Symmetric deformable registration of multimodal brain magnetic resonance images via appearance residuals

Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities. Here, we propose to symmetrically register images from two mo...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 261; p. 108578
Main Authors Huang, Yunzhi, Han, Luyi, Dou, Haoran, Ahmad, Sahar, Yap, Pew-Thian
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.04.2025
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2024.108578

Cover

Abstract Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities. Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images. The proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods. Our residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application. •Unsupervised framework for intra-subject and inter-subject multimodal brain MRI registration.•Residual-guided framework decouples appearance and morphology residuals across subjects.•Deblurring module enhances warped image quality to better match original images.
AbstractList Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities.BACKGROUND AND OBJECTIVEDeformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities.Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images.METHODSHere, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images.The proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods.RESULTSThe proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods.Our residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application.CONCLUSIONSOur residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application.
Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities. Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images. The proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods. Our residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application.
Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities. Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images. The proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods. Our residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application. •Unsupervised framework for intra-subject and inter-subject multimodal brain MRI registration.•Residual-guided framework decouples appearance and morphology residuals across subjects.•Deblurring module enhances warped image quality to better match original images.
ArticleNumber 108578
Author Han, Luyi
Huang, Yunzhi
Yap, Pew-Thian
Dou, Haoran
Ahmad, Sahar
Author_xml – sequence: 1
  givenname: Yunzhi
  orcidid: 0000-0002-2039-6933
  surname: Huang
  fullname: Huang, Yunzhi
  organization: Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Luyi
  surname: Han
  fullname: Han, Luyi
  organization: Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
– sequence: 3
  givenname: Haoran
  surname: Dou
  fullname: Dou, Haoran
  organization: CISTIB, School of Computing, University of Leeds, Leeds, UK
– sequence: 4
  givenname: Sahar
  surname: Ahmad
  fullname: Ahmad, Sahar
  organization: Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, USA
– sequence: 5
  givenname: Pew-Thian
  surname: Yap
  fullname: Yap, Pew-Thian
  email: ptyap@med.unc.edu
  organization: Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39799721$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFF-CAfOSSxXbWcYK4oApopUocgLM1dsbFS2wHO6m0b18vWzhwgNNYM99naea_IGcxRSTkJWdbznj3Zr-1YTZbwcSuNnqp-idkw3slGiU7eUY2FRoa0TF1Ti5K2TPGhJTdM3LeDmoYlOAb8v3LIQRcsrd0RJdyADMhzXjny5Jh8SnS5GhYp8WHNMJETQYfaYC7iEuVMpYUIVqkvvaw0HsPFOYZIf_q1rkfV5jKc_LU1YIvHusl-fbxw9er6-b286ebq_e3jW1lvzTGcusEMxJdZ7rdwFEo7hQ6MNKO3JqR1XdroYMdcOcUV0Iq0wMwLhy27SV5ffp3zunnimXRwReL0wQR01p0y-Wu75VqWUVfPaKrCTjqOdcd8kH_vk4FxAmwOZWS0f1BONPHCPReHyPQxwj0KYIqvTtJWLe895h1sR7rLUaf0S56TP7f-tu_dDv56C1MP_DwP_kBK-ylYg
Cites_doi 10.1109/42.906424
10.1016/j.media.2019.101545
10.1016/j.neuroimage.2010.09.025
10.1109/TMI.2013.2246577
10.1002/mp.12155
10.1109/TMI.2023.3290149
10.1016/j.media.2016.08.009
10.1016/j.ins.2021.04.045
10.1016/j.neuroimage.2004.03.032
10.1007/s11548-021-02359-4
10.1016/j.compmedimag.2023.102286
10.1016/j.cmpb.2009.09.002
10.1016/j.media.2012.05.008
10.3389/fnhum.2014.00671
10.1007/s00234-015-1550-4
10.1016/j.neuroimage.2013.04.127
10.1016/j.neuroimage.2010.07.033
10.1016/j.media.2007.06.004
10.1038/sdata.2018.308
10.1016/j.patcog.2014.12.014
10.1016/j.media.2018.07.002
10.1109/TMI.2011.2138152
10.1109/TIP.2011.2173206
10.1016/j.patcog.2016.09.004
10.1145/3422622
10.1109/42.816070
10.1109/TMI.2003.815867
10.1007/s13369-020-05201-2
10.1109/TMI.2019.2897538
10.1002/hbm.24638
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2024.108578
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 39799721
10_1016_j_cmpb_2024_108578
S0169260724005716
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
ABTAH
AFCTW
RIG
AAYXX
ACLOT
CITATION
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c358t-bc1cf20b5ef6b6491e271f7efab5cd1cbd0efa3ca6a4a1ff717257b8aa012fe33
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Wed Oct 01 13:32:54 EDT 2025
Fri May 02 01:41:53 EDT 2025
Wed Oct 01 03:46:17 EDT 2025
Sat Mar 01 15:46:23 EST 2025
Tue Aug 26 19:05:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Residual learning
Brain MRI
Multimodal deformable registration
Appearance residuals
Language English
License Copyright © 2025 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-bc1cf20b5ef6b6491e271f7efab5cd1cbd0efa3ca6a4a1ff717257b8aa012fe33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2039-6933
PMID 39799721
PQID 3154887730
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3154887730
pubmed_primary_39799721
crossref_primary_10_1016_j_cmpb_2024_108578
elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108578
elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108578
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
2025-Apr
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lehmann, Gonner, Spitzer (b41) 1999; 18
Ronneberger, Fischer, Brox (b17) 2015
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (b13) 2019; 38
Ganzetti, Wenderoth, Mantini (b2) 2014; 8
Legg, Rosin, Marshall, Morgan (b6) 2015; 48
Hoffmann, Billot, Greve, Iglesias, Fischl, Dalca (b37) 2021
Hu, Modat, Gibson, Ghavami, Bonmati, Moore, Emberton, Noble, Barratt, Vercauteren (b11) 2018
Yang, Li, Zhao, Fan, Eric, Chang, Xu (b14) 2020; 10
Ségonne, Dale, Busa, Glessner, Salat, Hahn, Fischl (b40) 2004; 22
Mahmoudzadeh, Kashou (b42) 2013; 2013
Hoffmann, Billot, Greve, Iglesias, Fischl, Dalca (b38) 2021
Iglesias, Liu, Thompson, Tu (b29) 2011; 30
Su, Dai, He, Kong (b22) 2022
Xu, Luo, Yan, Li, Jayender (b20) 2021; 16
Zhao, Chen, McDonald, Yu, Mohamed, Fuller, Court, Pan, Wang, Wang (b36) 2023; 108
Brunet, Vrscay, Wang (b24) 2012; 21
Liu, Li, Jia (b25) 2008
Heinrich, Jenkinson, Brady, Schnabel (b34) 2013; 32
Ganzetti, Wenderoth, Mantini (b3) 2015; 57
Avants, Tustison, Song, Cook, Klein, Gee (b31) 2011; 54
He, Zhang, Ren, Sun (b21) 2016
Heinrich, Jenkinson, Bhushan, Matin, Gleeson, Brady, Schnabel (b8) 2012; 16
Babayan, Erbey, Kumral, Reinelt, Reiter, Röbbig, Schaare, Uhlig, Anwander, Bazin, Horstmann, Lampe, Nikulin, Okon-Singer, Preusser, Pampel, Rohr, Sacher, Thöne-Otto, Trapp, Nierhaus, Altmann, Arélin, Blöchl, Bongartz, Breig, Cesnaite, Chen, Cozatl, Czerwonatis, Dambrauskaite, Dreyer, Enders, Engelhardt, Fischer, Forschack, Golchert, Golz, Guran, Hedrich, Hentschel, Hoffmann, Huntenburg, Jost, Kosatschek, Kunzendorf, Lammers, Lauckner, Mahjoory, Kanaan, Mendes, Menger, Morino, Näthe, Neubauer, Noyan, Oligschläger, Panczyszyn-Trzewik, Poehlchen, Putzke, Roski, Schaller, Schieferbein, Schlaak, Schmidt, Gorgolewski, Schmidt, Schrimpf, Stasch, Voss, Wiedemann, Margulies, Gaebler, Villringer (b27) 2019; 6
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Essen, Jenkinson (b28) 2013; 80
Özbey, Dalmaz, Dar, Bedel, Özturk, Güngör, Çukur (b18) 2023; 42
Pech-Pacheco, Cristóbal, Chamorro-Martinez, Fernández-Valdivia (b26) 2000; 3
Zhang, Brady, Smith (b32) 2001; 20
Avants, Epstein, Grossman, Gee (b33) 2008; 12
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (b4) 2018
Pluim, Maintz, Viergever (b7) 2003; 22
Hu, Modat, Gibson, Li, Ghavami, Bonmati, Wang, Bandula, Moore, Emberton (b12) 2018; 49
Jog, Carass, Roy, Pham, Prince (b15) 2017; 35
Han (b16) 2017; 44
Isola, Zhu, Zhou, Efros (b23) 2017
Zhu, Park, Isola, Efros (b39) 2017
Vo, Nguyen, Le, Lee (b43) 2021; 570
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b9) 2020; 63
Lakshmi, Rajasekaran, Jeevitha, Selvendran (b19) 2022; 47
Modat, Ridgway, Taylor, Lehmann, Barnes, Hawkes, Fox, Ourselin (b35) 2010; 98
So, Chung (b5) 2017; 62
Fonov, Evans, Botteron, Almli, McKinstry, Collins (b30) 2011; 54
Pelkmans, Dicks, Barkhof, Vrenken, Scheltens, van der Flier, Tijms (b1) 2019; 40
Fan, Cao, Wang, Yap, Shen (b10) 2019; 58
Pelkmans (10.1016/j.cmpb.2024.108578_b1) 2019; 40
Legg (10.1016/j.cmpb.2024.108578_b6) 2015; 48
Lehmann (10.1016/j.cmpb.2024.108578_b41) 1999; 18
Hoffmann (10.1016/j.cmpb.2024.108578_b38) 2021
Ronneberger (10.1016/j.cmpb.2024.108578_b17) 2015
Ségonne (10.1016/j.cmpb.2024.108578_b40) 2004; 22
Balakrishnan (10.1016/j.cmpb.2024.108578_b13) 2019; 38
Glasser (10.1016/j.cmpb.2024.108578_b28) 2013; 80
Yang (10.1016/j.cmpb.2024.108578_b14) 2020; 10
So (10.1016/j.cmpb.2024.108578_b5) 2017; 62
Balakrishnan (10.1016/j.cmpb.2024.108578_b4) 2018
Avants (10.1016/j.cmpb.2024.108578_b33) 2008; 12
Fan (10.1016/j.cmpb.2024.108578_b10) 2019; 58
Özbey (10.1016/j.cmpb.2024.108578_b18) 2023; 42
Brunet (10.1016/j.cmpb.2024.108578_b24) 2012; 21
Liu (10.1016/j.cmpb.2024.108578_b25) 2008
Isola (10.1016/j.cmpb.2024.108578_b23) 2017
Ganzetti (10.1016/j.cmpb.2024.108578_b3) 2015; 57
Jog (10.1016/j.cmpb.2024.108578_b15) 2017; 35
Vo (10.1016/j.cmpb.2024.108578_b43) 2021; 570
Hoffmann (10.1016/j.cmpb.2024.108578_b37) 2021
Lakshmi (10.1016/j.cmpb.2024.108578_b19) 2022; 47
He (10.1016/j.cmpb.2024.108578_b21) 2016
Su (10.1016/j.cmpb.2024.108578_b22) 2022
Hu (10.1016/j.cmpb.2024.108578_b11) 2018
Zhang (10.1016/j.cmpb.2024.108578_b32) 2001; 20
Modat (10.1016/j.cmpb.2024.108578_b35) 2010; 98
Han (10.1016/j.cmpb.2024.108578_b16) 2017; 44
Pech-Pacheco (10.1016/j.cmpb.2024.108578_b26) 2000; 3
Babayan (10.1016/j.cmpb.2024.108578_b27) 2019; 6
Zhu (10.1016/j.cmpb.2024.108578_b39) 2017
Heinrich (10.1016/j.cmpb.2024.108578_b34) 2013; 32
Heinrich (10.1016/j.cmpb.2024.108578_b8) 2012; 16
Hu (10.1016/j.cmpb.2024.108578_b12) 2018; 49
Fonov (10.1016/j.cmpb.2024.108578_b30) 2011; 54
Xu (10.1016/j.cmpb.2024.108578_b20) 2021; 16
Goodfellow (10.1016/j.cmpb.2024.108578_b9) 2020; 63
Mahmoudzadeh (10.1016/j.cmpb.2024.108578_b42) 2013; 2013
Ganzetti (10.1016/j.cmpb.2024.108578_b2) 2014; 8
Avants (10.1016/j.cmpb.2024.108578_b31) 2011; 54
Zhao (10.1016/j.cmpb.2024.108578_b36) 2023; 108
Iglesias (10.1016/j.cmpb.2024.108578_b29) 2011; 30
Pluim (10.1016/j.cmpb.2024.108578_b7) 2003; 22
References_xml – start-page: 1
  year: 2021
  ident: b38
  article-title: SynthMorph: learning contrast-invariant registration without acquired images
  publication-title: IEEE Trans. Med. Imaging
– volume: 570
  start-page: 225
  year: 2021
  end-page: 240
  ident: b43
  article-title: HI-GAN: A hierarchical generative adversarial network for blind denoising of real photographs
  publication-title: Inform. Sci.
– volume: 16
  start-page: 1423
  year: 2012
  end-page: 1435
  ident: b8
  article-title: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration
  publication-title: Med. Image Anal.
– volume: 22
  start-page: 1060
  year: 2004
  end-page: 1075
  ident: b40
  article-title: A hybrid approach to the skull stripping problem in MRI
  publication-title: Neuroimage
– start-page: 770
  year: 2016
  end-page: 778
  ident: b21
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 108
  year: 2023
  ident: b36
  article-title: A transformer-based hierarchical registration framework for multimodality deformable image registration
  publication-title: Comput. Med. Imaging Graph.
– volume: 62
  start-page: 161
  year: 2017
  end-page: 174
  ident: b5
  article-title: A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya Distances
  publication-title: Pattern Recognit.
– volume: 35
  start-page: 475
  year: 2017
  end-page: 488
  ident: b15
  article-title: Random forest regression for magnetic resonance image synthesis
  publication-title: Med. Image Anal.
– start-page: 1
  year: 2008
  end-page: 8
  ident: b25
  article-title: Image partial blur detection and classification
  publication-title: 2008 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 54
  start-page: 313
  year: 2011
  end-page: 327
  ident: b30
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: NeuroImage
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: b33
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– volume: 49
  start-page: 1
  year: 2018
  end-page: 13
  ident: b12
  article-title: Weakly-supervised convolutional neural networks for multimodal image registration
  publication-title: Med. Image Anal.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b17
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1070
  year: 2018
  end-page: 1074
  ident: b11
  article-title: Label-driven weakly-supervised learning for multimodal deformable image registration
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018
– volume: 44
  start-page: 1408
  year: 2017
  end-page: 1419
  ident: b16
  article-title: MR-based synthetic CT generation using a deep convolutional neural network method
  publication-title: Med. Phys.
– start-page: 9252
  year: 2018
  end-page: 9260
  ident: b4
  article-title: An unsupervised learning model for deformable medical image registration
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 6
  start-page: 180308
  year: 2019
  ident: b27
  article-title: A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults
  publication-title: Sci. Data
– volume: 98
  start-page: 278
  year: 2010
  end-page: 284
  ident: b35
  article-title: Fast free-form deformation using graphics processing units
  publication-title: Comput. Methods Programs Biomed.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: b28
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 40
  start-page: 3900
  year: 2019
  end-page: 3909
  ident: b1
  article-title: Gray matter T1-w/T2-w ratios are higher in Alzheimer’s disease
  publication-title: Hum. Brain Mapp.
– volume: 18
  start-page: 1049
  year: 1999
  end-page: 1075
  ident: b41
  article-title: Survey: Interpolation methods in medical image processing
  publication-title: IEEE Trans. Med. Imaging
– volume: 10
  start-page: 1
  year: 2020
  end-page: 18
  ident: b14
  article-title: MRI cross-modality image-to-image translation
  publication-title: Sci. Rep.
– volume: 3
  start-page: 314
  year: 2000
  end-page: 317
  ident: b26
  article-title: Diatom autofocusing in brightfield microscopy: a comparative study
  publication-title: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000
– volume: 47
  start-page: 10025
  year: 2022
  end-page: 10042
  ident: b19
  article-title: An adaptive MRI-PET image fusion model based on deep residual learning and self-adaptive total variation
  publication-title: Arab. J. Sci. Eng.
– volume: 58
  year: 2019
  ident: b10
  article-title: Adversarial learning for mono- or multi-modal registration
  publication-title: Med. Image Anal.
– volume: 21
  start-page: 1488
  year: 2012
  end-page: 1499
  ident: b24
  article-title: On the mathematical properties of the structural similarity index
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: b32
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1125
  year: 2017
  end-page: 1134
  ident: b23
  article-title: Image-to-image translation with conditional adversarial networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: b9
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
– volume: 42
  start-page: 3524
  year: 2023
  end-page: 3539
  ident: b18
  article-title: Unsupervised medical image translation with adversarial diffusion models
  publication-title: IEEE Trans. Med. Imaging
– volume: 30
  start-page: 1617
  year: 2011
  end-page: 1634
  ident: b29
  article-title: Robust brain extraction across datasets and comparison with publicly available methods
  publication-title: IEEE Trans. Med. Imaging
– volume: 48
  start-page: 1937
  year: 2015
  end-page: 1946
  ident: b6
  article-title: Feature neighbourhood mutual information for multi-modal image registration: an application to eye fundus imaging
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 1239
  year: 2013
  end-page: 1248
  ident: b34
  article-title: MRF-based deformable registration and ventilation estimation of lung CT
  publication-title: IEEE Trans. Med. Imaging
– year: 2021
  ident: b37
  article-title: SynthMorph: learning contrast-invariant registration without acquired images
  publication-title: IEEE Trans. Med. Imaging
– volume: 16
  start-page: 923
  year: 2021
  end-page: 932
  ident: b20
  article-title: F3rnet: full-resolution residual registration network for deformable image registration
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 22
  start-page: 986
  year: 2003
  end-page: 1004
  ident: b7
  article-title: Mutual-information-based registration of medical images: a survey
  publication-title: IEEE Trans. Med. Imaging
– volume: 38
  start-page: 1788
  year: 2019
  end-page: 1800
  ident: b13
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 57
  start-page: 917
  year: 2015
  end-page: 928
  ident: b3
  article-title: Mapping pathological changes in brain structure by combining T1-and T2-weighted MR imaging data
  publication-title: Neuroradiology
– start-page: 468
  year: 2022
  end-page: 477
  ident: b22
  article-title: ABN: Anti-blur neural networks for multi-stage deformable image registration
  publication-title: 2022 IEEE International Conference on Data Mining
– volume: 8
  start-page: 671
  year: 2014
  ident: b2
  article-title: Whole brain myelin mapping using T1- and T2-weighted MR imaging data
  publication-title: Front. Hum. Neurosci.
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  ident: b31
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
– start-page: 2223
  year: 2017
  end-page: 2232
  ident: b39
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 2013
  start-page: 16
  year: 2013
  ident: b42
  article-title: Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration
  publication-title: J. Biomed. Imaging
– year: 2021
  ident: 10.1016/j.cmpb.2024.108578_b37
  article-title: SynthMorph: learning contrast-invariant registration without acquired images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1070
  year: 2018
  ident: 10.1016/j.cmpb.2024.108578_b11
  article-title: Label-driven weakly-supervised learning for multimodal deformable image registration
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.cmpb.2024.108578_b32
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 58
  year: 2019
  ident: 10.1016/j.cmpb.2024.108578_b10
  article-title: Adversarial learning for mono- or multi-modal registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101545
– volume: 54
  start-page: 2033
  year: 2011
  ident: 10.1016/j.cmpb.2024.108578_b31
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 32
  start-page: 1239
  year: 2013
  ident: 10.1016/j.cmpb.2024.108578_b34
  article-title: MRF-based deformable registration and ventilation estimation of lung CT
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2246577
– volume: 44
  start-page: 1408
  year: 2017
  ident: 10.1016/j.cmpb.2024.108578_b16
  article-title: MR-based synthetic CT generation using a deep convolutional neural network method
  publication-title: Med. Phys.
  doi: 10.1002/mp.12155
– volume: 42
  start-page: 3524
  year: 2023
  ident: 10.1016/j.cmpb.2024.108578_b18
  article-title: Unsupervised medical image translation with adversarial diffusion models
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2023.3290149
– start-page: 2223
  year: 2017
  ident: 10.1016/j.cmpb.2024.108578_b39
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– volume: 35
  start-page: 475
  year: 2017
  ident: 10.1016/j.cmpb.2024.108578_b15
  article-title: Random forest regression for magnetic resonance image synthesis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.009
– volume: 570
  start-page: 225
  year: 2021
  ident: 10.1016/j.cmpb.2024.108578_b43
  article-title: HI-GAN: A hierarchical generative adversarial network for blind denoising of real photographs
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.04.045
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.cmpb.2024.108578_b14
  article-title: MRI cross-modality image-to-image translation
  publication-title: Sci. Rep.
– start-page: 1
  year: 2008
  ident: 10.1016/j.cmpb.2024.108578_b25
  article-title: Image partial blur detection and classification
– volume: 22
  start-page: 1060
  year: 2004
  ident: 10.1016/j.cmpb.2024.108578_b40
  article-title: A hybrid approach to the skull stripping problem in MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.032
– volume: 16
  start-page: 923
  year: 2021
  ident: 10.1016/j.cmpb.2024.108578_b20
  article-title: F3rnet: full-resolution residual registration network for deformable image registration
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-021-02359-4
– start-page: 1125
  year: 2017
  ident: 10.1016/j.cmpb.2024.108578_b23
  article-title: Image-to-image translation with conditional adversarial networks
– volume: 108
  year: 2023
  ident: 10.1016/j.cmpb.2024.108578_b36
  article-title: A transformer-based hierarchical registration framework for multimodality deformable image registration
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2023.102286
– volume: 98
  start-page: 278
  year: 2010
  ident: 10.1016/j.cmpb.2024.108578_b35
  article-title: Fast free-form deformation using graphics processing units
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2009.09.002
– volume: 16
  start-page: 1423
  year: 2012
  ident: 10.1016/j.cmpb.2024.108578_b8
  article-title: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.05.008
– volume: 8
  start-page: 671
  year: 2014
  ident: 10.1016/j.cmpb.2024.108578_b2
  article-title: Whole brain myelin mapping using T1- and T2-weighted MR imaging data
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00671
– volume: 57
  start-page: 917
  year: 2015
  ident: 10.1016/j.cmpb.2024.108578_b3
  article-title: Mapping pathological changes in brain structure by combining T1-and T2-weighted MR imaging data
  publication-title: Neuroradiology
  doi: 10.1007/s00234-015-1550-4
– start-page: 9252
  year: 2018
  ident: 10.1016/j.cmpb.2024.108578_b4
  article-title: An unsupervised learning model for deformable medical image registration
– start-page: 468
  year: 2022
  ident: 10.1016/j.cmpb.2024.108578_b22
  article-title: ABN: Anti-blur neural networks for multi-stage deformable image registration
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.cmpb.2024.108578_b28
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 54
  start-page: 313
  year: 2011
  ident: 10.1016/j.cmpb.2024.108578_b30
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.033
– start-page: 1
  year: 2021
  ident: 10.1016/j.cmpb.2024.108578_b38
  article-title: SynthMorph: learning contrast-invariant registration without acquired images
  publication-title: IEEE Trans. Med. Imaging
– volume: 3
  start-page: 314
  year: 2000
  ident: 10.1016/j.cmpb.2024.108578_b26
  article-title: Diatom autofocusing in brightfield microscopy: a comparative study
– volume: 12
  start-page: 26
  year: 2008
  ident: 10.1016/j.cmpb.2024.108578_b33
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– volume: 6
  start-page: 180308
  year: 2019
  ident: 10.1016/j.cmpb.2024.108578_b27
  article-title: A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.308
– volume: 48
  start-page: 1937
  year: 2015
  ident: 10.1016/j.cmpb.2024.108578_b6
  article-title: Feature neighbourhood mutual information for multi-modal image registration: an application to eye fundus imaging
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.12.014
– start-page: 770
  year: 2016
  ident: 10.1016/j.cmpb.2024.108578_b21
  article-title: Deep residual learning for image recognition
– start-page: 234
  year: 2015
  ident: 10.1016/j.cmpb.2024.108578_b17
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 49
  start-page: 1
  year: 2018
  ident: 10.1016/j.cmpb.2024.108578_b12
  article-title: Weakly-supervised convolutional neural networks for multimodal image registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.07.002
– volume: 30
  start-page: 1617
  year: 2011
  ident: 10.1016/j.cmpb.2024.108578_b29
  article-title: Robust brain extraction across datasets and comparison with publicly available methods
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2138152
– volume: 21
  start-page: 1488
  year: 2012
  ident: 10.1016/j.cmpb.2024.108578_b24
  article-title: On the mathematical properties of the structural similarity index
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2173206
– volume: 62
  start-page: 161
  year: 2017
  ident: 10.1016/j.cmpb.2024.108578_b5
  article-title: A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya Distances
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.09.004
– volume: 63
  start-page: 139
  year: 2020
  ident: 10.1016/j.cmpb.2024.108578_b9
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 18
  start-page: 1049
  year: 1999
  ident: 10.1016/j.cmpb.2024.108578_b41
  article-title: Survey: Interpolation methods in medical image processing
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.816070
– volume: 22
  start-page: 986
  year: 2003
  ident: 10.1016/j.cmpb.2024.108578_b7
  article-title: Mutual-information-based registration of medical images: a survey
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.815867
– volume: 47
  start-page: 10025
  year: 2022
  ident: 10.1016/j.cmpb.2024.108578_b19
  article-title: An adaptive MRI-PET image fusion model based on deep residual learning and self-adaptive total variation
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-05201-2
– volume: 38
  start-page: 1788
  year: 2019
  ident: 10.1016/j.cmpb.2024.108578_b13
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2897538
– volume: 40
  start-page: 3900
  year: 2019
  ident: 10.1016/j.cmpb.2024.108578_b1
  article-title: Gray matter T1-w/T2-w ratios are higher in Alzheimer’s disease
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24638
– volume: 2013
  start-page: 16
  year: 2013
  ident: 10.1016/j.cmpb.2024.108578_b42
  article-title: Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration
  publication-title: J. Biomed. Imaging
SSID ssj0002556
Score 2.4252622
Snippet Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108578
SubjectTerms Algorithms
Appearance residuals
Brain - diagnostic imaging
Brain MRI
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Multimodal deformable registration
Multimodal Imaging
Residual learning
Title Symmetric deformable registration of multimodal brain magnetic resonance images via appearance residuals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724005716
https://dx.doi.org/10.1016/j.cmpb.2024.108578
https://www.ncbi.nlm.nih.gov/pubmed/39799721
https://www.proquest.com/docview/3154887730
Volume 261
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Sciencedirect - Freedom Collection
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iUPoi2g89tZJC32R7t5tkPx5FKqdSX6zgW5h82ZPu3tI7BV_8253J7iqFtoJvSzazGybJ5DfkNzOMfamkM0I6m1SQVomEYBPwAhIAGVAicxlElu95Pr2Up1fqaoUdDbEwRKvsbX9n06O17lvGvTbH7Ww2vqA8IojGC2JBKoT9FMEuc6L1fX14pnlQiq0uv3eVUO8-cKbjeNm6NegjZpKodopKrf39cPoX-IyH0PEGW-_RIz_sBrjJVnzzjr353t-Pv2c_L-7rmmpkWe58hKPml-dUfGFIj8vngUcSYT13-CVDFSJ4DdcNBTNiT0LmqAM-wza_4Hcz4NC2uB1iK76PwVuLD-zy-NuPo2nS11JIrFDlMjE2tSGbGOVDbnJZpT4r0lD4AEZZl1rjJvgsLOQgIQ0BvTzczKYEwBMseCE-stVm3vhtxpUrQVRpmDgPOMsKitKClFlhhU3LSTFiB4MSddulzNADl-xGk8o1qVx3Kh8xMehZD8GgaL40WvT_SqknqT-Wy4tyn4ep1LiP6HIEGj-_XWhBvltZoMEbsa1ujp9GH-8-0VXeeeVfd9nbjMoGR8LPHltd_r71nxDLLM1-XKz7bO3w5Gx6_ggy4_Zf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6xIm17mWBsrBtjnrS3KWoT203yiNBQGdAXQOLNOv8aRSSNaEHaf7-zk1RC2pjEW-T4Eutsf76Tv7sD-FYKq7mwJikxLROB3iToOCaIwpNEZjOMLN_ZZHopfl7Jqw047GNhAq2yw_4W0yNady2jTpujZj4fnYc8ImSN54EFKcnsfwGbQhImD2Dz4PhkOlsDcsiy1ab4LpMg0MXOtDQvUzWa3MRMBLadDNXW_n4-_cv-jOfQ0Ra86QxIdtCOcRs2XP0WXp51V-Q7cH3-u6pCmSzDrIsWqb51LNRf6DPksoVnkUdYLSx9SYciEazCX3WIZ6SewTgnNbA5tbkle5gjw6ahHRFb6X2M31q-g8ujHxeH06Qrp5AYLotVok1qfDbW0vmJnogydVme-tx51NLY1Gg7pmducIICU-_J0aP9rAtEOsS84_w9DOpF7T4Ak7ZAXqZ-bB3SREvMC4NCZLnhJi3G-RC-90pUTZs1Q_V0shsVVK6CylWr8iHwXs-qjwclBFME6k9KybXUoxXzX7mv_VQq2krhfgRrt7hfKh7ctyInzBvCbjvH69HH60_ylj8-869f4NX04uxUnR7PTj7B6yxUEY78nz0YrO7u3WcybVZ6v1u6fwCP7vkK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetric+deformable+registration+of+multimodal+brain+magnetic+resonance+images+via+appearance+residuals&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Huang%2C+Yunzhi&rft.au=Han%2C+Luyi&rft.au=Dou%2C+Haoran&rft.au=Ahmad%2C+Sahar&rft.date=2025-04-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.volume=261&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108578&rft.externalDocID=S0169260724005716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon