Case-studies on exploiting explicit customer requirements in recommender systems

Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically exploit explicit or implicit user feedback such as ratings, buying records or clickstream data and apply statistical methods to derive recommendat...

Full description

Saved in:
Bibliographic Details
Published inUser modeling and user-adapted interaction Vol. 19; no. 1-2; pp. 133 - 166
Main Authors Zanker, Markus, Jessenitschnig, Markus
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2009
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-1868
1573-1391
DOI10.1007/s11257-008-9048-y

Cover

Abstract Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically exploit explicit or implicit user feedback such as ratings, buying records or clickstream data and apply statistical methods to derive recommendations. This paper focuses on explicitly formulated customer requirements as the sole type of user feedback. Its contribution lies in comparing different techniques such as knowledge- and utility-based methods, collaborative filtering, association rule mining as well as hybrid variants when user models consist solely of explicit customer requirements. We examine how this type of user feedback can be exploited for personalization in e-commerce scenarios. Furthermore, examples of actual online shops are developed where such contextual user information is available, demonstrating how more efficient RS configurations can be implemented. Results indicate that, especially for new users, explicit customer requirements are a useful source of feedback for personalization and hybrid configurations of collaborative and knowledge-based techniques achieve best results.
AbstractList Issue Title: Special Issue on Data Mining for Personalization Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically exploit explicit or implicit user feedback such as ratings, buying records or clickstream data and apply statistical methods to derive recommendations. This paper focuses on explicitly formulated customer requirements as the sole type of user feedback. Its contribution lies in comparing different techniques such as knowledge- and utility-based methods, collaborative filtering, association rule mining as well as hybrid variants when user models consist solely of explicit customer requirements. We examine how this type of user feedback can be exploited for personalization in e-commerce scenarios. Furthermore, examples of actual online shops are developed where such contextual user information is available, demonstrating how more efficient RS configurations can be implemented. Results indicate that, especially for new users, explicit customer requirements are a useful source of feedback for personalization and hybrid configurations of collaborative and knowledge-based techniques achieve best results. [PUBLICATION ABSTRACT]
Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically exploit explicit or implicit user feedback such as ratings, buying records or clickstream data and apply statistical methods to derive recommendations. This paper focuses on explicitly formulated customer requirements as the sole type of user feedback. Its contribution lies in comparing different techniques such as knowledge- and utility-based methods, collaborative filtering, association rule mining as well as hybrid variants when user models consist solely of explicit customer requirements. We examine how this type of user feedback can be exploited for personalization in e-commerce scenarios. Furthermore, examples of actual online shops are developed where such contextual user information is available, demonstrating how more efficient RS configurations can be implemented. Results indicate that, especially for new users, explicit customer requirements are a useful source of feedback for personalization and hybrid configurations of collaborative and knowledge-based techniques achieve best results.
Author Zanker, Markus
Jessenitschnig, Markus
Author_xml – sequence: 1
  givenname: Markus
  surname: Zanker
  fullname: Zanker, Markus
  email: markus.zanker@uni-klu.ac.at
  organization: University Klagenfurt
– sequence: 2
  givenname: Markus
  surname: Jessenitschnig
  fullname: Jessenitschnig, Markus
  organization: University Klagenfurt
BookMark eNp9kE1LAzEQQINUsFZ_gLfFezST7G6yRyl-QUEPeg5pNltSukmbZMH996auIAh6SmYyb2byztHMeWcQugJyA4Tw2whAK44JEbghpcDjCZpDxRkG1sAMzUlDSwyiFmfoPMYtyUzNmzl6XapocExDa00svCvMx37nbbJu83W12qZCDzH53oQimMNgg-mNS7GwLsfa9zlq81scYzJ9vECnndpFc_l9LtD7w_3b8gmvXh6fl3crrFklEtYKoFSUdJpC2zFO67puQZfdGlhHO0VZXeWUIhwErDURUJeKlYyVXGnKO7ZA11PfffCHwcQkt34ILo-UFGj-bU1ELoKpSAcfYzCd3AfbqzBKIPLoTU7eZPYmj97kmBn-i8kKVLLepaDs7l-STmTMU9zGhJ-V_oY-ARURhWA
CitedBy_id crossref_primary_10_1080_10494820_2012_745430
crossref_primary_10_1145_2512208
crossref_primary_10_1007_s11257_008_9055_z
crossref_primary_10_1016_j_ins_2012_04_008
crossref_primary_10_1109_TCE_2009_4814447
crossref_primary_10_1007_s10601_010_9098_8
crossref_primary_10_1007_s11257_011_9115_7
crossref_primary_10_1007_s11257_008_9047_z
crossref_primary_10_1177_1460458214521051
crossref_primary_10_1108_IJOPM_07_2012_0387
crossref_primary_10_1109_TLT_2015_2434824
crossref_primary_10_1007_s12652_019_01619_1
crossref_primary_10_1527_tjsai_36_4_C_KC4
crossref_primary_10_1145_2037661_2037665
crossref_primary_10_4018_JOEUC_293289
crossref_primary_10_1088_1674_1056_26_12_128901
crossref_primary_10_1016_j_knosys_2011_08_012
crossref_primary_10_1145_3453154
crossref_primary_10_1016_j_knosys_2011_02_004
crossref_primary_10_1093_joclec_nhad009
crossref_primary_10_1109_TKDE_2016_2527003
Cites_doi 10.1109/TKDE.2005.99
10.1145/245108.245124
10.1145/245108.245126
10.1007/s10462-005-9004-8
10.1023/A:1006544522159
10.1109/MIC.2003.1167344
10.1007/s11257-007-9042-9
10.1023/A:1008372122567
10.1145/301353.301396
10.1023/A:1021240730564
10.1109/MIS.2007.49
10.1145/345124.345169
10.1016/j.knosys.2004.10.005
10.1145/1055709.1055714
10.1145/963770.963772
10.2753/JEC1086-4415110204
10.1023/A:1011419012209
10.1023/A:1017940426216
10.1109/2.901170
10.2753/JEC1086-4415110202
10.1023/B:CONS.0000049205.05581.24
10.1109/69.846296
10.2753/JEC1086-4415110201
10.1023/A:1026238916441
10.1023/B:DAMI.0000031629.31935.ac
10.1007/11527886_21
10.1145/192844.192905
10.1007/978-3-7091-2670-7_9
10.1007/978-3-540-72079-9_3
10.1007/978-3-540-72079-9_9
10.1613/jair.2075
10.1007/978-3-540-69912-5_5
10.1145/312624.312682
10.1007/978-3-540-72079-9_16
10.1007/978-3-540-30077-9_4
10.1145/170035.170072
10.1007/978-3-540-72079-9_10
10.1007/11823865_6
10.1109/EEE.2005.102
10.1145/1015330.1015394
10.1007/3-540-45006-8_37
10.1145/267658.267744
10.1145/223904.223931
10.1109/IS.2006.348445
10.1007/978-3-540-30480-7_40
10.1145/564376.564421
10.1145/352871.352887
10.1145/371920.372071
10.1145/291080.291091
10.1007/978-3-540-72079-9_11
10.1145/1250910.1250929
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2008
Springer Science+Business Media B.V. 2009
Copyright_xml – notice: Springer Science+Business Media B.V. 2008
– notice: Springer Science+Business Media B.V. 2009
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88G
8AL
8AO
8FD
8FE
8FG
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2M
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
Q9U
DOI 10.1007/s11257-008-9048-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Psychology Database (Alumni)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Psychology Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Psychology Journals
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Education
Computer Science
EISSN 1573-1391
EndPage 166
ExternalDocumentID 1631547431
10_1007_s11257_008_9048_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FI
8FJ
8FL
8FW
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACYUM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2M
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c358t-ca114a20fc21df372666d1c4fb13f2fa2365666a07181bc08164a343347ac27f3
IEDL.DBID AGYKE
ISSN 0924-1868
IngestDate Sat Aug 23 14:59:31 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Tue Jul 01 03:09:27 EDT 2025
Fri Feb 21 02:35:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Comparative evaluation
Electronic commerce
Cold-start recommendation problem
Hybrid recommender systems
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-ca114a20fc21df372666d1c4fb13f2fa2365666a07181bc08164a343347ac27f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://repositorio.utp.edu.co/home
PQID 212924608
PQPubID 30100
PageCount 34
ParticipantIDs proquest_journals_212924608
crossref_primary_10_1007_s11257_008_9048_y
crossref_citationtrail_10_1007_s11257_008_9048_y
springer_journals_10_1007_s11257_008_9048_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090200
2009-2-00
20090201
PublicationDateYYYYMMDD 2009-02-01
PublicationDate_xml – month: 2
  year: 2009
  text: 20090200
PublicationDecade 2000
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle The Journal of Personalization Research
PublicationTitle User modeling and user-adapted interaction
PublicationTitleAbbrev User Model User-Adap Inter
PublicationYear 2009
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Rafter, Smyth (CR43) 2005; 24
Adomavicius, Sankaranarayanan, Sen, Tuzhilin (CR3) 2005; 23
Schafer, Frankowski, Sen, Brusilovsky, Kobsa, Nejdl (CR54) 2007
CR36
Torrens, Faltings, Pu (CR60) 2002; 7
CR33
Demiriz (CR15) 2004; 9
CR31
Gretzel, Fesenmaier (CR23) 2006; 11
CR30
Smyth, Cotter (CR59) 2001; 22
McGinty, Smyth (CR35) 2006; 11
Mobasher, Cooley, Srivastava (CR38) 2000; 43
Burke (CR13) 2002; 12
Frakes, Baeza-Yates (CR20) 1992
Burke (CR11) 2000; 69
CR4
CR6
CR8
Goy, Ardissono, Petrone, Brusilovsky, Kobsa, Nejdl (CR22) 2007
CR49
Pazzani (CR39) 1999; 13
CR46
CR45
Herlocker, Konstan, Terveen, Riedl (CR26) 2004; 22
Riedl, Konstan, Vrooman (CR50) 2002
Smyth, Brusilovsky, Kobsa, Nejdl (CR58) 2007
CR18
Adomavicius, Tuzhilin (CR2) 2005; 17
Zanker, Jessenitschnig, Jannach, Gordea (CR66) 2007; 22
CR16
Balabanovic, Shoham (CR7) 1997; 40
CR14
Pierrakos, Paliouras, Papatheodorou, Spyropoulos (CR41) 2003; 13
CR57
CR12
CR56
CR55
CR10
Konstan, Miller, Maltz, Herlocker, Gordon, Riedl (CR32) 1997; 40
CR53
CR52
Fogg (CR19) 1999; 42
Ricci (CR47) 2002; 17
Felfernig, Friedrich, Jannach, Zanker (CR17) 2006; 11
Witten, Frank (CR64) 2005
Pu, Faltings (CR42) 2004; 9
Adomavicius, Tuzhilin (CR1) 2001; 34
CR29
CR28
Linden, Smith, York (CR34) 2003; 7
CR27
Ricci, Werthner (CR48) 2002; 3
CR25
CR24
Viappiani, Faltings, Pu (CR61) 2006; 27
CR65
Ardissono, Goy (CR5) 2000; 10
Pazzani, Billsus, Brusilovsky, Kobsa, Nejdl (CR40) 2007
CR63
Mobasher, Brusilovsky, Kobsa, Nejdl (CR37) 2007
von Winterfeldt, Edwards (CR62) 1986
Goldberg, Roeder T. Gupta, Perkins (CR21) 2001; 4
Berkovsky, Kuflik, Ricci (CR9) 2008; 18
Reilly, McCarthy, McGinty, Smyth (CR44) 2005; 18
Sacco (CR51) 2000; 12
K. Goldberg (9048_CR21) 2001; 4
B. Mobasher (9048_CR37) 2007
9048_CR6
G. Adomavicius (9048_CR1) 2001; 34
9048_CR4
9048_CR8
9048_CR10
9048_CR55
9048_CR52
9048_CR53
9048_CR14
9048_CR12
9048_CR56
9048_CR57
9048_CR18
9048_CR16
A. Demiriz (9048_CR15) 2004; 9
B. Mobasher (9048_CR38) 2000; 43
M. Balabanovic (9048_CR7) 1997; 40
A. Felfernig (9048_CR17) 2006; 11
G. Adomavicius (9048_CR2) 2005; 17
B. Smyth (9048_CR59) 2001; 22
F. Ricci (9048_CR48) 2002; 3
M. Zanker (9048_CR66) 2007; 22
9048_CR45
G.M. Sacco (9048_CR51) 2000; 12
R. Burke (9048_CR11) 2000; 69
9048_CR46
9048_CR49
M.J. Pazzani (9048_CR40) 2007
M. Torrens (9048_CR60) 2002; 7
P. Pu (9048_CR42) 2004; 9
I.H. Witten (9048_CR64) 2005
J. Reilly (9048_CR44) 2005; 18
J. Riedl (9048_CR50) 2002
B.J. Fogg (9048_CR19) 1999; 42
P. Viappiani (9048_CR61) 2006; 27
S. Berkovsky (9048_CR9) 2008; 18
B. Smyth (9048_CR58) 2007
9048_CR33
9048_CR30
9048_CR31
D. Winterfeldt von (9048_CR62) 1986
L. McGinty (9048_CR35) 2006; 11
9048_CR36
J.L. Herlocker (9048_CR26) 2004; 22
J.A. Konstan (9048_CR32) 1997; 40
D. Pierrakos (9048_CR41) 2003; 13
R. Rafter (9048_CR43) 2005; 24
M. Pazzani (9048_CR39) 1999; 13
L. Ardissono (9048_CR5) 2000; 10
F. Ricci (9048_CR47) 2002; 17
J.B. Schafer (9048_CR54) 2007
A. Goy (9048_CR22) 2007
(9048_CR20) 1992
G. Adomavicius (9048_CR3) 2005; 23
9048_CR65
U. Gretzel (9048_CR23) 2006; 11
9048_CR63
9048_CR25
G. Linden (9048_CR34) 2003; 7
9048_CR24
9048_CR29
9048_CR27
9048_CR28
R. Burke (9048_CR13) 2002; 12
References_xml – ident: CR45
– start-page: 325
  year: 2007
  end-page: 341
  ident: CR40
  article-title: Content-based recommendation systems
  publication-title: The Adaptive Web: Methods and Strategies of Web Personalization
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  end-page: 749
  ident: CR2
  article-title: Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.99
– volume: 40
  start-page: 66
  issue: 3
  year: 1997
  end-page: 72
  ident: CR7
  article-title: Fab: content-based, collaborative recommendation
  publication-title: Commun. ACM
  doi: 10.1145/245108.245124
– ident: CR49
– year: 2002
  ident: CR50
  publication-title: Word of Mouse: The Marketing Power of Collaborative Filtering
– ident: CR4
– ident: CR16
– volume: 40
  start-page: 77
  issue: 3
  year: 1997
  end-page: 87
  ident: CR32
  article-title: GroupLens: applying collaborative filtering to usenet news
  publication-title: Commun. ACM
  doi: 10.1145/245108.245126
– ident: CR12
– start-page: 90
  year: 2007
  end-page: 135
  ident: CR37
  article-title: Data mining for web personalization
  publication-title: The Adaptive Web: Methods and Strategies of Web Personalization
– ident: CR29
– ident: CR8
– ident: CR25
– volume: 24
  start-page: 301
  issue: 3–4
  year: 2005
  end-page: 318
  ident: CR43
  article-title: Conversational collaborative recommendation an experimental analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-005-9004-8
– year: 1992
  ident: CR20
  publication-title: Information Retrieval, Data Structure and Algorithms
– ident: CR46
– volume: 13
  start-page: 393
  issue: 5/6
  year: 1999
  end-page: 408
  ident: CR39
  article-title: A framework for collaborative, content-based and demographic filtering
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006544522159
– volume: 7
  start-page: 76
  issue: 1
  year: 2003
  end-page: 80
  ident: CR34
  article-title: Amazon.com recommendations – item-to-item collaborative filtering
  publication-title: IEEE Intern. Comput.
  doi: 10.1109/MIC.2003.1167344
– volume: 18
  start-page: 245
  issue: 3
  year: 2008
  end-page: 286
  ident: CR9
  article-title: Mediation of user models for enhanced personalization in recommender systems
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1007/s11257-007-9042-9
– volume: 17
  start-page: 55
  issue: 6
  year: 2002
  end-page: 57
  ident: CR47
  article-title: Travel recommender systems
  publication-title: IEEE Intell. Syst.
– volume: 10
  start-page: 251
  issue: 4
  year: 2000
  end-page: 303
  ident: CR5
  article-title: Tailoring the interaction with users inweb stores
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1023/A:1008372122567
– volume: 42
  start-page: 27
  issue: 5
  year: 1999
  end-page: 29
  ident: CR19
  article-title: Persuasive technologies
  publication-title: Commun. ACM
  doi: 10.1145/301353.301396
– volume: 12
  start-page: 331
  issue: 4
  year: 2002
  end-page: 370
  ident: CR13
  article-title: Hybrid recommender systems: survey and experiments
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1023/A:1021240730564
– ident: CR57
– volume: 69
  start-page: 180
  issue: 2
  year: 2000
  end-page: 200
  ident: CR11
  article-title: Knowledge-based recommender systems
  publication-title: Encyclopedia Libr. Inf. Syst.
– ident: CR36
– volume: 22
  start-page: 69
  issue: 5/6
  year: 2007
  end-page: 73
  ident: CR66
  article-title: Comparing recommendation strategies in a commercial context
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2007.49
– volume: 43
  start-page: 142
  issue: 8
  year: 2000
  end-page: 151
  ident: CR38
  article-title: Automatic personalization based on Web usage mining
  publication-title: Commun. ACM
  doi: 10.1145/345124.345169
– volume: 22
  start-page: 89
  issue: 2
  year: 2001
  end-page: 98
  ident: CR59
  article-title: Personalized electronic program guides for digital TV
  publication-title: AI Magazine
– start-page: 485
  year: 2007
  end-page: 520
  ident: CR22
  article-title: Personalization in e-commerce applications
  publication-title: The Adaptive Web: Methods and Strategies of Web Personalization
– volume: 18
  start-page: 143
  year: 2005
  end-page: 151
  ident: CR44
  article-title: Incremental critiquing
  publication-title: Knowl-Based Syst.
  doi: 10.1016/j.knosys.2004.10.005
– ident: CR18
– volume: 23
  start-page: 103
  issue: 1
  year: 2005
  end-page: 145
  ident: CR3
  article-title: Incorporating contextual information in recommender systems using a multidimensional approach
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/1055709.1055714
– ident: CR14
– ident: CR53
– ident: CR30
– start-page: 291
  year: 2007
  end-page: 324
  ident: CR54
  article-title: Collaborative filtering recommender systems
  publication-title: The Adaptive Web: Methods and Strategies of Web Personalization
– ident: CR10
– ident: CR33
– volume: 22
  start-page: 5
  issue: 1
  year: 2004
  end-page: 53
  ident: CR26
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/963770.963772
– ident: CR6
– volume: 11
  start-page: 81
  issue: 2
  year: 2006
  end-page: 100
  ident: CR23
  article-title: Persuasion in recommender systems
  publication-title: Int. J. Electron. Commerce
  doi: 10.2753/JEC1086-4415110204
– ident: CR56
– ident: CR63
– volume: 4
  start-page: 133
  issue: 2
  year: 2001
  end-page: 151
  ident: CR21
  article-title: Eigentaste: a constant time collaborative filtering algorithm
  publication-title: Inf. Retr.
  doi: 10.1023/A:1011419012209
– ident: CR27
– volume: 7
  start-page: 49
  year: 2002
  end-page: 69
  ident: CR60
  article-title: SmartClients: constraint satisfaction as a paradigm for scaleable intelligent information systems
  publication-title: Constraints
  doi: 10.1023/A:1017940426216
– volume: 34
  start-page: 74
  issue: 2
  year: 2001
  end-page: 82
  ident: CR1
  article-title: Using data mining methods to build customer profiles
  publication-title: Computer
  doi: 10.1109/2.901170
– volume: 3
  start-page: 215
  year: 2002
  end-page: 266
  ident: CR48
  article-title: Case base querying for travel planning recommendation
  publication-title: Inf. Technol. Tourism
– year: 1986
  ident: CR62
  publication-title: Decision Analysis and Behavioral Research
– ident: CR65
– ident: CR52
– ident: CR31
– volume: 11
  start-page: 35
  issue: 2
  year: 2006
  end-page: 57
  ident: CR35
  article-title: Adaptive selection: an analysis of critiquing and preference-based feedback in conversational recommender systems
  publication-title: Int. J. Electron. Commerce
  doi: 10.2753/JEC1086-4415110202
– volume: 9
  start-page: 289
  year: 2004
  end-page: 310
  ident: CR42
  article-title: Decision tradeoff using example-critiquing and constraint programming
  publication-title: Constraints
  doi: 10.1023/B:CONS.0000049205.05581.24
– volume: 27
  start-page: 465
  year: 2006
  end-page: 503
  ident: CR61
  article-title: Preference-based search using example-critiquing with suggestions
  publication-title: Artif Intell Res
– volume: 12
  start-page: 468
  issue: 3
  year: 2000
  end-page: 479
  ident: CR51
  article-title: Dynamic taxonomies: a model for large information bases
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.846296
– start-page: 342
  year: 2007
  end-page: 376
  ident: CR58
  article-title: Case-based recommendation
  publication-title: The Adaptive Web: Methods and Strategies of Web Personalization
– year: 2005
  ident: CR64
  publication-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 11
  start-page: 11
  issue: 2
  year: 2006
  end-page: 34
  ident: CR17
  article-title: An integrated environment for the development of knowledge-based recommender applications
  publication-title: Int. J. Electron. Commerce
  doi: 10.2753/JEC1086-4415110201
– volume: 13
  start-page: 311
  issue: 4
  year: 2003
  end-page: 372
  ident: CR41
  article-title: Web usage mining as a tool for personalization: a survey
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1023/A:1026238916441
– ident: CR55
– ident: CR28
– ident: CR24
– volume: 9
  start-page: 147
  issue: 2
  year: 2004
  end-page: 170
  ident: CR15
  article-title: Enhancing product recommender systems on sparse binary data
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/B:DAMI.0000031629.31935.ac
– volume: 11
  start-page: 81
  issue: 2
  year: 2006
  ident: 9048_CR23
  publication-title: Int. J. Electron. Commerce
  doi: 10.2753/JEC1086-4415110204
– ident: 9048_CR24
  doi: 10.1007/11527886_21
– ident: 9048_CR46
  doi: 10.1145/192844.192905
– volume: 4
  start-page: 133
  issue: 2
  year: 2001
  ident: 9048_CR21
  publication-title: Inf. Retr.
  doi: 10.1023/A:1011419012209
– volume: 13
  start-page: 393
  issue: 5/6
  year: 1999
  ident: 9048_CR39
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006544522159
– ident: 9048_CR18
– volume-title: Word of Mouse: The Marketing Power of Collaborative Filtering
  year: 2002
  ident: 9048_CR50
– volume: 3
  start-page: 215
  year: 2002
  ident: 9048_CR48
  publication-title: Inf. Technol. Tourism
– ident: 9048_CR12
– volume: 18
  start-page: 143
  year: 2005
  ident: 9048_CR44
  publication-title: Knowl-Based Syst.
  doi: 10.1016/j.knosys.2004.10.005
– volume: 17
  start-page: 55
  issue: 6
  year: 2002
  ident: 9048_CR47
  publication-title: IEEE Intell. Syst.
– ident: 9048_CR14
– ident: 9048_CR33
  doi: 10.1007/978-3-7091-2670-7_9
– start-page: 90
  volume-title: The Adaptive Web: Methods and Strategies of Web Personalization
  year: 2007
  ident: 9048_CR37
  doi: 10.1007/978-3-540-72079-9_3
– start-page: 291
  volume-title: The Adaptive Web: Methods and Strategies of Web Personalization
  year: 2007
  ident: 9048_CR54
  doi: 10.1007/978-3-540-72079-9_9
– volume: 9
  start-page: 289
  year: 2004
  ident: 9048_CR42
  publication-title: Constraints
  doi: 10.1023/B:CONS.0000049205.05581.24
– volume: 10
  start-page: 251
  issue: 4
  year: 2000
  ident: 9048_CR5
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1023/A:1008372122567
– volume: 27
  start-page: 465
  year: 2006
  ident: 9048_CR61
  publication-title: Artif Intell Res
  doi: 10.1613/jair.2075
– volume-title: Decision Analysis and Behavioral Research
  year: 1986
  ident: 9048_CR62
– ident: 9048_CR29
  doi: 10.1007/978-3-540-69912-5_5
– volume: 11
  start-page: 11
  issue: 2
  year: 2006
  ident: 9048_CR17
  publication-title: Int. J. Electron. Commerce
  doi: 10.2753/JEC1086-4415110201
– ident: 9048_CR25
  doi: 10.1145/312624.312682
– volume: 22
  start-page: 5
  issue: 1
  year: 2004
  ident: 9048_CR26
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/963770.963772
– start-page: 485
  volume-title: The Adaptive Web: Methods and Strategies of Web Personalization
  year: 2007
  ident: 9048_CR22
  doi: 10.1007/978-3-540-72079-9_16
– volume: 22
  start-page: 89
  issue: 2
  year: 2001
  ident: 9048_CR59
  publication-title: AI Magazine
– volume: 24
  start-page: 301
  issue: 3–4
  year: 2005
  ident: 9048_CR43
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-005-9004-8
– ident: 9048_CR57
– ident: 9048_CR36
  doi: 10.1007/978-3-540-30077-9_4
– volume: 23
  start-page: 103
  issue: 1
  year: 2005
  ident: 9048_CR3
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/1055709.1055714
– volume: 43
  start-page: 142
  issue: 8
  year: 2000
  ident: 9048_CR38
  publication-title: Commun. ACM
  doi: 10.1145/345124.345169
– ident: 9048_CR4
  doi: 10.1145/170035.170072
– start-page: 325
  volume-title: The Adaptive Web: Methods and Strategies of Web Personalization
  year: 2007
  ident: 9048_CR40
  doi: 10.1007/978-3-540-72079-9_10
– volume: 12
  start-page: 331
  issue: 4
  year: 2002
  ident: 9048_CR13
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1023/A:1021240730564
– ident: 9048_CR65
  doi: 10.1007/11823865_6
– volume: 34
  start-page: 74
  issue: 2
  year: 2001
  ident: 9048_CR1
  publication-title: Computer
  doi: 10.1109/2.901170
– ident: 9048_CR31
  doi: 10.1109/EEE.2005.102
– volume: 40
  start-page: 77
  issue: 3
  year: 1997
  ident: 9048_CR32
  publication-title: Commun. ACM
  doi: 10.1145/245108.245126
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: 9048_CR2
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.99
– volume: 7
  start-page: 49
  year: 2002
  ident: 9048_CR60
  publication-title: Constraints
  doi: 10.1023/A:1017940426216
– ident: 9048_CR8
  doi: 10.1145/1015330.1015394
– ident: 9048_CR49
  doi: 10.1007/3-540-45006-8_37
– ident: 9048_CR6
  doi: 10.1145/267658.267744
– volume: 18
  start-page: 245
  issue: 3
  year: 2008
  ident: 9048_CR9
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1007/s11257-007-9042-9
– volume: 42
  start-page: 27
  issue: 5
  year: 1999
  ident: 9048_CR19
  publication-title: Commun. ACM
– ident: 9048_CR56
  doi: 10.1145/223904.223931
– volume-title: Information Retrieval, Data Structure and Algorithms
  year: 1992
  ident: 9048_CR20
– ident: 9048_CR28
  doi: 10.1109/IS.2006.348445
– ident: 9048_CR30
  doi: 10.1007/978-3-540-30480-7_40
– volume: 12
  start-page: 468
  issue: 3
  year: 2000
  ident: 9048_CR51
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.846296
– ident: 9048_CR10
– ident: 9048_CR16
– volume: 40
  start-page: 66
  issue: 3
  year: 1997
  ident: 9048_CR7
  publication-title: Commun. ACM
  doi: 10.1145/245108.245124
– ident: 9048_CR55
  doi: 10.1145/564376.564421
– ident: 9048_CR52
  doi: 10.1145/352871.352887
– ident: 9048_CR53
  doi: 10.1145/371920.372071
– ident: 9048_CR27
– volume: 7
  start-page: 76
  issue: 1
  year: 2003
  ident: 9048_CR34
  publication-title: IEEE Intern. Comput.
  doi: 10.1109/MIC.2003.1167344
– volume: 69
  start-page: 180
  issue: 2
  year: 2000
  ident: 9048_CR11
  publication-title: Encyclopedia Libr. Inf. Syst.
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2005
  ident: 9048_CR64
– volume: 11
  start-page: 35
  issue: 2
  year: 2006
  ident: 9048_CR35
  publication-title: Int. J. Electron. Commerce
  doi: 10.2753/JEC1086-4415110202
– ident: 9048_CR63
  doi: 10.1145/291080.291091
– volume: 22
  start-page: 69
  issue: 5/6
  year: 2007
  ident: 9048_CR66
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2007.49
– start-page: 342
  volume-title: The Adaptive Web: Methods and Strategies of Web Personalization
  year: 2007
  ident: 9048_CR58
  doi: 10.1007/978-3-540-72079-9_11
– volume: 9
  start-page: 147
  issue: 2
  year: 2004
  ident: 9048_CR15
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/B:DAMI.0000031629.31935.ac
– ident: 9048_CR45
  doi: 10.1145/1250910.1250929
– volume: 13
  start-page: 311
  issue: 4
  year: 2003
  ident: 9048_CR41
  publication-title: User Model. User-Adapt. Interact.
  doi: 10.1023/A:1026238916441
SSID ssj0007679
Score 2.0864348
Snippet Recommender Systems (RS) suggest useful and interesting items to users in order to increase user satisfaction and online conversion rates. They typically...
Issue Title: Special Issue on Data Mining for Personalization Recommender Systems (RS) suggest useful and interesting items to users in order to increase user...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms Collaboration
Computer Science
Consumers
Customization
Datasets
Electronic commerce
Information
Knowledge
Management of Computing and Information Systems
Multimedia Information Systems
Original Paper
Preferences
Ratings & rankings
Recommender systems
Studies
User feedback
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgLCx8lK9SQB4QA8gisd0knRBClAoBYgCJLbIvtlSJpoWkA_8eX-KkAgmWKFISDzn77p3v-R4hp4lVmpsoYFom4BIU0ExnMmBmqEHqcGigovw_PkXjV3n_Nnjz3JzC0yobn1g56mwGuEd-6VysSxWiILmafzAUjcLiqlfQWCVrIXehFg-Kj-5aRxxHvtUelwy7wjdFzerknAvsMcPa_9DNYfb1Mywtseav8mgVdUZbZMPDRXpd23ebrJi8SzYbKQbqV2YXxZc9UaNL9h_8HmRBz-hD2za52CHPNy5msaKmDtJZTg0y8CbIfK5uJzApKSwcHpy6wT8NsoSr7cOCTnKKufN0WknP0boBdLFLXke3Lzdj5iUVGIhBUjJQLv9RPLDAw8yK2IXnKAtBWh0Ky63iAvFdpBzwcHgWUJVDKiGFkLECHluxRzr5LDcHhLrfliXKDCwPQIKIVGKH0l1jEFrHJuyRoPmjKfh-4yh78Z4uOyWjEVLUwUQjpF89ct5-Mq-bbfz3cr8xU-rXXZG2s6RHLhrLLZ_-Odbhv2P1yXpdQ0ISyxHplJ8Lc-ygSKlPqgn3DYet27o
  priority: 102
  providerName: ProQuest
Title Case-studies on exploiting explicit customer requirements in recommender systems
URI https://link.springer.com/article/10.1007/s11257-008-9048-y
https://www.proquest.com/docview/212924608
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_x8cLLYIVthYH8gHjYZJTYbpI-dqgF8SWEqMSeIvtqS9XWMJH0Af56zonTCrRN4iWJEsdK7LPvzvfz7wAOM6eNsEnEjcqQHBQ03ExUxG3foDJx32IN-b-6Ts7G6vy-dx_2cZct2r0NSdYz9XKzG-nilPtwfZ_Ejj-twnqP_BMajeuD058Xw8UEnCaBYk8o7tng22Dm3yp5rY6WNuabsGitbUabcNd-ZwMy-XU8r8wxPr-hcHznj2zBh2B9skEjLh9hxRYd2GwzO7Aw0Ds-l3PAfXTg82VY0izZEbtcsDCX23BzQiqQlw0SkT0UzHpA39QDqevLKU4rhnMyL2dU-aP1oON6NbJk04J5V3w2qzPZsYZPutyB8Wh4d3LGQ4YGjrKXVRw1uVNaRA5FPHEyJW2fTGJUzsTSCaeF9OZiosmOIfMYfZIPpaWSUqUaRerkJ1grHgr7BRi1xCTTtudEhAplojPXV3RMURqT2rgLUdtROQb6cp9F43e-JF727Zr7tJq-XfOnLnxbvPKn4e74X-G9tvfzMIzLnPQ6CVESZV343vbl8uk_69p9V-k92GhCVB4j8xXWqse53SdLpzIHsJqNTg-CfNP5x_D65pbujsXgBVBQ-cI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAXCgHaUAp7AA6gFfbuxnYOFaKlVUrTqEKt1JvZXe9KkYhT6lRVflz_W2fsdSKQ6K0Xy5LtOeyM52Pn7TyA95nXRrgk4kZlFgsUa7gpVMTdwFhl4oGzNeT_ZJwMz9WPi_7FGty2Z2EIVtn6xNpRFzNLe-Rf0MViqZBE2dfLP5xIo6i52jJo6MCsUOzWE8bCuY5jt7jBCq7aPfqO6v4gxOHB2f6QB5IBbmU_m3OrsSLQIvJWxIWXKQaspIit8iaWXngtJGU8icZQjBmeJZ4KpaWSUqXaitRLlPsI1hXtn3Rgfe9gfPpzGQrSJAz7E4rTXPq2rVqf3cPUIuWEPhjgX8QXfwfGVbb7T4O2jnuHz-BpSFjZt8bCnsOaK7uw0ZJBsOAbukT_HKAiXdgchV3Qin1ko-Xg5uoFnO5j1ORVA15ks5I5wgBOCHtd307sZM7sNWakUxR-5QinXG9gVmxSMqrep9Oa_I41I6irl3D-IOv9CjrlrHRbwHDZiky7vheRVVYmOvMDhdfUSmNSF_cgalc0t2HiORFv_M5Xs5pJCTkxcZIS8kUPPi0_uWzGfdz38narpjz8-VW-tNMefG41t3r6X1mv75X1Dh4Pz05G-ehofLwNT5qOFkFq3kBnfnXtdjAxmpu3wfwY_Hpoi78DXxsdpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB7SBEovfbgvN2m7hySHliXS7lqSD6E0D5M0jjGlgdzU3dUuGGo5jRyKf2L_VWaklU0KzS0XIZA0h53RPHa-nQ9gO_PaCJdE3KjMYoFiDTeFirjrG6tM3He2hvyfj5KTC_Xtsne5Bn_bszAEq2x9Yu2oi5mlPfI9dLFYKiRRtucDKmJ8NPhy9ZsTgRQ1Wls2DR1YFor9etpYOONx5hZ_sJqr9k-PUPU7QgyOfxye8EA4wK3sZXNuNVYHWkTeirjwMsXglRSxVd7E0guvhaTsJ9EYljHbs8RZobRUUqpUW5F6iXIfwUaKQR_rwI2D49H4-zIspEkY_CcUpxn1bYu1PseHaUbKCYnQxz-KL-4GyVXm-0-zto6Bg-fwNCSv7GtjbS9gzZUdeNYSQ7DgJzpEBR1gIx14Mww7ohXbZcPlEOfqJYwPMYLyqgEyslnJHOEBJ4TDrm8ndjJn9gaz0ykKv3aEWa43Mys2KRlV8tNpTYTHmnHU1Su4eJD1fg3r5ax0b4HhshWZdj0vIqusTHTm-wqvqZXGpC7uQtSuaG7D9HMi4fiVr-Y2kxJyYuUkJeSLLnxafnLVjP647-XNVk158AJVvrTZLnxuNbd6-l9Z7-6V9REeo-Xnw9PR2SY8aZpbhK7ZgvX59Y17jznS3HwI1sfg50Mb_C3eUyHo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Case-studies+on+exploiting+explicit+customer+requirements+in+recommender+systems&rft.jtitle=User+modeling+and+user-adapted+interaction&rft.au=Zanker%2C+Markus&rft.au=Jessenitschnig%2C+Markus&rft.date=2009-02-01&rft.issn=0924-1868&rft.eissn=1573-1391&rft.volume=19&rft.issue=1-2&rft.spage=133&rft.epage=166&rft_id=info:doi/10.1007%2Fs11257-008-9048-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11257_008_9048_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-1868&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-1868&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-1868&client=summon