A 6.4 Gbit/s Embedded Compression Codec for Memory-Efficient Applications on Advanced-HD Specification

The embedded compression (EC) technique is applied to reduce the memory bandwidth and capacity in a display system. In this paper, the high-speed EC algorithm is proposed for advanced-HD specification. It mainly comprises three features: 1) the associated geometric-based probability model is develop...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 20; no. 10; pp. 1277 - 1291
Main Authors Tsai, Tsung-Han, Lee, Yu-Hsuan
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2010.2057770

Cover

More Information
Summary:The embedded compression (EC) technique is applied to reduce the memory bandwidth and capacity in a display system. In this paper, the high-speed EC algorithm is proposed for advanced-HD specification. It mainly comprises three features: 1) the associated geometric-based probability model is developed to construct context-modeling mechanism without context-table; 2) develop content-adaptive Golomb-Rice code and geometric-based binary code as the entropy coding with minor order of context; and 3) provide the rate control mechanism to guarantee the saving ratio of memory bandwidth and capacity. With competitive coding efficiency, the computation-efficiency of the proposed EC algorithm is about 44% and 40% of FELICS and JPEG-LS. The proposed very-large-scale integration architecture of entire codec is implemented in TSMC 0.18- 1P6M CMOS technology. Based on pixel-based parallelism and segment-based parallelism techniques, the encoding/decoding capability reaches Quad Full-high definition (QFHD) (3840 × 2160) at 30 Hz. The maximum throughput is as high as 6.4 Gbit/s. Furthermore, with multi-level parallelism, the performance can be extended to QHD (2560 × 1440) at 120 Hz and QFHD at 120 Hz for the double frame rate technique.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2010.2057770