Analysis of hotspots and cooling strategy for multilayer three-dimensional integrated circuits

•A new estimation formula for the effective thermal conductivity of the TIM layer.•CFD modeling and simulation of 3D stacked ICs for forced convective cooling.•Reynolds number and the stacked layers cause nonlinear temperature changes.•Stacked structure and TSV can change the location of hotspot tem...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 186; p. 116336
Main Authors Wang, Chao, Huang, Xiao-Jie, Vafai, Kambiz
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.03.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN1359-4311
1873-5606
DOI10.1016/j.applthermaleng.2020.116336

Cover

Abstract •A new estimation formula for the effective thermal conductivity of the TIM layer.•CFD modeling and simulation of 3D stacked ICs for forced convective cooling.•Reynolds number and the stacked layers cause nonlinear temperature changes.•Stacked structure and TSV can change the location of hotspot temperature. The effects of geometric and thermal properties of multilayer nominal three-dimensional chip on the temperature hotspots are investigated in this work. Based on heat-transfer computational fluid dynamic analysis, various effective parameters which correlate with reducing the hotspot temperature are studied. A new analytical method for the equivalent thermal conductivity of the thermal interface material (TIM) layer and the chip layer structure in the multilayer chip is proposed, the deviation between the present results and the prior literature is less than 2%. For different chip structures and through silicon vias (TSV) arrangements, the higher the number of multi-layer chips subject to a low Reynolds number, the higher the hotspot temperature. The hotspot temperature gradually decreases linearly with an increase in the Reynolds number. For a convective cooling environment, comparing the two cases with and without the TSV, the variation of Nusselt number for the chip package surface facing the coolant is less than 1. The staggered core structure has a lower hotspot temperature for the no TSV case. When the Core-Centralized TSV is introduced, the overlapping core structure influences the internal heat dissipation the most. When the Reynolds number increases to 2000 and the number of chip layers is greater than 10, the hotspot temperature is almost insensitive to the chip layer and the hotspot temperature difference among different multilayer 3D chips does not exceed 0.2%. The layer where the hotspot temperature exists is different for different TSV arrangements.
AbstractList The effects of geometric and thermal properties of multilayer nominal three-dimensional chip on the temperature hotspots are investigated in this work. Based on heat-transfer computational fluid dynamic analysis, various effective parameters which correlate with reducing the hotspot temperature are studied. A new analytical method for the equivalent thermal conductivity of the thermal interface material (TIM) layer and the chip layer structure in the multilayer chip is proposed, the deviation between the present results and the prior literature is less than 2%. For different chip structures and through silicon vias (TSV) arrangements, the higher the number of multi-layer chips subject to a low Reynolds number, the higher the hotspot temperature. The hotspot temperature gradually decreases linearly with an increase in the Reynolds number. For a convective cooling environment, comparing the two cases with and without the TSV, the variation of Nusselt number for the chip package surface facing the coolant is less than 1. The staggered core structure has a lower hotspot temperature for the no TSV case. When the Core-Centralized TSV is introduced, the overlapping core structure influences the internal heat dissipation the most. When the Reynolds number increases to 2000 and the number of chip layers is greater than 10, the hotspot temperature is almost insensitive to the chip layer and the hotspot temperature difference among different multilayer 3D chips does not exceed 0.2%. The layer where the hotspot temperature exists is different for different TSV arrangements.
•A new estimation formula for the effective thermal conductivity of the TIM layer.•CFD modeling and simulation of 3D stacked ICs for forced convective cooling.•Reynolds number and the stacked layers cause nonlinear temperature changes.•Stacked structure and TSV can change the location of hotspot temperature. The effects of geometric and thermal properties of multilayer nominal three-dimensional chip on the temperature hotspots are investigated in this work. Based on heat-transfer computational fluid dynamic analysis, various effective parameters which correlate with reducing the hotspot temperature are studied. A new analytical method for the equivalent thermal conductivity of the thermal interface material (TIM) layer and the chip layer structure in the multilayer chip is proposed, the deviation between the present results and the prior literature is less than 2%. For different chip structures and through silicon vias (TSV) arrangements, the higher the number of multi-layer chips subject to a low Reynolds number, the higher the hotspot temperature. The hotspot temperature gradually decreases linearly with an increase in the Reynolds number. For a convective cooling environment, comparing the two cases with and without the TSV, the variation of Nusselt number for the chip package surface facing the coolant is less than 1. The staggered core structure has a lower hotspot temperature for the no TSV case. When the Core-Centralized TSV is introduced, the overlapping core structure influences the internal heat dissipation the most. When the Reynolds number increases to 2000 and the number of chip layers is greater than 10, the hotspot temperature is almost insensitive to the chip layer and the hotspot temperature difference among different multilayer 3D chips does not exceed 0.2%. The layer where the hotspot temperature exists is different for different TSV arrangements.
ArticleNumber 116336
Author Wang, Chao
Huang, Xiao-Jie
Vafai, Kambiz
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0003-1309-3106
  surname: Wang
  fullname: Wang, Chao
  organization: College of Computer Science, South-central University for Nationalities, Hubei, Wuhan 430074, China
– sequence: 2
  givenname: Xiao-Jie
  surname: Huang
  fullname: Huang, Xiao-Jie
  organization: Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
– sequence: 3
  givenname: Kambiz
  surname: Vafai
  fullname: Vafai, Kambiz
  email: vafai@engr.ucr.edu
  organization: Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
BookMark eNqNkEFLwzAYhoNMcJv-h4BeO5OmbVLwModTYeBFr4Ys_bpldElNUmH_3ox50dMOIYG878P3PRM0ss4CQneUzCih1f1upvq-i1vwe9WB3cxykqcvWjFWXaAxFZxlZUWqUXqzss4KRukVmoSwI4Tmghdj9Dm3qjsEE7Br8dbF0KeDlW2wdq4zdoND9CrC5oBb5_F-6KLp1AE8jlsPkDVmDzYYlyjY2JQ7hlPZeD2YGK7RZau6ADe_9xR9LJ_eFy_Z6u35dTFfZZqVImY6J-sSxLoUba45VVwQIjQnhHMualUWFVO85tC0QlWgSL3meaGLFtg6J6TVbIpuT9zeu68BQpQ7N_g0VJB5SaioGOd1Sj2eUtq7EDy0UpuoYpo-7Wg6SYk8epU7-derPHqVJ68J8vAP0nuzV_5wbn15qkPS8W3Ay6ANWA2N8aCjbJw5D_QDpCmicA
CitedBy_id crossref_primary_10_1109_TCPMT_2024_3462944
crossref_primary_10_1016_j_measurement_2024_114125
crossref_primary_10_1016_j_icheatmasstransfer_2024_107668
crossref_primary_10_1115_1_4050922
crossref_primary_10_2298_TSCI220801021D
crossref_primary_10_1016_j_jocs_2022_101665
crossref_primary_10_1016_j_applthermaleng_2024_124936
crossref_primary_10_1016_j_rser_2024_115039
crossref_primary_10_1016_j_apenergy_2024_122983
crossref_primary_10_1109_TCAD_2022_3229598
crossref_primary_10_1109_TCPMT_2021_3135558
crossref_primary_10_1016_j_surfcoat_2022_128565
crossref_primary_10_3390_math12040543
crossref_primary_10_1016_j_applthermaleng_2022_118839
crossref_primary_10_1016_j_tsep_2023_101755
crossref_primary_10_3390_electronics11162556
crossref_primary_10_1016_j_icheatmasstransfer_2022_106161
crossref_primary_10_2139_ssrn_3983849
crossref_primary_10_2298_TSCI220805061R
crossref_primary_10_1016_j_applthermaleng_2023_121758
crossref_primary_10_1016_j_applthermaleng_2023_121416
crossref_primary_10_1615_HeatTransRes_2022044334
crossref_primary_10_1016_j_microrel_2023_114952
crossref_primary_10_1016_j_apm_2022_03_047
crossref_primary_10_1016_j_applthermaleng_2023_121499
crossref_primary_10_1109_TCPMT_2024_3435835
crossref_primary_10_1080_10407782_2021_1947626
crossref_primary_10_1109_TCPMT_2021_3109662
crossref_primary_10_1016_j_seta_2022_102159
crossref_primary_10_1063_5_0216627
crossref_primary_10_1016_j_tsep_2023_102333
crossref_primary_10_1016_j_rineng_2024_103591
crossref_primary_10_1007_s13204_024_03033_2
crossref_primary_10_1115_1_4053803
crossref_primary_10_1115_1_4055245
crossref_primary_10_1115_1_4055620
crossref_primary_10_1002_htj_23095
Cites_doi 10.1109/ECTC.2016.159
10.2514/6.1978-874
10.1016/j.applthermaleng.2013.10.042
10.1016/S0017-9310(98)00287-7
10.1109/ASPDAC.2013.6509589
10.1109/ECTC.2016.102
10.1098/rsta.1906.0007
10.1080/104077801300348851
10.1080/10407780903012180
10.2298/TSCI160716041W
10.1109/CSTIC.2018.8369300
10.1016/j.applthermaleng.2008.04.002
10.1109/TCAD.2013.2261120
10.1016/j.mee.2016.03.014
10.1016/j.applthermaleng.2019.114832
10.4236/jcc.2016.415003
10.3390/mi9060287
10.1109/ASPDAC.2013.6509647
10.1016/j.applthermaleng.2011.12.028
10.1016/j.applthermaleng.2018.10.044
10.1109/STHERM.2012.6188818
10.1016/j.ijheatmasstransfer.2004.06.024
10.1109/ASPDAC.2013.6509643
10.1109/TC.2013.192
10.1115/1.4033138
10.1109/EPTC.2011.6184481
10.2514/2.6435
10.1016/S0017-9310(97)00323-2
10.1109/5.929647
10.1109/ICEPT.2016.7583226
10.1016/j.proeng.2012.01.858
10.1016/j.vlsi.2017.12.002
10.1016/j.microrel.2012.04.002
10.23919/VLSIT.2019.8776486
10.1109/ECTC.2017.82
10.1016/j.ijheatmasstransfer.2016.02.010
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Mar 5, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 5, 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2020.116336
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2020_116336
S135943112033814X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
R2-
SEW
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
KR7
SSH
ID FETCH-LOGICAL-c358t-c20b5e8b58f2c71a78008c70077789a5463a797edf8a6ea09b724c4fe3b200fc3
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Fri Jul 25 07:33:07 EDT 2025
Wed Oct 29 21:09:50 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
Fri Feb 23 02:48:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multilayer Three-Dimensional chips
Thermal interface material(TIM)
Local Nusselt number
Reynolds numbers
Hotspot temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-c20b5e8b58f2c71a78008c70077789a5463a797edf8a6ea09b724c4fe3b200fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1309-3106
PQID 2501863779
PQPubID 2045278
ParticipantIDs proquest_journals_2501863779
crossref_citationtrail_10_1016_j_applthermaleng_2020_116336
crossref_primary_10_1016_j_applthermaleng_2020_116336
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2020_116336
PublicationCentury 2000
PublicationDate 2021-03-05
PublicationDateYYYYMMDD 2021-03-05
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ding, Zhang, Gong, Xu, Huang (b0035) 2020; 168
Wang, Sun, Pan (b0090) 2017; 21
Maxwell Garnett (b0120) 1906; 205
H. Qian, H. Liang, C.-H. Chang, W. Zhang, H. Yu, Thermal simulator of 3D-IC with modeling of anisotropic TSV conductance and microchannel entrance effects, in: 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, Yokohama, Japan, 2013, pp. 485-490.
Tavakkoli, Ebrahimi, Wang, Vafai (b0140) 2016; 138
Z. Liu, S.X.-D. Tan, H. Wang, S. Swarup, A. Gupta, Compact nonlinear thermal modeling of packaged integrated systems, in: 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, Yokohama, Japan, 2013, pp. 157-162.
Liang, Qu (b0165) 1999; 42
N. Wang, Y. Pi, W. Wang, Y. Jin, Equivalent thermal conductivity model based full scale numerical simulation for thermal management in fan-out packages, in: 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), IEEE, Orlando, FL, USA, 2017, pp. 2054-2059.
S. Tao, X. Chen, Y. Wang, Y. Ma, Y. Shi, H. Wang, H. Yang, HS3DPG: Hierarchical simulation for 3D P/G network, in: 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, Yokohama, Japan, 2013, pp. 509-514.
Sparrow, Abraham, Tong (b0150) 2004; 47
Ge, Tang, Mao (b0190) 2018
Tavakkoli, Ebrahimi, Wang, Vafai (b0115) 2016; 97
Kim, Koo, Kuznetsov (b0135) 2001; 40
E. Colgan, P. Andry, B. Dang, J. Magerlein, J. Maria, R. Polastre, J. Wakil, Measurement of microbump thermal resistance in 3D chip stacks, in: 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), IEEE, 2012, pp. 1-7.
Vaddina, Rahmani, Latif, Liljeberg, Plosila (b0125) 2012; 30
N. Wang, Y. Jin, Y. Pi, W. Wang, A full chip scale numerical simulation method for thermal management of 3D IC, in: 2016 17th International Conference on Electronic Packaging Technology (ICEPT), IEEE, Wuhan, China, 2016, pp. 690-693.
X. Xing, Y. Lee, T. Tee, X. Zhang, S. Gao, W. Kwon, Thermal modeling and characterization of package with through-silicon-vias (TSV) interposer, in: 2011 IEEE 13th Electronics Packaging Technology Conference, IEEE, Singapore, Singapore, 2011, pp. 548-553.
Chen, Kursun, Motschman, Johnson, Xie (b0075) 2013; 32
C. Tien, K. Vafai, Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation, in: 1979 2nd Thermophysics and Heat Transfer Conference(THTC), Palo Alto, CA, USA, pp. 874.
Zeng, Vafai (b0130) 2009; 55
Hou, Fu, Wang, Gong (b0080) 2016; 153
Lau, Yue (b0025) 2012; 52
Y. Pi, N. Wang, J. Zhang, W. Wang, G. Luo, M. Miao, W. Xu, Y. Jin, A fast and low computation consumption model for system-level thermal management in 3D IC, in: 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), IEEE, Las Vegas, NV, USA, 2016, pp. 1933-1939.
Kim, Athikulwongse, Healy, Hossain, Jung, Khorosh, Kumar, Lee, Lewis, Lin (b0005) 2013; 64
Xie, Zhang, Sundén, Zhang (b0040) 2014; 62
Banerjee, Souri, Kapur, Saraswat (b0030) 2001; 89
Zhu, Vafai, Xu (b0170) 1999; 13
Wang, Yin, Hu, Rezai (b0050) 2018; 9
J.H. Lau, Fan-out wafer-level packaging for 3D IC heterogeneous integration, in: 2018 China Semiconductor Technology International Conference (CSTIC), IEEE, Shanghai, China, 2018, pp. 1-6.
Lu, Shi, Xia, Liao (b0110) 2012; 36
Young, Vafai (b0155) 1998; 41
Kandasamy, Mujumdar (b0105) 2009; 29
C. Hu, M. Chen, W. Chiou, C. Doug, 3D Multi-chip Integration with System on Integrated Chips (SoIC™), in: 2019 Symposium on VLSI Technology, IEEE, Tyoto, Japan, 2019, pp. T20-T21.
Hu, Chen, Peng, Song, Choi (b0065) 2015; 7
Chiou, Lee (b0070) 2016; 4
F. Inoue, A. Jourdain, J. De Vos, E. Sleeckx, E. Beyne, J. Patel, O. Ansell, H. Ashraf, J. Hopkins, D. Thomas, Characterization of extreme Si thinning process for wafer-to-wafer stacking, in: 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), IEEE, Las Vegas, NV, USA, 2016, pp. 2095-2102.
Dbouk (b0045) 2019; 146
Lee, Das, Pande (b0095) 2019; 65
10.1016/j.applthermaleng.2020.116336_b0100
10.1016/j.applthermaleng.2020.116336_b0145
Lau (10.1016/j.applthermaleng.2020.116336_b0025) 2012; 52
Ge (10.1016/j.applthermaleng.2020.116336_b0190) 2018
Chen (10.1016/j.applthermaleng.2020.116336_b0075) 2013; 32
10.1016/j.applthermaleng.2020.116336_b0180
10.1016/j.applthermaleng.2020.116336_b0060
10.1016/j.applthermaleng.2020.116336_b0085
10.1016/j.applthermaleng.2020.116336_b0020
10.1016/j.applthermaleng.2020.116336_b0185
10.1016/j.applthermaleng.2020.116336_b0160
Dbouk (10.1016/j.applthermaleng.2020.116336_b0045) 2019; 146
Ding (10.1016/j.applthermaleng.2020.116336_b0035) 2020; 168
Tavakkoli (10.1016/j.applthermaleng.2020.116336_b0115) 2016; 97
Zeng (10.1016/j.applthermaleng.2020.116336_b0130) 2009; 55
Chiou (10.1016/j.applthermaleng.2020.116336_b0070) 2016; 4
Wang (10.1016/j.applthermaleng.2020.116336_b0090) 2017; 21
Wang (10.1016/j.applthermaleng.2020.116336_b0050) 2018; 9
10.1016/j.applthermaleng.2020.116336_b0010
Hou (10.1016/j.applthermaleng.2020.116336_b0080) 2016; 153
10.1016/j.applthermaleng.2020.116336_b0175
10.1016/j.applthermaleng.2020.116336_b0055
Kim (10.1016/j.applthermaleng.2020.116336_b0135) 2001; 40
10.1016/j.applthermaleng.2020.116336_b0015
Vaddina (10.1016/j.applthermaleng.2020.116336_b0125) 2012; 30
Kim (10.1016/j.applthermaleng.2020.116336_b0005) 2013; 64
Liang (10.1016/j.applthermaleng.2020.116336_b0165) 1999; 42
Kandasamy (10.1016/j.applthermaleng.2020.116336_b0105) 2009; 29
Xie (10.1016/j.applthermaleng.2020.116336_b0040) 2014; 62
Hu (10.1016/j.applthermaleng.2020.116336_b0065) 2015; 7
Sparrow (10.1016/j.applthermaleng.2020.116336_b0150) 2004; 47
Tavakkoli (10.1016/j.applthermaleng.2020.116336_b0140) 2016; 138
Banerjee (10.1016/j.applthermaleng.2020.116336_b0030) 2001; 89
Maxwell Garnett (10.1016/j.applthermaleng.2020.116336_b0120) 1906; 205
Lu (10.1016/j.applthermaleng.2020.116336_b0110) 2012; 36
Lee (10.1016/j.applthermaleng.2020.116336_b0095) 2019; 65
Young (10.1016/j.applthermaleng.2020.116336_b0155) 1998; 41
Zhu (10.1016/j.applthermaleng.2020.116336_b0170) 1999; 13
References_xml – volume: 13
  start-page: 185
  year: 1999
  end-page: 194
  ident: b0170
  article-title: Device temperature and heat generation in power metal-oxide semiconductor field effect transistors
  publication-title: J. Thermophys. Heat Transf.
– volume: 168
  year: 2020
  ident: b0035
  article-title: A novel thermal management scheme for 3D-IC chips with multi-cores and high power density
  publication-title: Appl. Therm. Eng.
– volume: 55
  start-page: 967
  year: 2009
  end-page: 982
  ident: b0130
  article-title: An investigation of convective cooling of an array of channel-mounted obstacles
  publication-title: Numer. Heat Transf., Part A: Appl.
– volume: 40
  start-page: 21
  year: 2001
  end-page: 36
  ident: b0135
  article-title: Effect of anisotropy in permeability and effective thermal conductivity on thermal performance of an aluminum foam heat sink
  publication-title: Numer. Heat Transf.: Part A: Appl.
– volume: 47
  start-page: 5285
  year: 2004
  end-page: 5296
  ident: b0150
  article-title: Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross-flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 62
  start-page: 791
  year: 2014
  end-page: 802
  ident: b0040
  article-title: Constructal design and thermal analysis of microchannel heat sinks with multistage bifurcations in single-phase liquid flow
  publication-title: Appl. Therm. Eng.
– volume: 64
  start-page: 112
  year: 2013
  end-page: 125
  ident: b0005
  article-title: Design and analysis of 3D-MAPS (3D massively parallel processor with stacked memory)
  publication-title: IEEE Trans. Comput.
– volume: 32
  start-page: 1335
  year: 2013
  end-page: 1346
  ident: b0075
  article-title: Through silicon via aware design planning for thermally efficient 3-D integrated circuits
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst.
– reference: Y. Pi, N. Wang, J. Zhang, W. Wang, G. Luo, M. Miao, W. Xu, Y. Jin, A fast and low computation consumption model for system-level thermal management in 3D IC, in: 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), IEEE, Las Vegas, NV, USA, 2016, pp. 1933-1939.
– volume: 36
  start-page: 181
  year: 2012
  end-page: 187
  ident: b0110
  article-title: Thermal conduction analysis and characterization of solder bumps in flip chip package
  publication-title: Appl. Therm. Eng.
– reference: F. Inoue, A. Jourdain, J. De Vos, E. Sleeckx, E. Beyne, J. Patel, O. Ansell, H. Ashraf, J. Hopkins, D. Thomas, Characterization of extreme Si thinning process for wafer-to-wafer stacking, in: 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), IEEE, Las Vegas, NV, USA, 2016, pp. 2095-2102.
– volume: 89
  start-page: 602
  year: 2001
  end-page: 633
  ident: b0030
  article-title: 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration
  publication-title: Proc. IEEE
– reference: N. Wang, Y. Pi, W. Wang, Y. Jin, Equivalent thermal conductivity model based full scale numerical simulation for thermal management in fan-out packages, in: 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), IEEE, Orlando, FL, USA, 2017, pp. 2054-2059.
– volume: 9
  start-page: 287
  year: 2018
  ident: b0050
  article-title: 3D integrated circuit cooling with microfluidics
  publication-title: Micromachines
– volume: 29
  start-page: 822
  year: 2009
  end-page: 829
  ident: b0105
  article-title: Interface thermal characteristics of flip chip packages–A numerical study
  publication-title: Appl. Therm. Eng.
– reference: N. Wang, Y. Jin, Y. Pi, W. Wang, A full chip scale numerical simulation method for thermal management of 3D IC, in: 2016 17th International Conference on Electronic Packaging Technology (ICEPT), IEEE, Wuhan, China, 2016, pp. 690-693.
– volume: 153
  start-page: 110
  year: 2016
  end-page: 116
  ident: b0080
  article-title: A novel thermal-aware structure of TSV cluster in 3D IC
  publication-title: Microelectronic Engineering
– volume: 52
  start-page: 2660
  year: 2012
  end-page: 2669
  ident: b0025
  article-title: Effects of TSVs (through-silicon vias) on thermal performances of 3D IC integration system-in-package (SiP)
  publication-title: Microelectron. Reliab.
– start-page: 164
  year: 2018
  end-page: 165
  ident: b0190
  article-title: Equivalent Thermal Conductivity Modeling of Through-Silicon Via (TSV) Structures
  publication-title: in: 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)
– volume: 41
  start-page: 3131
  year: 1998
  end-page: 3148
  ident: b0155
  article-title: Convective cooling of a heated obstacle in a channel
  publication-title: Int. J. Heat Mass Transf.
– reference: C. Tien, K. Vafai, Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation, in: 1979 2nd Thermophysics and Heat Transfer Conference(THTC), Palo Alto, CA, USA, pp. 874.
– volume: 146
  start-page: 664
  year: 2019
  end-page: 673
  ident: b0045
  article-title: A new technology for CPU chip cooling by concentrated suspension flow of non-colloidal particles
  publication-title: Appl. Therm. Eng.
– reference: S. Tao, X. Chen, Y. Wang, Y. Ma, Y. Shi, H. Wang, H. Yang, HS3DPG: Hierarchical simulation for 3D P/G network, in: 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, Yokohama, Japan, 2013, pp. 509-514.
– volume: 65
  start-page: 282
  year: 2019
  end-page: 292
  ident: b0095
  article-title: Analyzing power-thermal-performance trade-offs in a high-performance 3D NoC architecture
  publication-title: Integration
– reference: X. Xing, Y. Lee, T. Tee, X. Zhang, S. Gao, W. Kwon, Thermal modeling and characterization of package with through-silicon-vias (TSV) interposer, in: 2011 IEEE 13th Electronics Packaging Technology Conference, IEEE, Singapore, Singapore, 2011, pp. 548-553.
– volume: 42
  start-page: 1885
  year: 1999
  end-page: 1893
  ident: b0165
  article-title: Effective thermal conductivity of gas–solid composite materials and the temperature difference effect at high temperature
  publication-title: Int. J. Heat Mass Transf.
– volume: 138
  year: 2016
  ident: b0140
  article-title: Thermophysical and geometrical effects on the thermal performance and optimization of a three-dimensional integrated circuit
  publication-title: J. Heat Transf.
– volume: 30
  start-page: 248
  year: 2012
  end-page: 257
  ident: b0125
  article-title: Thermal modeling and analysis of advanced 3D stacked structures
  publication-title: Proc. Eng.
– reference: J.H. Lau, Fan-out wafer-level packaging for 3D IC heterogeneous integration, in: 2018 China Semiconductor Technology International Conference (CSTIC), IEEE, Shanghai, China, 2018, pp. 1-6.
– reference: E. Colgan, P. Andry, B. Dang, J. Magerlein, J. Maria, R. Polastre, J. Wakil, Measurement of microbump thermal resistance in 3D chip stacks, in: 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), IEEE, 2012, pp. 1-7.
– volume: 4
  start-page: 33
  year: 2016
  ident: b0070
  article-title: Thermal simulation for two-phase liquid cooling 3D-ICs
  publication-title: J. Comput. Commun.
– reference: Z. Liu, S.X.-D. Tan, H. Wang, S. Swarup, A. Gupta, Compact nonlinear thermal modeling of packaged integrated systems, in: 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, Yokohama, Japan, 2013, pp. 157-162.
– volume: 205
  start-page: 237
  year: 1906
  end-page: 288
  ident: b0120
  article-title: Colours in metal glasses, in metallic films, and in metallic solutions. II
  publication-title: Philos. Trans. Roy. Soc. Lond. Ser. A
– volume: 7
  start-page: 53
  year: 2015
  ident: b0065
  article-title: Thermal control in 3D liquid cooled processors via hotspot separation and thermoelectric cooling
  publication-title: Int. J. Comput. Sci. Inform. Technol.
– volume: 21
  start-page: 1601
  year: 2017
  end-page: 1606
  ident: b0090
  article-title: An analytical thermal model for three-dimensional integrated circuits with integrated micro-channel cooling
  publication-title: Therm. Sci.
– reference: C. Hu, M. Chen, W. Chiou, C. Doug, 3D Multi-chip Integration with System on Integrated Chips (SoIC™), in: 2019 Symposium on VLSI Technology, IEEE, Tyoto, Japan, 2019, pp. T20-T21.
– reference: H. Qian, H. Liang, C.-H. Chang, W. Zhang, H. Yu, Thermal simulator of 3D-IC with modeling of anisotropic TSV conductance and microchannel entrance effects, in: 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), IEEE, Yokohama, Japan, 2013, pp. 485-490.
– volume: 97
  start-page: 337
  year: 2016
  end-page: 352
  ident: b0115
  article-title: Analysis of critical thermal issues in 3D integrated circuits
  publication-title: Int. J. Heat Mass Transf.
– ident: 10.1016/j.applthermaleng.2020.116336_b0175
  doi: 10.1109/ECTC.2016.159
– ident: 10.1016/j.applthermaleng.2020.116336_b0160
  doi: 10.2514/6.1978-874
– volume: 62
  start-page: 791
  year: 2014
  ident: 10.1016/j.applthermaleng.2020.116336_b0040
  article-title: Constructal design and thermal analysis of microchannel heat sinks with multistage bifurcations in single-phase liquid flow
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.10.042
– volume: 42
  start-page: 1885
  year: 1999
  ident: 10.1016/j.applthermaleng.2020.116336_b0165
  article-title: Effective thermal conductivity of gas–solid composite materials and the temperature difference effect at high temperature
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(98)00287-7
– ident: 10.1016/j.applthermaleng.2020.116336_b0145
  doi: 10.1109/ASPDAC.2013.6509589
– start-page: 164
  year: 2018
  ident: 10.1016/j.applthermaleng.2020.116336_b0190
  article-title: Equivalent Thermal Conductivity Modeling of Through-Silicon Via (TSV) Structures
– ident: 10.1016/j.applthermaleng.2020.116336_b0015
  doi: 10.1109/ECTC.2016.102
– volume: 205
  start-page: 237
  year: 1906
  ident: 10.1016/j.applthermaleng.2020.116336_b0120
  article-title: Colours in metal glasses, in metallic films, and in metallic solutions. II
  publication-title: Philos. Trans. Roy. Soc. Lond. Ser. A
  doi: 10.1098/rsta.1906.0007
– volume: 40
  start-page: 21
  year: 2001
  ident: 10.1016/j.applthermaleng.2020.116336_b0135
  article-title: Effect of anisotropy in permeability and effective thermal conductivity on thermal performance of an aluminum foam heat sink
  publication-title: Numer. Heat Transf.: Part A: Appl.
  doi: 10.1080/104077801300348851
– volume: 55
  start-page: 967
  year: 2009
  ident: 10.1016/j.applthermaleng.2020.116336_b0130
  article-title: An investigation of convective cooling of an array of channel-mounted obstacles
  publication-title: Numer. Heat Transf., Part A: Appl.
  doi: 10.1080/10407780903012180
– volume: 21
  start-page: 1601
  year: 2017
  ident: 10.1016/j.applthermaleng.2020.116336_b0090
  article-title: An analytical thermal model for three-dimensional integrated circuits with integrated micro-channel cooling
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160716041W
– ident: 10.1016/j.applthermaleng.2020.116336_b0010
  doi: 10.1109/CSTIC.2018.8369300
– volume: 29
  start-page: 822
  year: 2009
  ident: 10.1016/j.applthermaleng.2020.116336_b0105
  article-title: Interface thermal characteristics of flip chip packages–A numerical study
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.04.002
– volume: 32
  start-page: 1335
  year: 2013
  ident: 10.1016/j.applthermaleng.2020.116336_b0075
  article-title: Through silicon via aware design planning for thermally efficient 3-D integrated circuits
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst.
  doi: 10.1109/TCAD.2013.2261120
– volume: 153
  start-page: 110
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.116336_b0080
  article-title: A novel thermal-aware structure of TSV cluster in 3D IC
  publication-title: Microelectronic Engineering
  doi: 10.1016/j.mee.2016.03.014
– volume: 168
  year: 2020
  ident: 10.1016/j.applthermaleng.2020.116336_b0035
  article-title: A novel thermal management scheme for 3D-IC chips with multi-cores and high power density
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114832
– volume: 4
  start-page: 33
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.116336_b0070
  article-title: Thermal simulation for two-phase liquid cooling 3D-ICs
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2016.415003
– volume: 9
  start-page: 287
  year: 2018
  ident: 10.1016/j.applthermaleng.2020.116336_b0050
  article-title: 3D integrated circuit cooling with microfluidics
  publication-title: Micromachines
  doi: 10.3390/mi9060287
– ident: 10.1016/j.applthermaleng.2020.116336_b0055
  doi: 10.1109/ASPDAC.2013.6509647
– volume: 36
  start-page: 181
  year: 2012
  ident: 10.1016/j.applthermaleng.2020.116336_b0110
  article-title: Thermal conduction analysis and characterization of solder bumps in flip chip package
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.12.028
– volume: 146
  start-page: 664
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116336_b0045
  article-title: A new technology for CPU chip cooling by concentrated suspension flow of non-colloidal particles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.044
– ident: 10.1016/j.applthermaleng.2020.116336_b0100
  doi: 10.1109/STHERM.2012.6188818
– volume: 47
  start-page: 5285
  year: 2004
  ident: 10.1016/j.applthermaleng.2020.116336_b0150
  article-title: Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross-flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2004.06.024
– ident: 10.1016/j.applthermaleng.2020.116336_b0085
  doi: 10.1109/ASPDAC.2013.6509643
– volume: 64
  start-page: 112
  year: 2013
  ident: 10.1016/j.applthermaleng.2020.116336_b0005
  article-title: Design and analysis of 3D-MAPS (3D massively parallel processor with stacked memory)
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2013.192
– volume: 138
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.116336_b0140
  article-title: Thermophysical and geometrical effects on the thermal performance and optimization of a three-dimensional integrated circuit
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4033138
– ident: 10.1016/j.applthermaleng.2020.116336_b0060
  doi: 10.1109/EPTC.2011.6184481
– volume: 13
  start-page: 185
  year: 1999
  ident: 10.1016/j.applthermaleng.2020.116336_b0170
  article-title: Device temperature and heat generation in power metal-oxide semiconductor field effect transistors
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/2.6435
– volume: 7
  start-page: 53
  year: 2015
  ident: 10.1016/j.applthermaleng.2020.116336_b0065
  article-title: Thermal control in 3D liquid cooled processors via hotspot separation and thermoelectric cooling
  publication-title: Int. J. Comput. Sci. Inform. Technol.
– volume: 41
  start-page: 3131
  year: 1998
  ident: 10.1016/j.applthermaleng.2020.116336_b0155
  article-title: Convective cooling of a heated obstacle in a channel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(97)00323-2
– volume: 89
  start-page: 602
  year: 2001
  ident: 10.1016/j.applthermaleng.2020.116336_b0030
  article-title: 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration
  publication-title: Proc. IEEE
  doi: 10.1109/5.929647
– ident: 10.1016/j.applthermaleng.2020.116336_b0185
  doi: 10.1109/ICEPT.2016.7583226
– volume: 30
  start-page: 248
  year: 2012
  ident: 10.1016/j.applthermaleng.2020.116336_b0125
  article-title: Thermal modeling and analysis of advanced 3D stacked structures
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2012.01.858
– volume: 65
  start-page: 282
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116336_b0095
  article-title: Analyzing power-thermal-performance trade-offs in a high-performance 3D NoC architecture
  publication-title: Integration
  doi: 10.1016/j.vlsi.2017.12.002
– volume: 52
  start-page: 2660
  year: 2012
  ident: 10.1016/j.applthermaleng.2020.116336_b0025
  article-title: Effects of TSVs (through-silicon vias) on thermal performances of 3D IC integration system-in-package (SiP)
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.04.002
– ident: 10.1016/j.applthermaleng.2020.116336_b0020
  doi: 10.23919/VLSIT.2019.8776486
– ident: 10.1016/j.applthermaleng.2020.116336_b0180
  doi: 10.1109/ECTC.2017.82
– volume: 97
  start-page: 337
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.116336_b0115
  article-title: Analysis of critical thermal issues in 3D integrated circuits
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.02.010
SSID ssj0012874
Score 2.5085871
Snippet •A new estimation formula for the effective thermal conductivity of the TIM layer.•CFD modeling and simulation of 3D stacked ICs for forced convective...
The effects of geometric and thermal properties of multilayer nominal three-dimensional chip on the temperature hotspots are investigated in this work. Based...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116336
SubjectTerms Computational fluid dynamics
Cooling effects
Correlation analysis
Fluid dynamics
Fluid flow
Heat conductivity
Heat transfer
Hotspot temperature
Integrated circuits
Interconnections
Local Nusselt number
Mathematical analysis
Multilayer Three-Dimensional chips
Multilayers
Reynolds numbers
Temperature
Temperature gradients
Thermal conductivity
Thermal interface material(TIM)
Thermodynamic properties
Title Analysis of hotspots and cooling strategy for multilayer three-dimensional integrated circuits
URI https://dx.doi.org/10.1016/j.applthermaleng.2020.116336
https://www.proquest.com/docview/2501863779
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AKRWK
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEIBDURA9iE98VMmh19hmN9lk8SBFlKrYiwo9GbJ5aKW2YteDF3-7mX1UKx4Er8tmd5lJ5sHOfINQy1ErLbOGCCMdYdalJHPWEy_jxMepNbrocr3uJ707djnggwY6rXthoKyysv2lTS-sdXWlXUmz_TIctm9ozNPg_mjUCWkWZQPoYGcCphgcfczKPCjw3Iuki6cE7l5Cra8aL_hJDHHWs4axJSFbjMCGJHEBbP7VTf0w2IUXOl9Dq1X4iLvlF66jhhtvoJVvUMFNdF9zRvDE48dJHvLWfIr12GIzgQk9D3haEmnfcQhYcVFRONIh8sZ50KsjFnj_JasDz2ASYfHw1bwN8-kWujs_uz3tkWqKAjExlzkxUSfjTmZc-sgIqkUIEaURwPERMtWAw9ciFUFBUidOd9JMRMww7-IsnCBv4m20MJ6M3Q7CidRScquDYXCMeqp9h4U9kAUXl3iapbvouBaaMhViHCZdjFRdS_ak5kWuQOSqFPku4rPVLyVq44_rTmr9qLmto4JX-OMTmrVaVXWEpyoC1GECPMa9f79gHy1HUAsDtWu8iRby1zd3EIKZPDssdushWuxeXPX6n4u6-fU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEIBHFCQKh6rQViyP1geu7q4TO3bEAVWoaHleAGlPtRw_6KJlF7HZAxd-O548llJxQOIaxUk0M56HMv4GYNczpxx3lkqrPOXO57TwLtCg0iykubOmOuV6dp71r_jxQAwW4KA9C4NtlY3vr3165a2bK91Gmt274bB7wVKRx_DHkl4ssxgffIAlLhKJFdjPx3mfB0Oge1V1iZzi7cuw-9zkhX-JMdG6NTi3JJaLCTqRLK2Iza_Gqf88dhWGDj_DpyZ_JL_qT1yDBT9eh9V_qIJf4E8LGiGTQP5Oyli4llNixo7YCY7ouSbTGkn7QGLGSqqWwpGJqTcpo2I9dQj8r2EdZE6TiIuH93Y2LKdf4erw9-VBnzZjFKhNhSqpTXqF8KoQKiRWMiNjjqisRJCPVLlBHr6RuYwaUibzppcXMuGWB58WcQsFm36DxfFk7DeAZMooJZyJnsFzFpgJPR6NoIgxLgusyDuw1wpN24YxjqMuRrptJrvRL0WuUeS6FnkHxHz1Xc3aeOO6_VY_-oXt6BgW3viE7VatutnDU50g6zBDIOPmu1_wAz72L89O9enR-ckWrCTYGIONbGIbFsv7md-JmU1ZfK8s9wlLo_uK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+hotspots+and+cooling+strategy+for+multilayer+three-dimensional+integrated+circuits&rft.jtitle=Applied+thermal+engineering&rft.au=Wang%2C+Chao&rft.au=Huang%2C+Xiao-Jie&rft.au=Vafai%2C+Kambiz&rft.date=2021-03-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=186&rft_id=info:doi/10.1016%2Fj.applthermaleng.2020.116336&rft.externalDocID=S135943112033814X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon