First-Order Logic and First-Order Functions

This paper begins the study of first-order functions, which are a generalization of truth-functions. The concepts of truth-table and systems (and clones) of truth-functions, both introduced in propositional logic by Post, are also generalized and studied in the quantificational setting. The general...

Full description

Saved in:
Bibliographic Details
Published inLogica universalis Vol. 9; no. 3; pp. 281 - 329
Main Author Freire, Rodrigo A.
Format Journal Article
LanguageEnglish
Published Basel Springer Basel 01.09.2015
Subjects
Online AccessGet full text
ISSN1661-8297
1661-8300
DOI10.1007/s11787-015-0126-8

Cover

Abstract This paper begins the study of first-order functions, which are a generalization of truth-functions. The concepts of truth-table and systems (and clones) of truth-functions, both introduced in propositional logic by Post, are also generalized and studied in the quantificational setting. The general facts about these concepts are given in the first five sections, and constitute a “general theory” of first-order functions. The central theme of this paper is the relation of definition among notions expressed by formulas of first-order logic. We emphasize that logic is not concerned only with the consequence relation among notions expressed by formulas. It also attends to the relation of definition among notions, where a notion is defined from other notions. Sections 5 and 6 deal exclusively with the relation of definition among notions expressed by formulas of first-order logic. In these sections, we study the systems of first-order functions, which are the sets of first-order functions closed under definitions. Sections 7 and 8 are concerned with the relativization of first-order functions to a class of structures. The relativization to a class of structures is a fundamental operation which is used in order to relate the theory of first-order functions with set theory and first-order model theory, a subject which we have barely scratched the surface. The apparatus developed in this paper enables us to define what is a vehicle for the foundation of classical mathematics in set theory, and, in Sect. 8, we prove that first-order logic with one binary predicate variable is not a minimal vehicle for the foundation of classical mathematics in set theory. Sections 9 and 10 introduce further operations and ideals of first-order functions. Besides some results on the influence of the arguments of a first-order function, a result about definability is proved in Sect. 10.1. It is this theorem that provides necessary and sufficient conditions for a first-order function to be in a finitely generated ideal. In Sect. 11, this result is applied to the problem of predicate definability in classes of structures, the problem with which Beth’s theorem dealt in the case of elementary classes.
AbstractList This paper begins the study of first-order functions, which are a generalization of truth-functions. The concepts of truth-table and systems (and clones) of truth-functions, both introduced in propositional logic by Post, are also generalized and studied in the quantificational setting. The general facts about these concepts are given in the first five sections, and constitute a “general theory” of first-order functions. The central theme of this paper is the relation of definition among notions expressed by formulas of first-order logic. We emphasize that logic is not concerned only with the consequence relation among notions expressed by formulas. It also attends to the relation of definition among notions, where a notion is defined from other notions. Sections 5 and 6 deal exclusively with the relation of definition among notions expressed by formulas of first-order logic. In these sections, we study the systems of first-order functions, which are the sets of first-order functions closed under definitions. Sections 7 and 8 are concerned with the relativization of first-order functions to a class of structures. The relativization to a class of structures is a fundamental operation which is used in order to relate the theory of first-order functions with set theory and first-order model theory, a subject which we have barely scratched the surface. The apparatus developed in this paper enables us to define what is a vehicle for the foundation of classical mathematics in set theory, and, in Sect. 8, we prove that first-order logic with one binary predicate variable is not a minimal vehicle for the foundation of classical mathematics in set theory. Sections 9 and 10 introduce further operations and ideals of first-order functions. Besides some results on the influence of the arguments of a first-order function, a result about definability is proved in Sect. 10.1. It is this theorem that provides necessary and sufficient conditions for a first-order function to be in a finitely generated ideal. In Sect. 11, this result is applied to the problem of predicate definability in classes of structures, the problem with which Beth’s theorem dealt in the case of elementary classes.
Author Freire, Rodrigo A.
Author_xml – sequence: 1
  givenname: Rodrigo A.
  surname: Freire
  fullname: Freire, Rodrigo A.
  email: rodrigofreire@unb.br
  organization: Department of Philosophy, University of Brasília
BookMark eNp9j01Lw0AQhhepYFv9Ad5yl9WZpJvdHKUYFQK96HmZ7EdJqRvZTQ_-exOiIB56GGZ4mWeYZ8UWoQ-OsVuEewSQDwlRKskBxVh5ydUFW2JZIlcFwOJ3zit5xVYpHQBKUFAs2V3dxTTwXbQuZk2_70xGwWZ_0_oUzND1IV2zS0_H5G5--pq9109v2xfe7J5ft48NN4VQA7cgWkfkN85Zi20uSBiReymFBDDghZWAhGSdB-dt6zdVa8miAWWpqKpizeR818Q-pei8Nt1A0wtDpO6oEfTkrGdnPTrryVmrkcR_5GfsPih-nWXymUnjbti7qA_9KYZR8Az0Dd7oa4s
CitedBy_id crossref_primary_10_1016_j_apenergy_2023_121467
crossref_primary_10_1093_jigpal_jzy073
crossref_primary_10_21146_2074_1472_2020_26_1_91_109
crossref_primary_10_1007_s11787_018_0215_6
Cites_doi 10.1515/9781400882366
10.1017/S0004972700021614
ContentType Journal Article
Copyright Springer Basel 2015
Copyright_xml – notice: Springer Basel 2015
DBID AAYXX
CITATION
DOI 10.1007/s11787-015-0126-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1661-8300
EndPage 329
ExternalDocumentID 10_1007_s11787_015_0126_8
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
WK8
YLTOR
Z45
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c358t-d05beaaf4eedd1b25a5c52f775700c0f5d701a1adef0efdbf49bdad1c08da3993
IEDL.DBID U2A
ISSN 1661-8297
IngestDate Wed Oct 01 00:41:43 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Boolean functions
Secondary 03A99
Primary 03B10
definability
foundations of first-order logic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-d05beaaf4eedd1b25a5c52f775700c0f5d701a1adef0efdbf49bdad1c08da3993
PageCount 49
ParticipantIDs crossref_citationtrail_10_1007_s11787_015_0126_8
crossref_primary_10_1007_s11787_015_0126_8
springer_journals_10_1007_s11787_015_0126_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Logica universalis
PublicationTitleAbbrev Log. Univers
PublicationYear 2015
Publisher Springer Basel
Publisher_xml – name: Springer Basel
References Fraïssé, R.: Cours de Logique Mathématique, Tome 1. Gauthier-Villars, Paris (1971)
Batchelor, R.: Metaphysical Modal Logic, Volume I: Logical Functions. Sao Paulo, Unpublished manuscript (2014)
Poizat, B.: Cours de Théorie des Modèles. Nur Al-Mantiq Wal-Ma’rifah. Villeurbanne (1985)
HintikkaJ.Distributive normal forms in the calculus of predicatesActa Philos. Fennica.195367169778
Batchelor, R.: Metaphysical Modal Logic, Volume II: Logical Systems. Sao Paulo, Unpublished manuscript (2014)
FreireR.On existence in set theory, part III: Applications to new axiomsSouth Am. J. Log.201511249265
Fraïssé, R.: Cours de Logique Mathématique, Tome 2. Gauthier-Villars, Paris (1972)
HumberstoneL.Monadic representability of certain binary relationsBull. Aust. Math. Soc.19832936537574872910.1017/S0004972700021614
Smullyan, R.: First-Order Logic. New York (1995)
Post, E.: The Two-Valued Iterative Systems of Mathematical Logic. Princeton, New Jersey (1941)
126_CR1
126_CR2
126_CR3
126_CR4
J. Hintikka (126_CR6) 1953; 6
L. Humberstone (126_CR7) 1983; 29
126_CR8
126_CR9
126_CR10
R. Freire (126_CR5) 2015; 1
References_xml – reference: Fraïssé, R.: Cours de Logique Mathématique, Tome 2. Gauthier-Villars, Paris (1972)
– reference: HintikkaJ.Distributive normal forms in the calculus of predicatesActa Philos. Fennica.195367169778
– reference: Smullyan, R.: First-Order Logic. New York (1995)
– reference: Batchelor, R.: Metaphysical Modal Logic, Volume II: Logical Systems. Sao Paulo, Unpublished manuscript (2014)
– reference: HumberstoneL.Monadic representability of certain binary relationsBull. Aust. Math. Soc.19832936537574872910.1017/S0004972700021614
– reference: Poizat, B.: Cours de Théorie des Modèles. Nur Al-Mantiq Wal-Ma’rifah. Villeurbanne (1985)
– reference: Batchelor, R.: Metaphysical Modal Logic, Volume I: Logical Functions. Sao Paulo, Unpublished manuscript (2014)
– reference: Fraïssé, R.: Cours de Logique Mathématique, Tome 1. Gauthier-Villars, Paris (1971)
– reference: Post, E.: The Two-Valued Iterative Systems of Mathematical Logic. Princeton, New Jersey (1941)
– reference: FreireR.On existence in set theory, part III: Applications to new axiomsSouth Am. J. Log.201511249265
– volume: 1
  start-page: 249
  issue: 1
  year: 2015
  ident: 126_CR5
  publication-title: South Am. J. Log.
– ident: 126_CR8
– ident: 126_CR3
– ident: 126_CR10
– ident: 126_CR4
– ident: 126_CR9
  doi: 10.1515/9781400882366
– ident: 126_CR2
– volume: 29
  start-page: 365
  year: 1983
  ident: 126_CR7
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700021614
– ident: 126_CR1
– volume: 6
  start-page: 71
  year: 1953
  ident: 126_CR6
  publication-title: Acta Philos. Fennica.
SSID ssj0060803
Score 1.9729942
Snippet This paper begins the study of first-order functions, which are a generalization of truth-functions. The concepts of truth-table and systems (and clones) of...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 281
SubjectTerms Computer Science
Logic
Mathematics
Mathematics and Statistics
Title First-Order Logic and First-Order Functions
URI https://link.springer.com/article/10.1007/s11787-015-0126-8
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1661-8300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060803
  issn: 1661-8297
  databaseCode: AFBBN
  dateStart: 20070101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1661-8300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060803
  issn: 1661-8297
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1661-8300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060803
  issn: 1661-8297
  databaseCode: U2A
  dateStart: 20070123
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vejBR1Wsj5KDJ8vCZpPNJscijUWpXizUU9gnCBLFxv_vbJq0FlTwukxymJ2d-ZaZ_T6AqwhTnKJMkTjzEmYmtEThrYNoIUwSKRdFtSTL9CGZzOK7OZ8377gX7bR725KsM_X6sVuIwYVXXz9sxhKSbkOXezYvDOIZG7XpN0EIVE_VY-Eh_t1o28r86RebxWizE1oXmPwA9hpkGIyWW3kIW7bswX6ruhA0h7AHu9MV0-riCIb5C-I38ugZNAMvnKwDWZrg-2qOpauOrmOY5eOnmwlpBBCIjnhaEUO5slK6GAuZCRXjkmvOnBCelF5Tx42goQylsY5aZ5SLM2WkCTVNjfTI4wQ65VtpTyHIslgIhWjCoRVLnaKG4oq1WoVaM94H2nqi0A07uBepeC3WvMbeeQU6r_DOK9I-XK8-eV9SY_xlPGzdWzSnZPG79dm_rM9hh9V76ie_LqBTfXzaS4QKlRpAd3T7fD8e1CHyBW9ntYM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADhQKiPDMwURk5TpzHWKGWQh8srVSmKH5JCBQQTRd-PXYatxQBUlfrYlmX8z3ku-8DuPK0i2OYMOTHhsJMuBIxXXUgHoYi8JjyvIKSZTAMumP_YUIn5Rz31Ha72yfJwlMvh91cbVy69DXNZiRA0SZUfV2fkApUW3dPvbZ1wIFOgoq-eh16kJkctY-Zv22yGo5W30KLENOpwcgebt5Z8nIzy9kN__yB27jm6fdgt0w5ndbcRvZhQ2Z1qFk6B6e83XXYGSwgXKcH0Ow868QQPRpoTscwMnMnzYTzfbWjY2Jhtocw7rRHt11UMisg7tEoRwJTJtNU-TpCCpcRmlJOiQpDg3bPsaIixG7qpkIqLJVgyo-ZSIXLcSRSk9IcQSV7y-QxOHHshyHTaYrSUiRSDAusV6TkzOWc0AZgq-CEl7Djhv3iNVkCJhvVJFo1iVFNEjXgevHJ-xxz4z_hplV4Ul6_6d_SJ2tJX8JWdzToJ_37Ye8Utknx90x72RlU8o-ZPNf5SM4uSvv7Ao_P06E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBR1Wszxw8WRY3m2wex6KG-mj1YKG3sE8QJBYb_7-zadJaUMHrMslhdnbnW2bm-wAuArziJGWShKmTMNO-IRJfHUTFsY4CaYOgkmQZDKP-KLwf83Gtczptut2bkuRspsGxNBXl1UTbq8Xgm4-Bhs9g13jGIpKswlroeBIwoEes11zFEcKhqsMekxBxM6RNWfOnXywnpuWqaJVssh3YqlGi15tt6y6smKIN240Cg1cfyDZsDuasq9M96GaviOXIk2PT9JyIsvJEob3vqxmmsSrS9mGU3b5c90kthkBUwJOSaMqlEcKGmNS0LxkXXHFm49gR1CtquY6pL3yhjaXGamnDVGqhfUUTLRwKOYBW8V6YQ_DSNIxjicjCohVLrKSa4ooxSvpKMd4B2ngiVzVTuBOseMsXHMfOeTk6L3fOy5MOXM4_mcxoMv4y7jbuzesTM_3d-uhf1uew_nyT5Y93w4dj2GDV9rqGsBNolR-f5hQRRCnPqij5Alukuxc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-Order+Logic+and+First-Order+Functions&rft.jtitle=Logica+universalis&rft.au=Freire%2C+Rodrigo+A.&rft.date=2015-09-01&rft.issn=1661-8297&rft.eissn=1661-8300&rft.volume=9&rft.issue=3&rft.spage=281&rft.epage=329&rft_id=info:doi/10.1007%2Fs11787-015-0126-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11787_015_0126_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8297&client=summon