Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms
Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a so time-consuming task which engages valuable human resources, automatic MRI segmentation have been received an enormous amount of attention. For...
Saved in:
| Published in | Medical image analysis Vol. 16; no. 4; pp. 840 - 848 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.05.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1361-8415 1361-8423 1361-8423 |
| DOI | 10.1016/j.media.2012.01.001 |
Cover
| Abstract | Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a so time-consuming task which engages valuable human resources, automatic MRI segmentation have been received an enormous amount of attention. For this purpose various techniques have been applied however Markov Random Field (MRF) based algorithms have produced better results in noisy images compared to other methods. MRF seeks for a label field which minimizes energy function. Traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason MRFs never be used in real time processing environments. This paper proposed a novel method based on MRF and hybrid of social algorithms contains ant colony optimization (ACO) and Gossiping algorithm. Combining ACO with Gossiping algorithm assists ants to find the better path using the information of their neighbors. Therefore, this interaction causes the algorithm converges to optimum solution faster. Several experiments on phantom and real images were performed. Results indicate the proposed algorithm outperforms the traditional MRF in speed and accuracy. [Display omitted]
► This article presents a novel unsupervised MRF-based model for MRI segmentation. ► The proposed method uses ACO and gossiping algorithm to speed up the classic MRF. ► Tackling Gossiping algorithm, the proposed method assists ants in smart decision. ► The IBSR and Brainweb datasets have been used for testing the method. ► Results demonstrate the novel method outperforms other models in speed and quality.
Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. |
|---|---|
| AbstractList | Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy.Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a so time-consuming task which engages valuable human resources, automatic MRI segmentation have been received an enormous amount of attention. For this purpose various techniques have been applied however Markov Random Field (MRF) based algorithms have produced better results in noisy images compared to other methods. MRF seeks for a label field which minimizes energy function. Traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason MRFs never be used in real time processing environments. This paper proposed a novel method based on MRF and hybrid of social algorithms contains ant colony optimization (ACO) and Gossiping algorithm. Combining ACO with Gossiping algorithm assists ants to find the better path using the information of their neighbors. Therefore, this interaction causes the algorithm converges to optimum solution faster. Several experiments on phantom and real images were performed. Results indicate the proposed algorithm outperforms the traditional MRF in speed and accuracy. [Display omitted] ► This article presents a novel unsupervised MRF-based model for MRI segmentation. ► The proposed method uses ACO and gossiping algorithm to speed up the classic MRF. ► Tackling Gossiping algorithm, the proposed method assists ants in smart decision. ► The IBSR and Brainweb datasets have been used for testing the method. ► Results demonstrate the novel method outperforms other models in speed and quality. Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. |
| Author | Zahedi, Morteza Yousefi, Sahar Azmi, Reza |
| Author_xml | – sequence: 1 givenname: Sahar surname: Yousefi fullname: Yousefi, Sahar email: sahar_yousefi@ymail.com organization: Department of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iran – sequence: 2 givenname: Reza surname: Azmi fullname: Azmi, Reza email: azmi@alzahra.ac.ir organization: Department of Computer Engineering, Alzahra University, Tehran, Iran – sequence: 3 givenname: Morteza surname: Zahedi fullname: Zahedi, Morteza email: zahedi@shahroodut.ac.ir organization: Department of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22377656$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1LAzEQhoNU1Kq_QJDcPHWdJJv9OHhQsSpUBNFzmM1Oa8p-1GQr-O9NrXrwIDlkmDzvMHnGbNT1HTF2IiARILLzZdJS7TCRIGQCIgEQO-xAqExMilSq0W8t9D4bh7AEgDxNYY_tS6nyPNPZAXu58ug6PrgQ1sQDLVrqBhxc3_HYfnjirsUFBV5hoJrHLvLXj8q7WM_j85RjV_PQW4cNx2bReze8tuGI7c6xCXT8fR-yl-nN8_XdZPZ4e399OZtYpYthUmNcByzoCnNEyDCXlOoKqqxKyxrKPEOkWmVWREBpSlOd6xSKeGRRKK0O2dl27sr3b2sKg2ldsNQ02FG_DqYslQCZg4zk6Te5rqI2s_LxY_7D_JiIQLkFrO9D8DQ31m1FDNFQYwSYjXWzNF_Wzca6AWGi9ZhVf7I_4_9PXWxTFA29O_ImWEedjaAnO5i6d__mPwHTxJpD |
| CitedBy_id | crossref_primary_10_1080_03772063_2021_1906765 crossref_primary_10_1007_s13246_015_0352_7 crossref_primary_10_1002_ima_22130 crossref_primary_10_1155_2021_5289128 crossref_primary_10_1007_s11042_017_4696_8 crossref_primary_10_1002_ima_22212 crossref_primary_10_3390_app10051894 crossref_primary_10_1007_s10278_013_9596_5 crossref_primary_10_1142_S0219519415500761 crossref_primary_10_1016_j_bspc_2017_07_007 crossref_primary_10_1002_mp_12511 crossref_primary_10_1007_s10916_016_0434_4 crossref_primary_10_2139_ssrn_4010416 crossref_primary_10_1002_ima_22637 crossref_primary_10_1080_24699322_2017_1389398 crossref_primary_10_1007_s11760_014_0734_4 crossref_primary_10_1016_j_eswa_2019_05_038 crossref_primary_10_1177_155892501601100305 crossref_primary_10_1371_journal_pone_0115527 crossref_primary_10_1177_0040517515606378 crossref_primary_10_1007_s10732_014_9270_1 crossref_primary_10_1109_TIP_2020_2990346 crossref_primary_10_1080_0952813X_2017_1409280 crossref_primary_10_1016_j_amc_2015_01_053 crossref_primary_10_26634_jip_6_3_16322 crossref_primary_10_2174_1573405617666211215111937 crossref_primary_10_1016_j_compmedimag_2021_101991 crossref_primary_10_1109_ACCESS_2018_2882848 crossref_primary_10_1515_bmt_2015_0226 crossref_primary_10_3390_s20154203 crossref_primary_10_1007_s10586_024_04601_5 crossref_primary_10_1016_j_eswa_2014_01_021 crossref_primary_10_1016_j_jestch_2015_12_009 crossref_primary_10_1093_jcde_qwac141 |
| Cites_doi | 10.2307/1932409 10.1016/0730-725X(94)00124-L 10.1111/j.2517-6161.1974.tb00999.x 10.1109/ICASSP.1992.226148 10.1109/3477.484436 10.1109/72.238324 10.1111/j.2517-6161.1977.tb01600.x 10.2307/2987782 10.1109/TEVC.2004.835521 10.1109/ISBI.2009.5193041 10.1063/1.1699114 10.1109/ICBME.2010.5704956 10.1109/51.195944 10.1109/97.873564 10.1109/TPAMI.1984.4767596 10.1109/42.906424 10.1117/12.913743 10.1109/ICCSIT.2008.102 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. Copyright © 2012 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2012 Elsevier B.V. – notice: Copyright © 2012 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.media.2012.01.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 848 |
| ExternalDocumentID | 22377656 10_1016_j_media_2012_01_001 S1361841512000023 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c358t-da4400c05ba7aa06a72e45b0b6b49d0976aaed36c1ba735e44575408080288353 |
| IEDL.DBID | .~1 |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Sat Sep 27 17:18:05 EDT 2025 Wed Feb 19 01:55:53 EST 2025 Thu Apr 24 22:56:40 EDT 2025 Wed Oct 01 03:29:46 EDT 2025 Fri Feb 23 02:28:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Brain segmentation Gossiping algorithm Markov random field (MRF) Magnetic resonance image (MRI) Ant colony optimization (ACO) |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-da4400c05ba7aa06a72e45b0b6b49d0976aaed36c1ba735e44575408080288353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22377656 |
| PQID | 993102702 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_993102702 pubmed_primary_22377656 crossref_citationtrail_10_1016_j_media_2012_01_001 crossref_primary_10_1016_j_media_2012_01_001 elsevier_sciencedirect_doi_10_1016_j_media_2012_01_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2012 2012-05-00 2012-May 20120501 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: May 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2012 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bilmes, J.A., 1998. A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models. International Computer Science Institute. Lei, Cheng, Ao (b0080) 2008; 3 Kim, Park, Kim (b0075) 2000; 7 Zerubia, Chellappa (b0145) 1993; 8 Ouadfel, Batouche (b0105) 2003; 2 Chellappa, Jain (b0025) 1993 Dorigo, Maniezzo, Colorni (b0045) 1996; 26 Geman, Geman (b0055) 1984; 6 Dempster, Laird, Bubin (b0035) 1977; 39 Hammersley, J.M., Clifford, P., 1971. Markov field on finite graphs and lattices. Unpublished. Caputo, Torre, Bouattour, Gigante (b0020) 2002; 90 Li (b0085) 2001 Liang (b0090) 1993; 12 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b0100) 1953; 21 Besag (b0005) 1974; 36 Tanenbaum, A.S., 2006. Distributed systems, pp. 170–176. Yousefi, S., Azmi, R., Zahedi, M., 2010. Brain tumor segmentation in 3D MRIs using an improved Markov random field model. In: Proceedings of the International Conference on Signal and Information Processing (ICSIP 2010). Sun, H., Wang, T., 2008. LCG-MRF-based segmentation of MRI brain images. In: International Conference on Computer Science and Information Technology. Besag (b0010) 1975; 24 Wang, Wang (b0120) 2003; 8 Yousefi, Zahedi, Azmi (b0135) 2011; 12 Clarke, Velthuizen, Camacho, Heine, Vaidyanathan, Hall, Thatcher, Silbiger (b0030) 1995; 13 Lyapunov A.M., 1993. The General Problem of the Stability of Motion, Doctoral dissertation, Univ. Kharkov. Gribben, H., Miller, P., Hanna, G.G., Carson, K.J., Hounsell, A.R., 2009. Map-MRF segmentation of lung tumours in PET/CT images. Zhang, Brady, Smith (b0150) 2001; 20 Kato, Z., Zerubia, J., Berthod, M., 1992. Satellite image classifcation using a modifed metropolis dynamics. In: Proc. of ICASSP, San Francisco. Yousefi, S., Azmi, R., 2011. Comparison evaluation of three brain tumour segmentation methods based on MRF. In: The 19th Iranian Conference on Electrical Engineering (ICEE2011). Yousefi, S., Zahedi, M., Azmi, R., 2010. 3D MRI brain segmentation based on MRF and hybrid of SA and IGA. In: Proceedings of the 17th Iranian Conference of Biomedical Engineering (ICBME2010). Dice (b0040) 1945; 26 Zhang (10.1016/j.media.2012.01.001_b0150) 2001; 20 Dice (10.1016/j.media.2012.01.001_b0040) 1945; 26 10.1016/j.media.2012.01.001_b0060 Yousefi (10.1016/j.media.2012.01.001_b0135) 2011; 12 Geman (10.1016/j.media.2012.01.001_b0055) 1984; 6 Ouadfel (10.1016/j.media.2012.01.001_b0105) 2003; 2 10.1016/j.media.2012.01.001_b0140 10.1016/j.media.2012.01.001_b0065 10.1016/j.media.2012.01.001_b0125 Chellappa (10.1016/j.media.2012.01.001_b0025) 1993 Caputo (10.1016/j.media.2012.01.001_b0020) 2002; 90 Li (10.1016/j.media.2012.01.001_b0085) 2001 Dorigo (10.1016/j.media.2012.01.001_b0045) 1996; 26 10.1016/j.media.2012.01.001_b0070 Metropolis (10.1016/j.media.2012.01.001_b0100) 1953; 21 10.1016/j.media.2012.01.001_b0110 10.1016/j.media.2012.01.001_b0095 Lei (10.1016/j.media.2012.01.001_b0080) 2008; 3 10.1016/j.media.2012.01.001_b0130 Clarke (10.1016/j.media.2012.01.001_b0030) 1995; 13 Besag (10.1016/j.media.2012.01.001_b0005) 1974; 36 10.1016/j.media.2012.01.001_b0015 Wang (10.1016/j.media.2012.01.001_b0120) 2003; 8 10.1016/j.media.2012.01.001_b0115 Zerubia (10.1016/j.media.2012.01.001_b0145) 1993; 8 Besag (10.1016/j.media.2012.01.001_b0010) 1975; 24 Dempster (10.1016/j.media.2012.01.001_b0035) 1977; 39 Kim (10.1016/j.media.2012.01.001_b0075) 2000; 7 Liang (10.1016/j.media.2012.01.001_b0090) 1993; 12 |
| References_xml | – reference: Yousefi, S., Zahedi, M., Azmi, R., 2010. 3D MRI brain segmentation based on MRF and hybrid of SA and IGA. In: Proceedings of the 17th Iranian Conference of Biomedical Engineering (ICBME2010). – volume: 12 start-page: 81 year: 1993 end-page: 85 ident: b0090 article-title: Tissue classification and segmentation of MR images publication-title: IEEE Eng. Med. Biol. – reference: Yousefi, S., Azmi, R., Zahedi, M., 2010. Brain tumor segmentation in 3D MRIs using an improved Markov random field model. In: Proceedings of the International Conference on Signal and Information Processing (ICSIP 2010). – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: b0150 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans Med. Imag. – year: 2001 ident: b0085 article-title: Markov Random Field Modeling in Image Analysis – reference: Hammersley, J.M., Clifford, P., 1971. Markov field on finite graphs and lattices. Unpublished. – reference: Lyapunov A.M., 1993. The General Problem of the Stability of Motion, Doctoral dissertation, Univ. Kharkov. – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: b0045 article-title: Ant system: optimization by a colony of cooperating agents publication-title: J. IEEE Trans. Syst. Man Cyber., Part B – reference: Kato, Z., Zerubia, J., Berthod, M., 1992. Satellite image classifcation using a modifed metropolis dynamics. In: Proc. of ICASSP, San Francisco. – volume: 6 start-page: 721 year: 1984 end-page: 741 ident: b0055 article-title: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 8 start-page: 703 year: 1993 end-page: 709 ident: b0145 article-title: Mean field approximation using compound Gauss-Markov random field for edge detection and image estimation publication-title: J. IEEE Trans. Neural Networks – volume: 13 start-page: 343 year: 1995 end-page: 368 ident: b0030 article-title: MRI segmentation: methods and applications publication-title: Magnet. Reson. Imag – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b0035 article-title: /Maximum likelihood from imcomplete data via EM algorithm publication-title: J. Roy. Stat. Soc., Ser. B – reference: Yousefi, S., Azmi, R., 2011. Comparison evaluation of three brain tumour segmentation methods based on MRF. In: The 19th Iranian Conference on Electrical Engineering (ICEE2011). – volume: 90 start-page: 30 year: 2002 end-page: 34 ident: b0020 article-title: A new kernel method for micro calcification detection: spin glass-Markov random fields publication-title: Stud. Health Technol. Inf. – reference: Gribben, H., Miller, P., Hanna, G.G., Carson, K.J., Hounsell, A.R., 2009. Map-MRF segmentation of lung tumours in PET/CT images. – volume: 2 start-page: 12 year: 2003 end-page: 24 ident: b0105 article-title: MRF-based image segmentation using ant colony system publication-title: J. Electron. Lett. Comput. Vis. Image Anal. – year: 1993 ident: b0025 article-title: Markov Random Fields: Theory and Applications – volume: 8 start-page: 567 year: 2003 end-page: 579 ident: b0120 article-title: Evolutionary optimization in Markov random field modeling publication-title: J. IEEE Tran. Evolution. Comput. – volume: 7 start-page: 301 year: 2000 end-page: 304 ident: b0075 article-title: A genetic algorithm-based segmentation of markov random field modeled images publication-title: IEEE Signal Process. Lett. – volume: 3 start-page: 898 year: 2008 end-page: 901 ident: b0080 article-title: Application of an improved genetic algorithm in image segmentation publication-title: Int. Conf. Comput. Sci. Software Eng. – volume: 12 start-page: 1048 year: 2011 end-page: 1056 ident: b0135 article-title: Automatic tissue classification in multispectral MRIs via an unsupervised model publication-title: World Appl. Sci. (WASJ) – reference: Bilmes, J.A., 1998. A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models. International Computer Science Institute. – reference: Tanenbaum, A.S., 2006. Distributed systems, pp. 170–176. – reference: Sun, H., Wang, T., 2008. LCG-MRF-based segmentation of MRI brain images. In: International Conference on Computer Science and Information Technology. – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: b0040 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 21 start-page: 1087 year: 1953 end-page: 1092 ident: b0100 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. – volume: 24 start-page: 179 year: 1975 end-page: 195 ident: b0010 article-title: Statistical analysis of non-lattice data publication-title: Statistician – volume: 36 start-page: 192 year: 1974 end-page: 236 ident: b0005 article-title: Spatial interaction and the statistical analysis of lattice systems (with discussions) publication-title: J. Roy. Stat. Soc., Ser. B – year: 1993 ident: 10.1016/j.media.2012.01.001_b0025 – volume: 26 start-page: 297 issue: 3 year: 1945 ident: 10.1016/j.media.2012.01.001_b0040 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 13 start-page: 343 issue: 3 year: 1995 ident: 10.1016/j.media.2012.01.001_b0030 article-title: MRI segmentation: methods and applications publication-title: Magnet. Reson. Imag doi: 10.1016/0730-725X(94)00124-L – ident: 10.1016/j.media.2012.01.001_b0130 – volume: 90 start-page: 30 year: 2002 ident: 10.1016/j.media.2012.01.001_b0020 article-title: A new kernel method for micro calcification detection: spin glass-Markov random fields publication-title: Stud. Health Technol. Inf. – volume: 36 start-page: 192 year: 1974 ident: 10.1016/j.media.2012.01.001_b0005 article-title: Spatial interaction and the statistical analysis of lattice systems (with discussions) publication-title: J. Roy. Stat. Soc., Ser. B doi: 10.1111/j.2517-6161.1974.tb00999.x – ident: 10.1016/j.media.2012.01.001_b0065 – ident: 10.1016/j.media.2012.01.001_b0070 doi: 10.1109/ICASSP.1992.226148 – volume: 2 start-page: 12 year: 2003 ident: 10.1016/j.media.2012.01.001_b0105 article-title: MRF-based image segmentation using ant colony system publication-title: J. Electron. Lett. Comput. Vis. Image Anal. – volume: 12 start-page: 1048 issue: 7 year: 2011 ident: 10.1016/j.media.2012.01.001_b0135 article-title: Automatic tissue classification in multispectral MRIs via an unsupervised model publication-title: World Appl. Sci. (WASJ) – year: 2001 ident: 10.1016/j.media.2012.01.001_b0085 – ident: 10.1016/j.media.2012.01.001_b0115 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 10.1016/j.media.2012.01.001_b0045 article-title: Ant system: optimization by a colony of cooperating agents publication-title: J. IEEE Trans. Syst. Man Cyber., Part B doi: 10.1109/3477.484436 – volume: 8 start-page: 703 year: 1993 ident: 10.1016/j.media.2012.01.001_b0145 article-title: Mean field approximation using compound Gauss-Markov random field for edge detection and image estimation publication-title: J. IEEE Trans. Neural Networks doi: 10.1109/72.238324 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.media.2012.01.001_b0035 article-title: /Maximum likelihood from imcomplete data via EM algorithm publication-title: J. Roy. Stat. Soc., Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 24 start-page: 179 issue: 3 year: 1975 ident: 10.1016/j.media.2012.01.001_b0010 article-title: Statistical analysis of non-lattice data publication-title: Statistician doi: 10.2307/2987782 – ident: 10.1016/j.media.2012.01.001_b0095 – volume: 8 start-page: 567 issue: 6 year: 2003 ident: 10.1016/j.media.2012.01.001_b0120 article-title: Evolutionary optimization in Markov random field modeling publication-title: J. IEEE Tran. Evolution. Comput. doi: 10.1109/TEVC.2004.835521 – volume: 3 start-page: 898 year: 2008 ident: 10.1016/j.media.2012.01.001_b0080 article-title: Application of an improved genetic algorithm in image segmentation publication-title: Int. Conf. Comput. Sci. Software Eng. – ident: 10.1016/j.media.2012.01.001_b0060 doi: 10.1109/ISBI.2009.5193041 – volume: 21 start-page: 1087 year: 1953 ident: 10.1016/j.media.2012.01.001_b0100 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 – ident: 10.1016/j.media.2012.01.001_b0125 doi: 10.1109/ICBME.2010.5704956 – volume: 12 start-page: 81 issue: 1 year: 1993 ident: 10.1016/j.media.2012.01.001_b0090 article-title: Tissue classification and segmentation of MR images publication-title: IEEE Eng. Med. Biol. doi: 10.1109/51.195944 – volume: 7 start-page: 301 issue: 11 year: 2000 ident: 10.1016/j.media.2012.01.001_b0075 article-title: A genetic algorithm-based segmentation of markov random field modeled images publication-title: IEEE Signal Process. Lett. doi: 10.1109/97.873564 – volume: 6 start-page: 721 year: 1984 ident: 10.1016/j.media.2012.01.001_b0055 article-title: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1984.4767596 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.media.2012.01.001_b0150 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans Med. Imag. doi: 10.1109/42.906424 – ident: 10.1016/j.media.2012.01.001_b0140 doi: 10.1117/12.913743 – ident: 10.1016/j.media.2012.01.001_b0015 – ident: 10.1016/j.media.2012.01.001_b0110 doi: 10.1109/ICCSIT.2008.102 |
| SSID | ssj0007440 |
| Score | 2.2908556 |
| Snippet | Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a so... Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 840 |
| SubjectTerms | Algorithms Ant colony optimization (ACO) Brain - anatomy & histology Brain segmentation Data Interpretation, Statistical Gossiping algorithm Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic resonance image (MRI) Magnetic Resonance Imaging - methods Markov Chains Markov random field (MRF) Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity |
| Title | Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms |
| URI | https://dx.doi.org/10.1016/j.media.2012.01.001 https://www.ncbi.nlm.nih.gov/pubmed/22377656 https://www.proquest.com/docview/993102702 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: .~1 dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1361-8423 dateEnd: 20160831 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: ACRLP dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1361-8423 dateEnd: 20160831 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIKHN dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1361-8423 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AKRWK dateStart: 19960301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKiF6QC2Psm1BPnAkrBM_wh7pqqsFtBwoK3GznNgLi9gsYsOhl_72zjjOUiTKgWOcseLMODOf4plvAA58oZ3wkzzJemmZyML55FiISYKRphBOqtJqqkYeXejhWJ5dq-sV6Le1MJRWGX1_49ODt44j3ajN7sN02v2VCmpWQhGLB9oWqmCXOXUxOPrznOZBBHhN7VWakHTLPBRyvEJ1BuV3ZYG7M3aGeSU6_Q99hig0-AQbET6yk2aFn2HFV5vw8R9SwU1YG8Xj8i0Y_6AGEKwOymULfzOLlUYVw-HRJZvO0J0sGIUyx3DUstvfVMLF5hO8PWC2cqz5q87s_c38cVrfzhbbMB78vOoPk9hHISmFOq4TZ1EHvOSqsLm1XNs881IVvNCF7DmOgMRa74QuUxQQykuJGE5yYpykXsRK7MBqNa_8LrCe9Mph3FNlxmXu0NJEB5RZkWotte51IGv1Z8pIMk69Lu5Nm012Z4LSDSnd8JRy6jpwuJz00HBsvC2uW8OYF1vFYBR4eyJrzWjwI6KTEVv5-dPCIEhDoJXzrANfGvMuF4LwCd9Q6a_vfeo3WKerJknyO6zWj09-D4FMXeyHnboPH05Oz4cXfwHUQe5p |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIkF7QFBaGgplDxxxs_Y-3BxpRRRK0gM0Um-rtXfTBiVO1LiHXvrbO7NeB5CgB677kNcz65nPuzPfAHz0hXbCT_Ik66VlIgvnk2MhJgl6mkI4qUqrKRt5dK4HY3l2qS434LTNhaGwymj7G5serHVs6UZpdpfTafdHKqhYCXksHmhbnsBTqbKc_sCO7n_FeRADXpN8lSY0vKUeCkFeIT2DAryyQN4ZS8P8xT39C34GN9R_CS8ifmSfmyW-gg1f7cD2b6yCO_BsFO_LX8P4hCpAsDpIl6381TymGlUMm0ff2XSO9mTFyJc5hq2WXd9RDhdbTLC7z2zlWHOszuzsanEzra_nq10Y979cnA6SWEghKYU6rhNnUQa85KqwubVc2zzzUhW80IXsOY6IxFrvhC5THCCUlxJBnOREOUnFiJXYg81qUfl9YD3plUPHp8qMy9yhqokPKLMi1Vpq3etA1srPlJFlnIpdzEwbTvbTBKEbErrhKQXVdeDTetKyIdl4fLhuFWP-2CsG3cDjE1mrRoNfEV2N2MovblcGURoirZxnHXjTqHe9EMRP-IZKv_3fp36A54OL0dAMv55_O4At6mkiJt_BZn1z698jqqmLw7BrHwBkSu_- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+tissue+segmentation+in+MR+images+based+on+a+hybrid+of+MRF+and+social+algorithms&rft.jtitle=Medical+image+analysis&rft.au=Yousefi%2C+Sahar&rft.au=Azmi%2C+Reza&rft.au=Zahedi%2C+Morteza&rft.date=2012-05-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=16&rft.issue=4&rft.spage=840&rft_id=info:doi/10.1016%2Fj.media.2012.01.001&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |