Case-studies on exploiting explicit customer requirements in recommender systems
Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically exploit explicit or implicit user feedback such as ratings, buying records or clickstream data and apply statistical methods to derive recommendat...
Saved in:
Published in | User modeling and user-adapted interaction Vol. 19; no. 1-2; pp. 133 - 166 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0924-1868 1573-1391 |
DOI | 10.1007/s11257-008-9048-y |
Cover
Abstract | Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically exploit explicit or implicit user feedback such as ratings, buying records or clickstream data and apply statistical methods to derive recommendations. This paper focuses on explicitly formulated customer requirements as the sole type of user feedback. Its contribution lies in comparing different techniques such as knowledge- and utility-based methods, collaborative filtering, association rule mining as well as hybrid variants when user models consist solely of explicit customer requirements. We examine how this type of user feedback can be exploited for personalization in e-commerce scenarios. Furthermore, examples of actual online shops are developed where such contextual user information is available, demonstrating how more efficient RS configurations can be implemented. Results indicate that, especially for new users, explicit customer requirements are a useful source of feedback for personalization and hybrid configurations of collaborative and knowledge-based techniques achieve best results. |
---|---|
AbstractList | Issue Title: Special Issue on Data Mining for Personalization Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically exploit explicit or implicit user feedback such as ratings, buying records or clickstream data and apply statistical methods to derive recommendations. This paper focuses on explicitly formulated customer requirements as the sole type of user feedback. Its contribution lies in comparing different techniques such as knowledge- and utility-based methods, collaborative filtering, association rule mining as well as hybrid variants when user models consist solely of explicit customer requirements. We examine how this type of user feedback can be exploited for personalization in e-commerce scenarios. Furthermore, examples of actual online shops are developed where such contextual user information is available, demonstrating how more efficient RS configurations can be implemented. Results indicate that, especially for new users, explicit customer requirements are a useful source of feedback for personalization and hybrid configurations of collaborative and knowledge-based techniques achieve best results. [PUBLICATION ABSTRACT] Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically exploit explicit or implicit user feedback such as ratings, buying records or clickstream data and apply statistical methods to derive recommendations. This paper focuses on explicitly formulated customer requirements as the sole type of user feedback. Its contribution lies in comparing different techniques such as knowledge- and utility-based methods, collaborative filtering, association rule mining as well as hybrid variants when user models consist solely of explicit customer requirements. We examine how this type of user feedback can be exploited for personalization in e-commerce scenarios. Furthermore, examples of actual online shops are developed where such contextual user information is available, demonstrating how more efficient RS configurations can be implemented. Results indicate that, especially for new users, explicit customer requirements are a useful source of feedback for personalization and hybrid configurations of collaborative and knowledge-based techniques achieve best results. |
Author | Zanker, Markus Jessenitschnig, Markus |
Author_xml | – sequence: 1 givenname: Markus surname: Zanker fullname: Zanker, Markus email: markus.zanker@uni-klu.ac.at organization: University Klagenfurt – sequence: 2 givenname: Markus surname: Jessenitschnig fullname: Jessenitschnig, Markus organization: University Klagenfurt |
BookMark | eNp9kE1LAzEQQINUsFZ_gLfFezST7G6yRyl-QUEPeg5pNltSukmbZMH996auIAh6SmYyb2byztHMeWcQugJyA4Tw2whAK44JEbghpcDjCZpDxRkG1sAMzUlDSwyiFmfoPMYtyUzNmzl6XapocExDa00svCvMx37nbbJu83W12qZCDzH53oQimMNgg-mNS7GwLsfa9zlq81scYzJ9vECnndpFc_l9LtD7w_3b8gmvXh6fl3crrFklEtYKoFSUdJpC2zFO67puQZfdGlhHO0VZXeWUIhwErDURUJeKlYyVXGnKO7ZA11PfffCHwcQkt34ILo-UFGj-bU1ELoKpSAcfYzCd3AfbqzBKIPLoTU7eZPYmj97kmBn-i8kKVLLepaDs7l-STmTMU9zGhJ-V_oY-ARURhWA |
CitedBy_id | crossref_primary_10_1080_10494820_2012_745430 crossref_primary_10_1145_2512208 crossref_primary_10_1007_s11257_008_9055_z crossref_primary_10_1016_j_ins_2012_04_008 crossref_primary_10_1109_TCE_2009_4814447 crossref_primary_10_1007_s10601_010_9098_8 crossref_primary_10_1007_s11257_011_9115_7 crossref_primary_10_1007_s11257_008_9047_z crossref_primary_10_1177_1460458214521051 crossref_primary_10_1108_IJOPM_07_2012_0387 crossref_primary_10_1109_TLT_2015_2434824 crossref_primary_10_1007_s12652_019_01619_1 crossref_primary_10_1527_tjsai_36_4_C_KC4 crossref_primary_10_1145_2037661_2037665 crossref_primary_10_4018_JOEUC_293289 crossref_primary_10_1088_1674_1056_26_12_128901 crossref_primary_10_1016_j_knosys_2011_08_012 crossref_primary_10_1145_3453154 crossref_primary_10_1016_j_knosys_2011_02_004 crossref_primary_10_1093_joclec_nhad009 crossref_primary_10_1109_TKDE_2016_2527003 |
Cites_doi | 10.1109/TKDE.2005.99 10.1145/245108.245124 10.1145/245108.245126 10.1007/s10462-005-9004-8 10.1023/A:1006544522159 10.1109/MIC.2003.1167344 10.1007/s11257-007-9042-9 10.1023/A:1008372122567 10.1145/301353.301396 10.1023/A:1021240730564 10.1109/MIS.2007.49 10.1145/345124.345169 10.1016/j.knosys.2004.10.005 10.1145/1055709.1055714 10.1145/963770.963772 10.2753/JEC1086-4415110204 10.1023/A:1011419012209 10.1023/A:1017940426216 10.1109/2.901170 10.2753/JEC1086-4415110202 10.1023/B:CONS.0000049205.05581.24 10.1109/69.846296 10.2753/JEC1086-4415110201 10.1023/A:1026238916441 10.1023/B:DAMI.0000031629.31935.ac 10.1007/11527886_21 10.1145/192844.192905 10.1007/978-3-7091-2670-7_9 10.1007/978-3-540-72079-9_3 10.1007/978-3-540-72079-9_9 10.1613/jair.2075 10.1007/978-3-540-69912-5_5 10.1145/312624.312682 10.1007/978-3-540-72079-9_16 10.1007/978-3-540-30077-9_4 10.1145/170035.170072 10.1007/978-3-540-72079-9_10 10.1007/11823865_6 10.1109/EEE.2005.102 10.1145/1015330.1015394 10.1007/3-540-45006-8_37 10.1145/267658.267744 10.1145/223904.223931 10.1109/IS.2006.348445 10.1007/978-3-540-30480-7_40 10.1145/564376.564421 10.1145/352871.352887 10.1145/371920.372071 10.1145/291080.291091 10.1007/978-3-540-72079-9_11 10.1145/1250910.1250929 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media B.V. 2008 Springer Science+Business Media B.V. 2009 |
Copyright_xml | – notice: Springer Science+Business Media B.V. 2008 – notice: Springer Science+Business Media B.V. 2009 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88G 8AL 8AO 8FD 8FE 8FG 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2M P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PSYQQ Q9U |
DOI | 10.1007/s11257-008-9048-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Psychology Database (Alumni) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Psychology Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Psychology Journals ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Education Computer Science |
EISSN | 1573-1391 |
EndPage | 166 |
ExternalDocumentID | 1631547431 10_1007_s11257_008_9048_y |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FI 8FJ 8FL 8FW 8TC 8UJ 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACYUM ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2M M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c358t-ca114a20fc21df372666d1c4fb13f2fa2365666a07181bc08164a343347ac27f3 |
IEDL.DBID | AGYKE |
ISSN | 0924-1868 |
IngestDate | Sat Aug 23 14:59:31 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Tue Jul 01 03:09:27 EDT 2025 Fri Feb 21 02:35:54 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Comparative evaluation Electronic commerce Cold-start recommendation problem Hybrid recommender systems |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-ca114a20fc21df372666d1c4fb13f2fa2365666a07181bc08164a343347ac27f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://repositorio.utp.edu.co/home |
PQID | 212924608 |
PQPubID | 30100 |
PageCount | 34 |
ParticipantIDs | proquest_journals_212924608 crossref_primary_10_1007_s11257_008_9048_y crossref_citationtrail_10_1007_s11257_008_9048_y springer_journals_10_1007_s11257_008_9048_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090200 2009-2-00 20090201 |
PublicationDateYYYYMMDD | 2009-02-01 |
PublicationDate_xml | – month: 2 year: 2009 text: 20090200 |
PublicationDecade | 2000 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | The Journal of Personalization Research |
PublicationTitle | User modeling and user-adapted interaction |
PublicationTitleAbbrev | User Model User-Adap Inter |
PublicationYear | 2009 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Rafter, Smyth (CR43) 2005; 24 Adomavicius, Sankaranarayanan, Sen, Tuzhilin (CR3) 2005; 23 Schafer, Frankowski, Sen, Brusilovsky, Kobsa, Nejdl (CR54) 2007 CR36 Torrens, Faltings, Pu (CR60) 2002; 7 CR33 Demiriz (CR15) 2004; 9 CR31 Gretzel, Fesenmaier (CR23) 2006; 11 CR30 Smyth, Cotter (CR59) 2001; 22 McGinty, Smyth (CR35) 2006; 11 Mobasher, Cooley, Srivastava (CR38) 2000; 43 Burke (CR13) 2002; 12 Frakes, Baeza-Yates (CR20) 1992 Burke (CR11) 2000; 69 CR4 CR6 CR8 Goy, Ardissono, Petrone, Brusilovsky, Kobsa, Nejdl (CR22) 2007 CR49 Pazzani (CR39) 1999; 13 CR46 CR45 Herlocker, Konstan, Terveen, Riedl (CR26) 2004; 22 Riedl, Konstan, Vrooman (CR50) 2002 Smyth, Brusilovsky, Kobsa, Nejdl (CR58) 2007 CR18 Adomavicius, Tuzhilin (CR2) 2005; 17 Zanker, Jessenitschnig, Jannach, Gordea (CR66) 2007; 22 CR16 Balabanovic, Shoham (CR7) 1997; 40 CR14 Pierrakos, Paliouras, Papatheodorou, Spyropoulos (CR41) 2003; 13 CR57 CR12 CR56 CR55 CR10 Konstan, Miller, Maltz, Herlocker, Gordon, Riedl (CR32) 1997; 40 CR53 CR52 Fogg (CR19) 1999; 42 Ricci (CR47) 2002; 17 Felfernig, Friedrich, Jannach, Zanker (CR17) 2006; 11 Witten, Frank (CR64) 2005 Pu, Faltings (CR42) 2004; 9 Adomavicius, Tuzhilin (CR1) 2001; 34 CR29 CR28 Linden, Smith, York (CR34) 2003; 7 CR27 Ricci, Werthner (CR48) 2002; 3 CR25 CR24 Viappiani, Faltings, Pu (CR61) 2006; 27 CR65 Ardissono, Goy (CR5) 2000; 10 Pazzani, Billsus, Brusilovsky, Kobsa, Nejdl (CR40) 2007 CR63 Mobasher, Brusilovsky, Kobsa, Nejdl (CR37) 2007 von Winterfeldt, Edwards (CR62) 1986 Goldberg, Roeder T. Gupta, Perkins (CR21) 2001; 4 Berkovsky, Kuflik, Ricci (CR9) 2008; 18 Reilly, McCarthy, McGinty, Smyth (CR44) 2005; 18 Sacco (CR51) 2000; 12 K. Goldberg (9048_CR21) 2001; 4 B. Mobasher (9048_CR37) 2007 9048_CR6 G. Adomavicius (9048_CR1) 2001; 34 9048_CR4 9048_CR8 9048_CR10 9048_CR55 9048_CR52 9048_CR53 9048_CR14 9048_CR12 9048_CR56 9048_CR57 9048_CR18 9048_CR16 A. Demiriz (9048_CR15) 2004; 9 B. Mobasher (9048_CR38) 2000; 43 M. Balabanovic (9048_CR7) 1997; 40 A. Felfernig (9048_CR17) 2006; 11 G. Adomavicius (9048_CR2) 2005; 17 B. Smyth (9048_CR59) 2001; 22 F. Ricci (9048_CR48) 2002; 3 M. Zanker (9048_CR66) 2007; 22 9048_CR45 G.M. Sacco (9048_CR51) 2000; 12 R. Burke (9048_CR11) 2000; 69 9048_CR46 9048_CR49 M.J. Pazzani (9048_CR40) 2007 M. Torrens (9048_CR60) 2002; 7 P. Pu (9048_CR42) 2004; 9 I.H. Witten (9048_CR64) 2005 J. Reilly (9048_CR44) 2005; 18 J. Riedl (9048_CR50) 2002 B.J. Fogg (9048_CR19) 1999; 42 P. Viappiani (9048_CR61) 2006; 27 S. Berkovsky (9048_CR9) 2008; 18 B. Smyth (9048_CR58) 2007 9048_CR33 9048_CR30 9048_CR31 D. Winterfeldt von (9048_CR62) 1986 L. McGinty (9048_CR35) 2006; 11 9048_CR36 J.L. Herlocker (9048_CR26) 2004; 22 J.A. Konstan (9048_CR32) 1997; 40 D. Pierrakos (9048_CR41) 2003; 13 R. Rafter (9048_CR43) 2005; 24 M. Pazzani (9048_CR39) 1999; 13 L. Ardissono (9048_CR5) 2000; 10 F. Ricci (9048_CR47) 2002; 17 J.B. Schafer (9048_CR54) 2007 A. Goy (9048_CR22) 2007 (9048_CR20) 1992 G. Adomavicius (9048_CR3) 2005; 23 9048_CR65 U. Gretzel (9048_CR23) 2006; 11 9048_CR63 9048_CR25 G. Linden (9048_CR34) 2003; 7 9048_CR24 9048_CR29 9048_CR27 9048_CR28 R. Burke (9048_CR13) 2002; 12 |
References_xml | – ident: CR45 – start-page: 325 year: 2007 end-page: 341 ident: CR40 article-title: Content-based recommendation systems publication-title: The Adaptive Web: Methods and Strategies of Web Personalization – volume: 17 start-page: 734 issue: 6 year: 2005 end-page: 749 ident: CR2 article-title: Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.99 – volume: 40 start-page: 66 issue: 3 year: 1997 end-page: 72 ident: CR7 article-title: Fab: content-based, collaborative recommendation publication-title: Commun. ACM doi: 10.1145/245108.245124 – ident: CR49 – year: 2002 ident: CR50 publication-title: Word of Mouse: The Marketing Power of Collaborative Filtering – ident: CR4 – ident: CR16 – volume: 40 start-page: 77 issue: 3 year: 1997 end-page: 87 ident: CR32 article-title: GroupLens: applying collaborative filtering to usenet news publication-title: Commun. ACM doi: 10.1145/245108.245126 – ident: CR12 – start-page: 90 year: 2007 end-page: 135 ident: CR37 article-title: Data mining for web personalization publication-title: The Adaptive Web: Methods and Strategies of Web Personalization – ident: CR29 – ident: CR8 – ident: CR25 – volume: 24 start-page: 301 issue: 3–4 year: 2005 end-page: 318 ident: CR43 article-title: Conversational collaborative recommendation an experimental analysis publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-005-9004-8 – year: 1992 ident: CR20 publication-title: Information Retrieval, Data Structure and Algorithms – ident: CR46 – volume: 13 start-page: 393 issue: 5/6 year: 1999 end-page: 408 ident: CR39 article-title: A framework for collaborative, content-based and demographic filtering publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006544522159 – volume: 7 start-page: 76 issue: 1 year: 2003 end-page: 80 ident: CR34 article-title: Amazon.com recommendations – item-to-item collaborative filtering publication-title: IEEE Intern. Comput. doi: 10.1109/MIC.2003.1167344 – volume: 18 start-page: 245 issue: 3 year: 2008 end-page: 286 ident: CR9 article-title: Mediation of user models for enhanced personalization in recommender systems publication-title: User Model. User-Adapt. Interact. doi: 10.1007/s11257-007-9042-9 – volume: 17 start-page: 55 issue: 6 year: 2002 end-page: 57 ident: CR47 article-title: Travel recommender systems publication-title: IEEE Intell. Syst. – volume: 10 start-page: 251 issue: 4 year: 2000 end-page: 303 ident: CR5 article-title: Tailoring the interaction with users inweb stores publication-title: User Model. User-Adapt. Interact. doi: 10.1023/A:1008372122567 – volume: 42 start-page: 27 issue: 5 year: 1999 end-page: 29 ident: CR19 article-title: Persuasive technologies publication-title: Commun. ACM doi: 10.1145/301353.301396 – volume: 12 start-page: 331 issue: 4 year: 2002 end-page: 370 ident: CR13 article-title: Hybrid recommender systems: survey and experiments publication-title: User Model. User-Adapt. Interact. doi: 10.1023/A:1021240730564 – ident: CR57 – volume: 69 start-page: 180 issue: 2 year: 2000 end-page: 200 ident: CR11 article-title: Knowledge-based recommender systems publication-title: Encyclopedia Libr. Inf. Syst. – ident: CR36 – volume: 22 start-page: 69 issue: 5/6 year: 2007 end-page: 73 ident: CR66 article-title: Comparing recommendation strategies in a commercial context publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2007.49 – volume: 43 start-page: 142 issue: 8 year: 2000 end-page: 151 ident: CR38 article-title: Automatic personalization based on Web usage mining publication-title: Commun. ACM doi: 10.1145/345124.345169 – volume: 22 start-page: 89 issue: 2 year: 2001 end-page: 98 ident: CR59 article-title: Personalized electronic program guides for digital TV publication-title: AI Magazine – start-page: 485 year: 2007 end-page: 520 ident: CR22 article-title: Personalization in e-commerce applications publication-title: The Adaptive Web: Methods and Strategies of Web Personalization – volume: 18 start-page: 143 year: 2005 end-page: 151 ident: CR44 article-title: Incremental critiquing publication-title: Knowl-Based Syst. doi: 10.1016/j.knosys.2004.10.005 – ident: CR18 – volume: 23 start-page: 103 issue: 1 year: 2005 end-page: 145 ident: CR3 article-title: Incorporating contextual information in recommender systems using a multidimensional approach publication-title: ACM Trans. Inf. Syst. doi: 10.1145/1055709.1055714 – ident: CR14 – ident: CR53 – ident: CR30 – start-page: 291 year: 2007 end-page: 324 ident: CR54 article-title: Collaborative filtering recommender systems publication-title: The Adaptive Web: Methods and Strategies of Web Personalization – ident: CR10 – ident: CR33 – volume: 22 start-page: 5 issue: 1 year: 2004 end-page: 53 ident: CR26 article-title: Evaluating collaborative filtering recommender systems publication-title: ACM Trans. Inf. Syst. doi: 10.1145/963770.963772 – ident: CR6 – volume: 11 start-page: 81 issue: 2 year: 2006 end-page: 100 ident: CR23 article-title: Persuasion in recommender systems publication-title: Int. J. Electron. Commerce doi: 10.2753/JEC1086-4415110204 – ident: CR56 – ident: CR63 – volume: 4 start-page: 133 issue: 2 year: 2001 end-page: 151 ident: CR21 article-title: Eigentaste: a constant time collaborative filtering algorithm publication-title: Inf. Retr. doi: 10.1023/A:1011419012209 – ident: CR27 – volume: 7 start-page: 49 year: 2002 end-page: 69 ident: CR60 article-title: SmartClients: constraint satisfaction as a paradigm for scaleable intelligent information systems publication-title: Constraints doi: 10.1023/A:1017940426216 – volume: 34 start-page: 74 issue: 2 year: 2001 end-page: 82 ident: CR1 article-title: Using data mining methods to build customer profiles publication-title: Computer doi: 10.1109/2.901170 – volume: 3 start-page: 215 year: 2002 end-page: 266 ident: CR48 article-title: Case base querying for travel planning recommendation publication-title: Inf. Technol. Tourism – year: 1986 ident: CR62 publication-title: Decision Analysis and Behavioral Research – ident: CR65 – ident: CR52 – ident: CR31 – volume: 11 start-page: 35 issue: 2 year: 2006 end-page: 57 ident: CR35 article-title: Adaptive selection: an analysis of critiquing and preference-based feedback in conversational recommender systems publication-title: Int. J. Electron. Commerce doi: 10.2753/JEC1086-4415110202 – volume: 9 start-page: 289 year: 2004 end-page: 310 ident: CR42 article-title: Decision tradeoff using example-critiquing and constraint programming publication-title: Constraints doi: 10.1023/B:CONS.0000049205.05581.24 – volume: 27 start-page: 465 year: 2006 end-page: 503 ident: CR61 article-title: Preference-based search using example-critiquing with suggestions publication-title: Artif Intell Res – volume: 12 start-page: 468 issue: 3 year: 2000 end-page: 479 ident: CR51 article-title: Dynamic taxonomies: a model for large information bases publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/69.846296 – start-page: 342 year: 2007 end-page: 376 ident: CR58 article-title: Case-based recommendation publication-title: The Adaptive Web: Methods and Strategies of Web Personalization – year: 2005 ident: CR64 publication-title: Data Mining: Practical Machine Learning Tools and Techniques – volume: 11 start-page: 11 issue: 2 year: 2006 end-page: 34 ident: CR17 article-title: An integrated environment for the development of knowledge-based recommender applications publication-title: Int. J. Electron. Commerce doi: 10.2753/JEC1086-4415110201 – volume: 13 start-page: 311 issue: 4 year: 2003 end-page: 372 ident: CR41 article-title: Web usage mining as a tool for personalization: a survey publication-title: User Model. User-Adapt. Interact. doi: 10.1023/A:1026238916441 – ident: CR55 – ident: CR28 – ident: CR24 – volume: 9 start-page: 147 issue: 2 year: 2004 end-page: 170 ident: CR15 article-title: Enhancing product recommender systems on sparse binary data publication-title: Data Min. Knowl. Discov. doi: 10.1023/B:DAMI.0000031629.31935.ac – volume: 11 start-page: 81 issue: 2 year: 2006 ident: 9048_CR23 publication-title: Int. J. Electron. Commerce doi: 10.2753/JEC1086-4415110204 – ident: 9048_CR24 doi: 10.1007/11527886_21 – ident: 9048_CR46 doi: 10.1145/192844.192905 – volume: 4 start-page: 133 issue: 2 year: 2001 ident: 9048_CR21 publication-title: Inf. Retr. doi: 10.1023/A:1011419012209 – volume: 13 start-page: 393 issue: 5/6 year: 1999 ident: 9048_CR39 publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006544522159 – ident: 9048_CR18 – volume-title: Word of Mouse: The Marketing Power of Collaborative Filtering year: 2002 ident: 9048_CR50 – volume: 3 start-page: 215 year: 2002 ident: 9048_CR48 publication-title: Inf. Technol. Tourism – ident: 9048_CR12 – volume: 18 start-page: 143 year: 2005 ident: 9048_CR44 publication-title: Knowl-Based Syst. doi: 10.1016/j.knosys.2004.10.005 – volume: 17 start-page: 55 issue: 6 year: 2002 ident: 9048_CR47 publication-title: IEEE Intell. Syst. – ident: 9048_CR14 – ident: 9048_CR33 doi: 10.1007/978-3-7091-2670-7_9 – start-page: 90 volume-title: The Adaptive Web: Methods and Strategies of Web Personalization year: 2007 ident: 9048_CR37 doi: 10.1007/978-3-540-72079-9_3 – start-page: 291 volume-title: The Adaptive Web: Methods and Strategies of Web Personalization year: 2007 ident: 9048_CR54 doi: 10.1007/978-3-540-72079-9_9 – volume: 9 start-page: 289 year: 2004 ident: 9048_CR42 publication-title: Constraints doi: 10.1023/B:CONS.0000049205.05581.24 – volume: 10 start-page: 251 issue: 4 year: 2000 ident: 9048_CR5 publication-title: User Model. User-Adapt. Interact. doi: 10.1023/A:1008372122567 – volume: 27 start-page: 465 year: 2006 ident: 9048_CR61 publication-title: Artif Intell Res doi: 10.1613/jair.2075 – volume-title: Decision Analysis and Behavioral Research year: 1986 ident: 9048_CR62 – ident: 9048_CR29 doi: 10.1007/978-3-540-69912-5_5 – volume: 11 start-page: 11 issue: 2 year: 2006 ident: 9048_CR17 publication-title: Int. J. Electron. Commerce doi: 10.2753/JEC1086-4415110201 – ident: 9048_CR25 doi: 10.1145/312624.312682 – volume: 22 start-page: 5 issue: 1 year: 2004 ident: 9048_CR26 publication-title: ACM Trans. Inf. Syst. doi: 10.1145/963770.963772 – start-page: 485 volume-title: The Adaptive Web: Methods and Strategies of Web Personalization year: 2007 ident: 9048_CR22 doi: 10.1007/978-3-540-72079-9_16 – volume: 22 start-page: 89 issue: 2 year: 2001 ident: 9048_CR59 publication-title: AI Magazine – volume: 24 start-page: 301 issue: 3–4 year: 2005 ident: 9048_CR43 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-005-9004-8 – ident: 9048_CR57 – ident: 9048_CR36 doi: 10.1007/978-3-540-30077-9_4 – volume: 23 start-page: 103 issue: 1 year: 2005 ident: 9048_CR3 publication-title: ACM Trans. Inf. Syst. doi: 10.1145/1055709.1055714 – volume: 43 start-page: 142 issue: 8 year: 2000 ident: 9048_CR38 publication-title: Commun. ACM doi: 10.1145/345124.345169 – ident: 9048_CR4 doi: 10.1145/170035.170072 – start-page: 325 volume-title: The Adaptive Web: Methods and Strategies of Web Personalization year: 2007 ident: 9048_CR40 doi: 10.1007/978-3-540-72079-9_10 – volume: 12 start-page: 331 issue: 4 year: 2002 ident: 9048_CR13 publication-title: User Model. User-Adapt. Interact. doi: 10.1023/A:1021240730564 – ident: 9048_CR65 doi: 10.1007/11823865_6 – volume: 34 start-page: 74 issue: 2 year: 2001 ident: 9048_CR1 publication-title: Computer doi: 10.1109/2.901170 – ident: 9048_CR31 doi: 10.1109/EEE.2005.102 – volume: 40 start-page: 77 issue: 3 year: 1997 ident: 9048_CR32 publication-title: Commun. ACM doi: 10.1145/245108.245126 – volume: 17 start-page: 734 issue: 6 year: 2005 ident: 9048_CR2 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.99 – volume: 7 start-page: 49 year: 2002 ident: 9048_CR60 publication-title: Constraints doi: 10.1023/A:1017940426216 – ident: 9048_CR8 doi: 10.1145/1015330.1015394 – ident: 9048_CR49 doi: 10.1007/3-540-45006-8_37 – ident: 9048_CR6 doi: 10.1145/267658.267744 – volume: 18 start-page: 245 issue: 3 year: 2008 ident: 9048_CR9 publication-title: User Model. User-Adapt. Interact. doi: 10.1007/s11257-007-9042-9 – volume: 42 start-page: 27 issue: 5 year: 1999 ident: 9048_CR19 publication-title: Commun. ACM – ident: 9048_CR56 doi: 10.1145/223904.223931 – volume-title: Information Retrieval, Data Structure and Algorithms year: 1992 ident: 9048_CR20 – ident: 9048_CR28 doi: 10.1109/IS.2006.348445 – ident: 9048_CR30 doi: 10.1007/978-3-540-30480-7_40 – volume: 12 start-page: 468 issue: 3 year: 2000 ident: 9048_CR51 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/69.846296 – ident: 9048_CR10 – ident: 9048_CR16 – volume: 40 start-page: 66 issue: 3 year: 1997 ident: 9048_CR7 publication-title: Commun. ACM doi: 10.1145/245108.245124 – ident: 9048_CR55 doi: 10.1145/564376.564421 – ident: 9048_CR52 doi: 10.1145/352871.352887 – ident: 9048_CR53 doi: 10.1145/371920.372071 – ident: 9048_CR27 – volume: 7 start-page: 76 issue: 1 year: 2003 ident: 9048_CR34 publication-title: IEEE Intern. Comput. doi: 10.1109/MIC.2003.1167344 – volume: 69 start-page: 180 issue: 2 year: 2000 ident: 9048_CR11 publication-title: Encyclopedia Libr. Inf. Syst. – volume-title: Data Mining: Practical Machine Learning Tools and Techniques year: 2005 ident: 9048_CR64 – volume: 11 start-page: 35 issue: 2 year: 2006 ident: 9048_CR35 publication-title: Int. J. Electron. Commerce doi: 10.2753/JEC1086-4415110202 – ident: 9048_CR63 doi: 10.1145/291080.291091 – volume: 22 start-page: 69 issue: 5/6 year: 2007 ident: 9048_CR66 publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2007.49 – start-page: 342 volume-title: The Adaptive Web: Methods and Strategies of Web Personalization year: 2007 ident: 9048_CR58 doi: 10.1007/978-3-540-72079-9_11 – volume: 9 start-page: 147 issue: 2 year: 2004 ident: 9048_CR15 publication-title: Data Min. Knowl. Discov. doi: 10.1023/B:DAMI.0000031629.31935.ac – ident: 9048_CR45 doi: 10.1145/1250910.1250929 – volume: 13 start-page: 311 issue: 4 year: 2003 ident: 9048_CR41 publication-title: User Model. User-Adapt. Interact. doi: 10.1023/A:1026238916441 |
SSID | ssj0007679 |
Score | 2.0864348 |
Snippet | Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically... Issue Title: Special Issue on Data Mining for Personalization Recommender Systems (RS) suggest useful and interesting items to users in order to increase user... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 133 |
SubjectTerms | Collaboration Computer Science Consumers Customization Datasets Electronic commerce Information Knowledge Management of Computing and Information Systems Multimedia Information Systems Original Paper Preferences Ratings & rankings Recommender systems Studies User feedback User Interfaces and Human Computer Interaction |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgLCx8lK9SQB4QA8gisd0knRBClAoBYgCJLbIvtlSJpoWkA_8eX-KkAgmWKFISDzn77p3v-R4hp4lVmpsoYFom4BIU0ExnMmBmqEHqcGigovw_PkXjV3n_Nnjz3JzC0yobn1g56mwGuEd-6VysSxWiILmafzAUjcLiqlfQWCVrIXehFg-Kj-5aRxxHvtUelwy7wjdFzerknAvsMcPa_9DNYfb1Mywtseav8mgVdUZbZMPDRXpd23ebrJi8SzYbKQbqV2YXxZc9UaNL9h_8HmRBz-hD2za52CHPNy5msaKmDtJZTg0y8CbIfK5uJzApKSwcHpy6wT8NsoSr7cOCTnKKufN0WknP0boBdLFLXke3Lzdj5iUVGIhBUjJQLv9RPLDAw8yK2IXnKAtBWh0Ky63iAvFdpBzwcHgWUJVDKiGFkLECHluxRzr5LDcHhLrfliXKDCwPQIKIVGKH0l1jEFrHJuyRoPmjKfh-4yh78Z4uOyWjEVLUwUQjpF89ct5-Mq-bbfz3cr8xU-rXXZG2s6RHLhrLLZ_-Odbhv2P1yXpdQ0ISyxHplJ8Lc-ygSKlPqgn3DYet27o priority: 102 providerName: ProQuest |
Title | Case-studies on exploiting explicit customer requirements in recommender systems |
URI | https://link.springer.com/article/10.1007/s11257-008-9048-y https://www.proquest.com/docview/212924608 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_x8cLLYIVthYH8gHjYZJTYbpI-dqgF8SWEqMSeIvtqS9XWMJH0Af56zonTCrRN4iWJEsdK7LPvzvfz7wAOM6eNsEnEjcqQHBQ03ExUxG3foDJx32IN-b-6Ts7G6vy-dx_2cZct2r0NSdYz9XKzG-nilPtwfZ_Ejj-twnqP_BMajeuD058Xw8UEnCaBYk8o7tng22Dm3yp5rY6WNuabsGitbUabcNd-ZwMy-XU8r8wxPr-hcHznj2zBh2B9skEjLh9hxRYd2GwzO7Aw0Ds-l3PAfXTg82VY0izZEbtcsDCX23BzQiqQlw0SkT0UzHpA39QDqevLKU4rhnMyL2dU-aP1oON6NbJk04J5V3w2qzPZsYZPutyB8Wh4d3LGQ4YGjrKXVRw1uVNaRA5FPHEyJW2fTGJUzsTSCaeF9OZiosmOIfMYfZIPpaWSUqUaRerkJ1grHgr7BRi1xCTTtudEhAplojPXV3RMURqT2rgLUdtROQb6cp9F43e-JF727Zr7tJq-XfOnLnxbvPKn4e74X-G9tvfzMIzLnPQ6CVESZV343vbl8uk_69p9V-k92GhCVB4j8xXWqse53SdLpzIHsJqNTg-CfNP5x_D65pbujsXgBVBQ-cI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAXCgHaUAp7AA6gFfbuxnYOFaKlVUrTqEKt1JvZXe9KkYhT6lRVflz_W2fsdSKQ6K0Xy5LtOeyM52Pn7TyA95nXRrgk4kZlFgsUa7gpVMTdwFhl4oGzNeT_ZJwMz9WPi_7FGty2Z2EIVtn6xNpRFzNLe-Rf0MViqZBE2dfLP5xIo6i52jJo6MCsUOzWE8bCuY5jt7jBCq7aPfqO6v4gxOHB2f6QB5IBbmU_m3OrsSLQIvJWxIWXKQaspIit8iaWXngtJGU8icZQjBmeJZ4KpaWSUqXaitRLlPsI1hXtn3Rgfe9gfPpzGQrSJAz7E4rTXPq2rVqf3cPUIuWEPhjgX8QXfwfGVbb7T4O2jnuHz-BpSFjZt8bCnsOaK7uw0ZJBsOAbukT_HKAiXdgchV3Qin1ko-Xg5uoFnO5j1ORVA15ks5I5wgBOCHtd307sZM7sNWakUxR-5QinXG9gVmxSMqrep9Oa_I41I6irl3D-IOv9CjrlrHRbwHDZiky7vheRVVYmOvMDhdfUSmNSF_cgalc0t2HiORFv_M5Xs5pJCTkxcZIS8kUPPi0_uWzGfdz38narpjz8-VW-tNMefG41t3r6X1mv75X1Dh4Pz05G-ehofLwNT5qOFkFq3kBnfnXtdjAxmpu3wfwY_Hpoi78DXxsdpA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB7SBEovfbgvN2m7hySHliXS7lqSD6E0D5M0jjGlgdzU3dUuGGo5jRyKf2L_VWaklU0KzS0XIZA0h53RPHa-nQ9gO_PaCJdE3KjMYoFiDTeFirjrG6tM3He2hvyfj5KTC_Xtsne5Bn_bszAEq2x9Yu2oi5mlPfI9dLFYKiRRtucDKmJ8NPhy9ZsTgRQ1Wls2DR1YFor9etpYOONx5hZ_sJqr9k-PUPU7QgyOfxye8EA4wK3sZXNuNVYHWkTeirjwMsXglRSxVd7E0guvhaTsJ9EYljHbs8RZobRUUqpUW5F6iXIfwUaKQR_rwI2D49H4-zIspEkY_CcUpxn1bYu1PseHaUbKCYnQxz-KL-4GyVXm-0-zto6Bg-fwNCSv7GtjbS9gzZUdeNYSQ7DgJzpEBR1gIx14Mww7ohXbZcPlEOfqJYwPMYLyqgEyslnJHOEBJ4TDrm8ndjJn9gaz0ykKv3aEWa43Mys2KRlV8tNpTYTHmnHU1Su4eJD1fg3r5ax0b4HhshWZdj0vIqusTHTm-wqvqZXGpC7uQtSuaG7D9HMi4fiVr-Y2kxJyYuUkJeSLLnxafnLVjP647-XNVk158AJVvrTZLnxuNbd6-l9Z7-6V9REeo-Xnw9PR2SY8aZpbhK7ZgvX59Y17jznS3HwI1sfg50Mb_C3eUyHo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Case-studies+on+exploiting+explicit+customer+requirements+in+recommender+systems&rft.jtitle=User+modeling+and+user-adapted+interaction&rft.au=Zanker%2C+Markus&rft.au=Jessenitschnig%2C+Markus&rft.date=2009-02-01&rft.issn=0924-1868&rft.eissn=1573-1391&rft.volume=19&rft.issue=1-2&rft.spage=133&rft.epage=166&rft_id=info:doi/10.1007%2Fs11257-008-9048-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11257_008_9048_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-1868&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-1868&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-1868&client=summon |