilmes, J.A., 1998. A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models. International Computer Science Institute.
Lei, Cheng, Ao (b0080) 2008; 3
Kim, Park, Kim (b0075) 2000; 7
Zerubia, Chellappa (b0145) 1993; 8
Ouadfel, Batouche (b0105) 2003; 2
Chellappa, Jain (b0025) 1993
Dorigo, Maniezzo, Colorni (b0045) 1996; 26
Geman, Geman (b0055) 1984; 6
Dempster, Laird, Bubin (b0035) 1977; 39
Hammersley, J.M., Clifford, P., 1971. Markov field on finite graphs and lattices. Unpublished.
Caputo, Torre, Bouattour, Gigante (b0020) 2002; 90
Li (b0085) 2001
Liang (b0090) 1993; 12
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b0100) 1953; 21
Besag (b0005) 1974; 36
Tanenbaum, A.S., 2006. Distributed systems, pp. 170–176.
Yousefi, S., Azmi, R., Zahedi, M., 2010. Brain tumor segmentation in 3D MRIs using an improved Markov random field model. In: Proceedings of the International Conference on Signal and Information Processing (ICSIP 2010).
Sun, H., Wang, T., 2008. LCG-MRF-based segmentation of MRI brain images. In: International Conference on Computer Science and Information Technology.
Besag (b0010) 1975; 24
Wang, Wang (b0120) 2003; 8
Yousefi, Zahedi, Azmi (b0135) 2011; 12
Clarke, Velthuizen, Camacho, Heine, Vaidyanathan, Hall, Thatcher, Silbiger (b0030) 1995; 13
Lyapunov A.M., 1993. The General Problem of the Stability of Motion, Doctoral dissertation, Univ. Kharkov.
Gribben, H., Miller, P., Hanna, G.G., Carson, K.J., Hounsell, A.R., 2009. Map-MRF segmentation of lung tumours in PET/CT images.
Zhang, Brady, Smith (b0150) 2001; 20
Kato, Z., Zerubia, J., Berthod, M., 1992. Satellite image classifcation using a modifed metropolis dynamics. In: Proc. of ICASSP, San Francisco.
Yousefi, S., Azmi, R., 2011. Comparison evaluation of three brain tumour segmentation methods based on MRF. In: The 19th Iranian Conference on Electrical Engineering (ICEE2011).
Yousefi, S., Zahedi, M., Azmi, R., 2010. 3D MRI brain segmentation based on MRF and hybrid of SA and IGA. In: Proceedings of the 17th Iranian Conference of Biomedical Engineering (ICBME2010).
Dice (b0040) 1945; 26
Zhang (10.1016/j.media.2012.01.001_b0150) 2001; 20
Dice (10.1016/j.media.2012.01.001_b0040) 1945; 26
10.1016/j.media.2012.01.001_b0060
Yousefi (10.1016/j.media.2012.01.001_b0135) 2011; 12
Geman (10.1016/j.media.2012.01.001_b0055) 1984; 6
Ouadfel (10.1016/j.media.2012.01.001_b0105) 2003; 2
10.1016/j.media.2012.01.001_b0140
10.1016/j.media.2012.01.001_b0065
10.1016/j.media.2012.01.001_b0125
Chellappa (10.1016/j.media.2012.01.001_b0025) 1993
Caputo (10.1016/j.media.2012.01.001_b0020) 2002; 90
Li (10.1016/j.media.2012.01.001_b0085) 2001
Dorigo (10.1016/j.media.2012.01.001_b0045) 1996; 26
10.1016/j.media.2012.01.001_b0070
Metropolis (10.1016/j.media.2012.01.001_b0100) 1953; 21
10.1016/j.media.2012.01.001_b0110
10.1016/j.media.2012.01.001_b0095
Lei (10.1016/j.media.2012.01.001_b0080) 2008; 3
10.1016/j.media.2012.01.001_b0130
Clarke (10.1016/j.media.2012.01.001_b0030) 1995; 13
Besag (10.1016/j.media.2012.01.001_b0005) 1974; 36
10.1016/j.media.2012.01.001_b0015
Wang (10.1016/j.media.2012.01.001_b0120) 2003; 8
10.1016/j.media.2012.01.001_b0115
Zerubia (10.1016/j.media.2012.01.001_b0145) 1993; 8
Besag (10.1016/j.media.2012.01.001_b0010) 1975; 24
Dempster (10.1016/j.media.2012.01.001_b0035) 1977; 39
Kim (10.1016/j.media.2012.01.001_b0075) 2000; 7
Liang (10.1016/j.media.2012.01.001_b0090) 1993; 12
References_xml – reference: Yousefi, S., Zahedi, M., Azmi, R., 2010. 3D MRI brain segmentation based on MRF and hybrid of SA and IGA. In: Proceedings of the 17th Iranian Conference of Biomedical Engineering (ICBME2010).
– volume: 12
  start-page: 81
  year: 1993
  end-page: 85
  ident: b0090
  article-title: Tissue classification and segmentation of MR images
  publication-title: IEEE Eng. Med. Biol.
– reference: Yousefi, S., Azmi, R., Zahedi, M., 2010. Brain tumor segmentation in 3D MRIs using an improved Markov random field model. In: Proceedings of the International Conference on Signal and Information Processing (ICSIP 2010).
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: b0150
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans Med. Imag.
– year: 2001
  ident: b0085
  article-title: Markov Random Field Modeling in Image Analysis
– reference: Hammersley, J.M., Clifford, P., 1971. Markov field on finite graphs and lattices. Unpublished.
– reference: Lyapunov A.M., 1993. The General Problem of the Stability of Motion, Doctoral dissertation, Univ. Kharkov.
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b0045
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: J. IEEE Trans. Syst. Man Cyber., Part B
– reference: Kato, Z., Zerubia, J., Berthod, M., 1992. Satellite image classifcation using a modifed metropolis dynamics. In: Proc. of ICASSP, San Francisco.
– volume: 6
  start-page: 721
  year: 1984
  end-page: 741
  ident: b0055
  article-title: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 703
  year: 1993
  end-page: 709
  ident: b0145
  article-title: Mean field approximation using compound Gauss-Markov random field for edge detection and image estimation
  publication-title: J. IEEE Trans. Neural Networks
– volume: 13
  start-page: 343
  year: 1995
  end-page: 368
  ident: b0030
  article-title: MRI segmentation: methods and applications
  publication-title: Magnet. Reson. Imag
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b0035
  article-title: /Maximum likelihood from imcomplete data via EM algorithm
  publication-title: J. Roy. Stat. Soc., Ser. B
– reference: Yousefi, S., Azmi, R., 2011. Comparison evaluation of three brain tumour segmentation methods based on MRF. In: The 19th Iranian Conference on Electrical Engineering (ICEE2011).
– volume: 90
  start-page: 30
  year: 2002
  end-page: 34
  ident: b0020
  article-title: A new kernel method for micro calcification detection: spin glass-Markov random fields
  publication-title: Stud. Health Technol. Inf.
– reference: Gribben, H., Miller, P., Hanna, G.G., Carson, K.J., Hounsell, A.R., 2009. Map-MRF segmentation of lung tumours in PET/CT images.
– volume: 2
  start-page: 12
  year: 2003
  end-page: 24
  ident: b0105
  article-title: MRF-based image segmentation using ant colony system
  publication-title: J. Electron. Lett. Comput. Vis. Image Anal.
– year: 1993
  ident: b0025
  article-title: Markov Random Fields: Theory and Applications
– volume: 8
  start-page: 567
  year: 2003
  end-page: 579
  ident: b0120
  article-title: Evolutionary optimization in Markov random field modeling
  publication-title: J. IEEE Tran. Evolution. Comput.
– volume: 7
  start-page: 301
  year: 2000
  end-page: 304
  ident: b0075
  article-title: A genetic algorithm-based segmentation of markov random field modeled images
  publication-title: IEEE Signal Process. Lett.
– volume: 3
  start-page: 898
  year: 2008
  end-page: 901
  ident: b0080
  article-title: Application of an improved genetic algorithm in image segmentation
  publication-title: Int. Conf. Comput. Sci. Software Eng.
– volume: 12
  start-page: 1048
  year: 2011
  end-page: 1056
  ident: b0135
  article-title: Automatic tissue classification in multispectral MRIs via an unsupervised model
  publication-title: World Appl. Sci. (WASJ)
– reference: Bilmes, J.A., 1998. A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models. International Computer Science Institute.
– reference: Tanenbaum, A.S., 2006. Distributed systems, pp. 170–176.
– reference: Sun, H., Wang, T., 2008. LCG-MRF-based segmentation of MRI brain images. In: International Conference on Computer Science and Information Technology.
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: b0040
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: b0100
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– volume: 24
  start-page: 179
  year: 1975
  end-page: 195
  ident: b0010
  article-title: Statistical analysis of non-lattice data
  publication-title: Statistician
– volume: 36
  start-page: 192
  year: 1974
  end-page: 236
  ident: b0005
  article-title: Spatial interaction and the statistical analysis of lattice systems (with discussions)
  publication-title: J. Roy. Stat. Soc., Ser. B
– year: 1993
  ident: 10.1016/j.media.2012.01.001_b0025
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 10.1016/j.media.2012.01.001_b0040
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 13
  start-page: 343
  issue: 3
  year: 1995
  ident: 10.1016/j.media.2012.01.001_b0030
  article-title: MRI segmentation: methods and applications
  publication-title: Magnet. Reson. Imag
  doi: 10.1016/0730-725X(94)00124-L
– ident: 10.1016/j.media.2012.01.001_b0130
– volume: 90
  start-page: 30
  year: 2002
  ident: 10.1016/j.media.2012.01.001_b0020
  article-title: A new kernel method for micro calcification detection: spin glass-Markov random fields
  publication-title: Stud. Health Technol. Inf.
– volume: 36
  start-page: 192
  year: 1974
  ident: 10.1016/j.media.2012.01.001_b0005
  article-title: Spatial interaction and the statistical analysis of lattice systems (with discussions)
  publication-title: J. Roy. Stat. Soc., Ser. B
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– ident: 10.1016/j.media.2012.01.001_b0065
– ident: 10.1016/j.media.2012.01.001_b0070
  doi: 10.1109/ICASSP.1992.226148
– volume: 2
  start-page: 12
  year: 2003
  ident: 10.1016/j.media.2012.01.001_b0105
  article-title: MRF-based image segmentation using ant colony system
  publication-title: J. Electron. Lett. Comput. Vis. Image Anal.
– volume: 12
  start-page: 1048
  issue: 7
  year: 2011
  ident: 10.1016/j.media.2012.01.001_b0135
  article-title: Automatic tissue classification in multispectral MRIs via an unsupervised model
  publication-title: World Appl. Sci. (WASJ)
– year: 2001
  ident: 10.1016/j.media.2012.01.001_b0085
– ident: 10.1016/j.media.2012.01.001_b0115
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.media.2012.01.001_b0045
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: J. IEEE Trans. Syst. Man Cyber., Part B
  doi: 10.1109/3477.484436
– volume: 8
  start-page: 703
  year: 1993
  ident: 10.1016/j.media.2012.01.001_b0145
  article-title: Mean field approximation using compound Gauss-Markov random field for edge detection and image estimation
  publication-title: J. IEEE Trans. Neural Networks
  doi: 10.1109/72.238324
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.media.2012.01.001_b0035
  article-title: /Maximum likelihood from imcomplete data via EM algorithm
  publication-title: J. Roy. Stat. Soc., Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 24
  start-page: 179
  issue: 3
  year: 1975
  ident: 10.1016/j.media.2012.01.001_b0010
  article-title: Statistical analysis of non-lattice data
  publication-title: Statistician
  doi: 10.2307/2987782
– ident: 10.1016/j.media.2012.01.001_b0095
– volume: 8
  start-page: 567
  issue: 6
  year: 2003
  ident: 10.1016/j.media.2012.01.001_b0120
  article-title: Evolutionary optimization in Markov random field modeling
  publication-title: J. IEEE Tran. Evolution. Comput.
  doi: 10.1109/TEVC.2004.835521
– volume: 3
  start-page: 898
  year: 2008
  ident: 10.1016/j.media.2012.01.001_b0080
  article-title: Application of an improved genetic algorithm in image segmentation
  publication-title: Int. Conf. Comput. Sci. Software Eng.
– ident: 10.1016/j.media.2012.01.001_b0060
  doi: 10.1109/ISBI.2009.5193041
– volume: 21
  start-page: 1087
  year: 1953
  ident: 10.1016/j.media.2012.01.001_b0100
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– ident: 10.1016/j.media.2012.01.001_b0125
  doi: 10.1109/ICBME.2010.5704956
– volume: 12
  start-page: 81
  issue: 1
  year: 1993
  ident: 10.1016/j.media.2012.01.001_b0090
  article-title: Tissue classification and segmentation of MR images
  publication-title: IEEE Eng. Med. Biol.
  doi: 10.1109/51.195944
– volume: 7
  start-page: 301
  issue: 11
  year: 2000
  ident: 10.1016/j.media.2012.01.001_b0075
  article-title: A genetic algorithm-based segmentation of markov random field modeled images
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.873564
– volume: 6
  start-page: 721
  year: 1984
  ident: 10.1016/j.media.2012.01.001_b0055
  article-title: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1984.4767596
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.media.2012.01.001_b0150
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans Med. Imag.
  doi: 10.1109/42.906424
– ident: 10.1016/j.media.2012.01.001_b0140
  doi: 10.1117/12.913743
– ident: 10.1016/j.media.2012.01.001_b0015
– ident: 10.1016/j.media.2012.01.001_b0110
  doi: 10.1109/ICCSIT.2008.102
SSID ssj0007440
Score 2.2908556
Snippet Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a so...
Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 840
SubjectTerms Algorithms
Ant colony optimization (ACO)
Brain - anatomy & histology
Brain segmentation
Data Interpretation, Statistical
Gossiping algorithm
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic resonance image (MRI)
Magnetic Resonance Imaging - methods
Markov Chains
Markov random field (MRF)
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Title Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms
URI https://dx.doi.org/10.1016/j.media.2012.01.001
https://www.ncbi.nlm.nih.gov/pubmed/22377656
https://www.proquest.com/docview/993102702
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: .~1
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 20160831
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: ACRLP
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 20160831
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIKHN
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AKRWK
  dateStart: 19960301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKiF6QC2Psm1BPnAkrBM_wh7pqqsFtBwoK3GznNgLi9gsYsOhl_72zjjOUiTKgWOcseLMODOf4plvAA58oZ3wkzzJemmZyML55FiISYKRphBOqtJqqkYeXejhWJ5dq-sV6Le1MJRWGX1_49ODt44j3ajN7sN02v2VCmpWQhGLB9oWqmCXOXUxOPrznOZBBHhN7VWakHTLPBRyvEJ1BuV3ZYG7M3aGeSU6_Q99hig0-AQbET6yk2aFn2HFV5vw8R9SwU1YG8Xj8i0Y_6AGEKwOymULfzOLlUYVw-HRJZvO0J0sGIUyx3DUstvfVMLF5hO8PWC2cqz5q87s_c38cVrfzhbbMB78vOoPk9hHISmFOq4TZ1EHvOSqsLm1XNs881IVvNCF7DmOgMRa74QuUxQQykuJGE5yYpykXsRK7MBqNa_8LrCe9Mph3FNlxmXu0NJEB5RZkWotte51IGv1Z8pIMk69Lu5Nm012Z4LSDSnd8JRy6jpwuJz00HBsvC2uW8OYF1vFYBR4eyJrzWjwI6KTEVv5-dPCIEhDoJXzrANfGvMuF4LwCd9Q6a_vfeo3WKerJknyO6zWj09-D4FMXeyHnboPH05Oz4cXfwHUQe5p
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIkF7QFBaGgplDxxxs_Y-3BxpRRRK0gM0Um-rtXfTBiVO1LiHXvrbO7NeB5CgB677kNcz65nPuzPfAHz0hXbCT_Ik66VlIgvnk2MhJgl6mkI4qUqrKRt5dK4HY3l2qS434LTNhaGwymj7G5serHVs6UZpdpfTafdHKqhYCXksHmhbnsBTqbKc_sCO7n_FeRADXpN8lSY0vKUeCkFeIT2DAryyQN4ZS8P8xT39C34GN9R_CS8ifmSfmyW-gg1f7cD2b6yCO_BsFO_LX8P4hCpAsDpIl6381TymGlUMm0ff2XSO9mTFyJc5hq2WXd9RDhdbTLC7z2zlWHOszuzsanEzra_nq10Y979cnA6SWEghKYU6rhNnUQa85KqwubVc2zzzUhW80IXsOY6IxFrvhC5THCCUlxJBnOREOUnFiJXYg81qUfl9YD3plUPHp8qMy9yhqokPKLMi1Vpq3etA1srPlJFlnIpdzEwbTvbTBKEbErrhKQXVdeDTetKyIdl4fLhuFWP-2CsG3cDjE1mrRoNfEV2N2MovblcGURoirZxnHXjTqHe9EMRP-IZKv_3fp36A54OL0dAMv55_O4At6mkiJt_BZn1z698jqqmLw7BrHwBkSu_-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+tissue+segmentation+in+MR+images+based+on+a+hybrid+of+MRF+and+social+algorithms&rft.jtitle=Medical+image+analysis&rft.au=Yousefi%2C+Sahar&rft.au=Azmi%2C+Reza&rft.au=Zahedi%2C+Morteza&rft.date=2012-05-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=16&rft.issue=4&rft.spage=840&rft_id=info:doi/10.1016%2Fj.media.2012.01.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon