A Simple Polynomial Algorithm for the Longest Path Problem on Cocomparability Graphs

Given a graph $G$, the longest path problem asks to compute a simple path of $G$ with the largest number of vertices. This problem is the most natural optimization version of the well-known and well-studied Hamiltonian path problem, and thus it is NP-hard on general graphs. However, in contrast to t...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on discrete mathematics Vol. 26; no. 3; pp. 940 - 963
Main Authors Mertzios, George B., Corneil, Derek G.
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2012
Subjects
Online AccessGet full text
ISSN0895-4801
1095-7146
1095-7146
DOI10.1137/100793529

Cover

Abstract Given a graph $G$, the longest path problem asks to compute a simple path of $G$ with the largest number of vertices. This problem is the most natural optimization version of the well-known and well-studied Hamiltonian path problem, and thus it is NP-hard on general graphs. However, in contrast to the Hamiltonian path problem, there are only a few restricted graph families, such as trees, and some small graph classes where polynomial algorithms for the longest path problem have been found. Recently it has been shown that this problem can be solved in polynomial time on interval graphs by applying dynamic programming to a characterizing ordering of the vertices of the given graph [K. Ioannidou, G. B. Mertzios, and S. D. Nikolopoulos, Algorithmica, 61 (2011), pp. 320--341], thus answering an open question. In the present paper, we provide the first polynomial algorithm for the longest path problem on a much greater class, namely on cocomparability graphs. Our algorithm uses a similar, but essentially simpler, dynamic programming approach, which is applied to a lexicographic depth first search (LDFS) characterizing ordering of the vertices of a cocomparability graph. Therefore, our results provide evidence that this general dynamic programming approach can be used in a more general setting, leading to efficient algorithms for the longest path problem on greater classes of graphs. LDFS has recently been introduced in [D. G. Corneil and R. M. Krueger, SIAM J. Discrete Math., 22 (2008), pp. 1259--1276]. Since then, a similar phenomenon of extending an existing interval graph algorithm to cocomparability graphs by using an LDFS preprocessing step has also been observed for the minimum path cover problem [D. G. Corneil, B. Dalton, and M. Habib, submitted]. Therefore, more interestingly, our results also provide evidence that cocomparability graphs present an interval graph structure when they are considered using an LDFS ordering of their vertices, which may lead to other new and more efficient combinatorial algorithms. [PUBLICATION ABSTRACT]
AbstractList Given a graph $G$, the longest path problem asks to compute a simple path of $G$ with the largest number of vertices. This problem is the most natural optimization version of the well-known and well-studied Hamiltonian path problem, and thus it is NP-hard on general graphs. However, in contrast to the Hamiltonian path problem, there are only a few restricted graph families, such as trees, and some small graph classes where polynomial algorithms for the longest path problem have been found. Recently it has been shown that this problem can be solved in polynomial time on interval graphs by applying dynamic programming to a characterizing ordering of the vertices of the given graph [K. Ioannidou, G. B. Mertzios, and S. D. Nikolopoulos, Algorithmica, 61 (2011), pp. 320--341], thus answering an open question. In the present paper, we provide the first polynomial algorithm for the longest path problem on a much greater class, namely on cocomparability graphs. Our algorithm uses a similar, but essentially simpler, dynamic programming approach, which is applied to a lexicographic depth first search (LDFS) characterizing ordering of the vertices of a cocomparability graph. Therefore, our results provide evidence that this general dynamic programming approach can be used in a more general setting, leading to efficient algorithms for the longest path problem on greater classes of graphs. LDFS has recently been introduced in [D. G. Corneil and R. M. Krueger, SIAM J. Discrete Math., 22 (2008), pp. 1259--1276]. Since then, a similar phenomenon of extending an existing interval graph algorithm to cocomparability graphs by using an LDFS preprocessing step has also been observed for the minimum path cover problem [D. G. Corneil, B. Dalton, and M. Habib, submitted]. Therefore, more interestingly, our results also provide evidence that cocomparability graphs present an interval graph structure when they are considered using an LDFS ordering of their vertices, which may lead to other new and more efficient combinatorial algorithms. [PUBLICATION ABSTRACT]
Author Mertzios, George B.
Corneil, Derek G.
Author_xml – sequence: 1
  givenname: George B.
  surname: Mertzios
  fullname: Mertzios, George B.
– sequence: 2
  givenname: Derek G.
  surname: Corneil
  fullname: Corneil, Derek G.
BookMark eNp1kMFLwzAYxYNMcJse_A8CnhTqkqVZ0-MYOoWBA-e5fE2TNSNNapoh_e-tTDyInt53-H2P994EjZx3CqFrSu4pZdmMEpLljM_zMzSmJOdJRtPFCI2JGO5UEHqBJl13IISmKeVjtFviV9O0VuGtt73zjQGLl3bvg4l1g7UPONYKb7zbqy7iLcQab4MvrWqwd3jlpW9aCFAaa2KP1wHaurtE5xpsp66-dYreHh92q6dk87J-Xi03iWRcxKTiVSXLua44zRlAJdiCSVmySmkCmpQ6GwAlM5BCSJbzXM4XQkOelRnoBVRsiu5OvkfXQv8B1hZtMA2EvqCk-Nqj-NljgG9OcBv8-3EoUxz8Mbgh3wAJmnLGOBmo2YmSwXddULqQJkI03sUAxv7pe_vr4_8MnwkJfhQ
CitedBy_id crossref_primary_10_1016_j_dam_2012_08_024
crossref_primary_10_1007_s11227_012_0852_0
crossref_primary_10_1016_j_ipl_2015_12_001
crossref_primary_10_1137_11083856X
crossref_primary_10_1080_10556788_2015_1130130
crossref_primary_10_1016_j_aam_2022_102407
crossref_primary_10_1016_j_tcs_2021_01_005
crossref_primary_10_1007_s11083_023_09641_x
crossref_primary_10_1016_j_tcs_2017_05_017
crossref_primary_10_1137_17M1120920
crossref_primary_10_1002_jgt_21795
crossref_primary_10_1007_s00453_018_00538_5
crossref_primary_10_1137_140981265
crossref_primary_10_3390_a15020061
crossref_primary_10_1016_j_cor_2019_104860
crossref_primary_10_1007_s12572_019_00244_7
crossref_primary_10_1016_j_dam_2015_06_011
crossref_primary_10_1016_j_disopt_2017_06_001
crossref_primary_10_1137_15M1012396
crossref_primary_10_1016_j_dam_2015_10_022
crossref_primary_10_1155_2022_8127055
Cites_doi 10.1007/s00453-010-9411-3
10.1016/0012-365X(95)00057-4
10.1016/S0020-0190(01)00198-3
10.1137/S0895480100373455
10.1137/0205049
10.1137/0211056
10.1016/j.ipl.2007.02.010
10.1137/S0895480104445307
10.1016/0020-0190(85)90050-X
10.1016/0020-0190(90)90064-5
10.1137/S0097539791200375
10.1016/0020-0190(89)90059-8
10.1016/0020-0190(83)90078-9
10.1007/BF00571188
10.1137/0406032
10.1137/0205021
10.1137/050623498
10.1016/0020-0190(91)90245-D
10.1016/0020-0190(89)90038-0
10.1016/0012-365X(93)90223-G
10.1007/BF02523689
ContentType Journal Article
Copyright 2012, Society for Industrial and Applied Mathematics
Copyright_xml – notice: 2012, Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
3V.
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
ADTOC
UNPAY
DOI 10.1137/100793529
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection (NTUSG)
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database (ProQuest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global (OCUL)
Agriculture Science Database
Computing Database
Military Database (ProQuest)
ProQuest Research Library
Science Database (ProQuest)
Telecommunications Database
Biological Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database (ProQuest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Agricultural Science Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-7146
EndPage 963
ExternalDocumentID oai:durham-repository.worktribe.com:1499606
2775186141
10_1137_100793529
GroupedDBID .4S
.DC
123
4.4
6TJ
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
ADNWM
ADXHL
AENEX
AFFNX
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBS
EDO
EJD
EMK
EST
ESX
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
RJG
RNS
RSI
TN5
TUS
UQL
YNT
YYP
3V.
7XB
88A
88K
8AL
8FK
AFFHD
JQ2
L.-
M0N
M2T
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c358t-d5ddcb2fd5193aad8363ccb3def0af0bf75ddec7ac88c3959c268fa97b7af6ad3
IEDL.DBID UNPAY
ISSN 0895-4801
1095-7146
IngestDate Fri Oct 03 06:32:42 EDT 2025
Wed Oct 29 12:24:01 EDT 2025
Wed Oct 01 04:11:45 EDT 2025
Thu Apr 24 23:08:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-d5ddcb2fd5193aad8363ccb3def0af0bf75ddec7ac88c3959c268fa97b7af6ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://durham-repository.worktribe.com/output/1499606
PQID 1081453350
PQPubID 666311
PageCount 24
ParticipantIDs unpaywall_primary_10_1137_100793529
proquest_journals_1081453350
crossref_citationtrail_10_1137_100793529
crossref_primary_10_1137_100793529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on discrete mathematics
PublicationYear 2012
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References atyp_ref4
atyp_ref2
atyp_ref1
atyp_ref9
atyp_ref20
atyp_ref8
atyp_ref10
atyp_ref21
atyp_ref32
atyp_ref7
atyp_ref11
atyp_ref12
atyp_ref13
atyp_ref24
atyp_ref14
atyp_ref25
atyp_ref26
atyp_ref16
atyp_ref27
atyp_ref18
atyp_ref19
References_xml – ident: atyp_ref16
  doi: 10.1007/s00453-010-9411-3
– ident: atyp_ref24
  doi: 10.1016/0012-365X(95)00057-4
– ident: atyp_ref4
  doi: 10.1016/S0020-0190(01)00198-3
– ident: atyp_ref9
  doi: 10.1137/S0895480100373455
– ident: atyp_ref14
  doi: 10.1137/0205049
– ident: atyp_ref18
  doi: 10.1137/0211056
– ident: atyp_ref32
  doi: 10.1016/j.ipl.2007.02.010
– ident: atyp_ref7
  doi: 10.1137/S0895480104445307
– ident: atyp_ref20
  doi: 10.1016/0020-0190(85)90050-X
– ident: atyp_ref1
  doi: 10.1016/0020-0190(90)90064-5
– ident: atyp_ref13
  doi: 10.1137/S0097539791200375
– ident: atyp_ref10
  doi: 10.1016/0020-0190(89)90059-8
– ident: atyp_ref2
  doi: 10.1016/0020-0190(83)90078-9
– ident: atyp_ref12
  doi: 10.1007/BF00571188
– ident: atyp_ref21
  doi: 10.1137/0406032
– ident: atyp_ref27
  doi: 10.1137/0205021
– ident: atyp_ref8
  doi: 10.1137/050623498
– ident: atyp_ref26
  doi: 10.1016/0020-0190(91)90245-D
– ident: atyp_ref25
  doi: 10.1016/0020-0190(89)90038-0
– ident: atyp_ref11
  doi: 10.1016/0012-365X(93)90223-G
– ident: atyp_ref19
  doi: 10.1007/BF02523689
SSID ssj0014415
Score 2.1016786
Snippet Given a graph $G$, the longest path problem asks to compute a simple path of $G$ with the largest number of vertices. This problem is the most natural...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 940
SubjectTerms Algorithms
Dynamic programming
Graphs
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED6VMsDCG1FesoCBJVISx3YyIFQqSoWgqqBIbJFjJ4AUkkKDUP89vjwKA7A7lnyXs7_z-b4P4IQmIpC-41lORF2ToHBmRQFjluLc9VRsEEPZ4X075IMH7_qRPbZg2PTC4LPKZk8sN2qdK7wjN9FtZjTYhNnnkzcLVaOwutpIaMhaWkGflRRjC7DoIjNWGxYvLoeju3ldAbOHElcGzELilJpryKHYgI5ccazEmj9OqG_YufSRTeTsU6bpjxOovwYrNXQk3crX69CKsw1YbWQZSB2lmzDukvsXJP0lozydYdsxfpU-mdUUz6_EoFRiUB-5yTOsLZGRwYBkVOnKkDwjvbx6l14ReM_IFVJaT7fgoX857g2sWjzBUpT5haWZ1ipyE40QTUrtU06ViqiOE1smdpQIMyBWQirfVzRggXK5n8hAREImXGq6De0sz-IdINrB2qvnxwm3PU8K6QfCjmXAjTOZcGQHThuDhapmFkeBizQsMwwqwrltO3A0Hzqp6DR-G7TfWD2sI2oafvu_A8dzT_w9ye7_k-zBsoE-bnWZsg_t4v0jPjDwoogO63_mC6PYzR8
  priority: 102
  providerName: ProQuest
Title A Simple Polynomial Algorithm for the Longest Path Problem on Cocomparability Graphs
URI https://www.proquest.com/docview/1081453350
https://durham-repository.worktribe.com/output/1499606
UnpaywallVersion submittedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-7146
  dateEnd: 20140731
  omitProxy: true
  ssIdentifier: ssj0014415
  issn: 1095-7146
  databaseCode: BENPR
  dateStart: 19880201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1095-7146
  dateEnd: 20140731
  omitProxy: true
  ssIdentifier: ssj0014415
  issn: 1095-7146
  databaseCode: 8FG
  dateStart: 19880201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Pb9MwFMeftvYAF8b4oRVGZcEOXFKSOP6RY5nWTdOoorGKcaocO9mqZUnVJkLlr8cvP8qEmAQ3H16sRM-OP_bz-z6AI5qKUEkvcLyY-naDwpkTh4w5mnM_0IklhjrD-8uUn82C82t2vQO8y4Ux1epW3Tt4YL5eYJh5hPeTsPhTc7ZUVOWyKj9Zrkf03oU-Z7bRg_5sGo2_18gYMgc1Ueowp20L-y9oJYU8innmKAnHaqR8sBD9pssnVb5Umx8qyx4sNJM9-Na9YnO_5G5UlfFI__xDvfH_v-E5PGvZk4ybwbIPO0n-Ava6ug6kneYv4WpMvi5QNZhERbbBvGV8KrspVovy9p5YzCUWG8lFkWNwikQWIknUFKYhRU6Oi-Zie6MAviGnqIm9fgWzycnV8ZnTVl9wNGWydAwzRsd-apDxlDKScqp1TE2Suip141RYg0QLpaXUNGSh9rlMVShioVKuDH0NvbzIkwMgxsPgbSCTlLtBoISSoXATFXI7Gpjw1AA-dq6Y61aaHCtkZPN6i0LFfOu1Abzfmi4bPY6_GR12_py3U3KNSqheYOGWuQP4sPXx4528-Sert_DUIpTfHMocQq9cVck7iyllPIRdOTkdQv_zyTS6HLYj9BcZoemZ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RONALLf1Qt6VgFSr1EimJYzs-IET56FKW1apdJG6pYzu0Uppsu4vQ_jl-W8eJs3Cg3LjbcxiP7Tcez3sAO7QQUqVREkQ5jTFB4SzIJWOB5jxOtEXE0HR4nw15_zz5esEuluCm64Vx3yq7M7E5qE2t3Rs57m60iNiEhXuTP4FTjXLV1U5CQ3lpBbPbUIz5xo5TO7_GFG66e3KI6_0xjo-Pxgf9wKsMBJqydBYYZozO48I4LKOUSSmnWufU2CJURZgXAgdYLZROU00lkzrmaaGkyIUquDIU7T6BlYQmEpO_lc9Hw9G3RR3DZSsNjpUscEQtntsooq7h3XHTsQbb3rkRb2Hu6lU1UfNrVZZ3brzj57DmoSrZb2NrHZZs9QKedTIQxJ8KL2G8T77_ciTDZFSXc9fm7GaVl-i92c_fBFExQZRJBnXlallkhJiTjFodG1JX5KBu_8G3hOFz8sVRaE9fwfmjuPE1LFd1Zd8AMZGr9SapLXiYJEqoVIrQKskxeJiIVA8-dQ7LtGcyd4IaZdZkNFRkC9_24MNi6KSl77hv0Ebn9czv4Gl2G2892F6sxP-NvH3YyBas9sdng2xwMjx9B08RdsXtQ84GLM_-Xtn3CG1m-aaPHwI_Hjtk_wFjcg4q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Pb9MwFMeftu7ALpQfmygryBocuKRL4thOjtVEqRCrItGK7lQ5drJWpEnVJprKX49ffpQKgQQ3H16sRM-OP_bz-z6A9zQRgfQdz3Ii6poNCmdWFDBmKc5dT8WGGKoM77sJH8-8z3M2PwHe5sLocruUawsPzHcrDDMP8H4SFn-qz5bystiUxY3hekTvUzjjzDQ6cDabhMP7ChkDZqEmShXmNG1h_gWNpJBDMc8cJeFYhZRHC9EvunxSZhu5f5RperTQjLrwrX3F-n7J90FZRAP14zf1xv__hmfwtGFPMqwHy3M4ibMX0G3rOpBmmr-E6ZB8XaFqMAnzdI95y_hU-pBvV8VyTQzmEoON5EueYXCKhAYiSVgXpiF5Rm7z-mJ7rQC-J59QE3t3AbPRx-nt2GqqL1iKMr-wNNNaRW6ikfGk1D7lVKmI6jixZWJHiTAGsRJS-b6iAQuUy_1EBiISMuFS00voZHkWvwKiHQzeen6ccNvzpJB-IOxYBtyMBiYc2YMPrSsWqpEmxwoZ6aLaolCxOHitB9cH002tx_Eno37rz0UzJXeohOp4Bm6Z3YN3Bx__vZPX_2R1BecGodz6UKYPnWJbxm8MphTR22ZM_gRqbecZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+Polynomial+Algorithm+for+the+Longest+Path+Problem+on+Cocomparability+Graphs&rft.jtitle=SIAM+journal+on+discrete+mathematics&rft.au=Mertzios%2C+George+B.&rft.au=Corneil%2C+Derek+G.&rft.date=2012-01-01&rft.issn=0895-4801&rft.eissn=1095-7146&rft.volume=26&rft.issue=3&rft.spage=940&rft.epage=963&rft_id=info:doi/10.1137%2F100793529&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_100793529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4801&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4801&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4801&client=summon