Symmetric deformable registration of multimodal brain magnetic resonance images via appearance residuals
Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities. Here, we propose to symmetrically register images from two mo...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 261; p. 108578 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 1872-7565 |
DOI | 10.1016/j.cmpb.2024.108578 |
Cover
Abstract | Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities.
Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images.
The proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods.
Our residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application.
•Unsupervised framework for intra-subject and inter-subject multimodal brain MRI registration.•Residual-guided framework decouples appearance and morphology residuals across subjects.•Deblurring module enhances warped image quality to better match original images. |
---|---|
AbstractList | Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities.BACKGROUND AND OBJECTIVEDeformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities.Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images.METHODSHere, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images.The proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods.RESULTSThe proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods.Our residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application.CONCLUSIONSOur residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application. Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities. Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images. The proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods. Our residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application. Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities. Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration. The proposed framework consists of three serially connected modules: (i) an appearance residual module, which learns intensity residual maps between modalities with a cycle-consistent loss; (ii) a deformable registration module, which predicts deformations across subjects based on appearance residuals; and (iii) a deblurring module, which enhances the warped images to match the sharpness of the original images. The proposed method, evaluated on two public datasets (HCP and LEMON), achieves the highest registration accuracy with topology preservation when compared with state-of-the-art methods. Our residual space-guided registration framework, combined with GAN-based image enhancement, provides an effective solution to the challenges of multimodal deformable registration. By mitigating intensity distribution discrepancies and improving image quality, this approach improves registration accuracy and strengthens its potential for clinical application. •Unsupervised framework for intra-subject and inter-subject multimodal brain MRI registration.•Residual-guided framework decouples appearance and morphology residuals across subjects.•Deblurring module enhances warped image quality to better match original images. |
ArticleNumber | 108578 |
Author | Han, Luyi Huang, Yunzhi Yap, Pew-Thian Dou, Haoran Ahmad, Sahar |
Author_xml | – sequence: 1 givenname: Yunzhi orcidid: 0000-0002-2039-6933 surname: Huang fullname: Huang, Yunzhi organization: Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Luyi surname: Han fullname: Han, Luyi organization: Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands – sequence: 3 givenname: Haoran surname: Dou fullname: Dou, Haoran organization: CISTIB, School of Computing, University of Leeds, Leeds, UK – sequence: 4 givenname: Sahar surname: Ahmad fullname: Ahmad, Sahar organization: Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, USA – sequence: 5 givenname: Pew-Thian surname: Yap fullname: Yap, Pew-Thian email: ptyap@med.unc.edu organization: Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39799721$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFF-CAfOSSxXbWcYK4oApopUocgLM1dsbFS2wHO6m0b18vWzhwgNNYM99naea_IGcxRSTkJWdbznj3Zr-1YTZbwcSuNnqp-idkw3slGiU7eUY2FRoa0TF1Ti5K2TPGhJTdM3LeDmoYlOAb8v3LIQRcsrd0RJdyADMhzXjny5Jh8SnS5GhYp8WHNMJETQYfaYC7iEuVMpYUIVqkvvaw0HsPFOYZIf_q1rkfV5jKc_LU1YIvHusl-fbxw9er6-b286ebq_e3jW1lvzTGcusEMxJdZ7rdwFEo7hQ6MNKO3JqR1XdroYMdcOcUV0Iq0wMwLhy27SV5ffp3zunnimXRwReL0wQR01p0y-Wu75VqWUVfPaKrCTjqOdcd8kH_vk4FxAmwOZWS0f1BONPHCPReHyPQxwj0KYIqvTtJWLe895h1sR7rLUaf0S56TP7f-tu_dDv56C1MP_DwP_kBK-ylYg |
Cites_doi | 10.1109/42.906424 10.1016/j.media.2019.101545 10.1016/j.neuroimage.2010.09.025 10.1109/TMI.2013.2246577 10.1002/mp.12155 10.1109/TMI.2023.3290149 10.1016/j.media.2016.08.009 10.1016/j.ins.2021.04.045 10.1016/j.neuroimage.2004.03.032 10.1007/s11548-021-02359-4 10.1016/j.compmedimag.2023.102286 10.1016/j.cmpb.2009.09.002 10.1016/j.media.2012.05.008 10.3389/fnhum.2014.00671 10.1007/s00234-015-1550-4 10.1016/j.neuroimage.2013.04.127 10.1016/j.neuroimage.2010.07.033 10.1016/j.media.2007.06.004 10.1038/sdata.2018.308 10.1016/j.patcog.2014.12.014 10.1016/j.media.2018.07.002 10.1109/TMI.2011.2138152 10.1109/TIP.2011.2173206 10.1016/j.patcog.2016.09.004 10.1145/3422622 10.1109/42.816070 10.1109/TMI.2003.815867 10.1007/s13369-020-05201-2 10.1109/TMI.2019.2897538 10.1002/hbm.24638 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmpb.2024.108578 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
ExternalDocumentID | 39799721 10_1016_j_cmpb_2024_108578 S0169260724005716 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AACTN ABTAH AFCTW RIG AAYXX ACLOT CITATION EFLBG ~HD CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c358t-bc1cf20b5ef6b6491e271f7efab5cd1cbd0efa3ca6a4a1ff717257b8aa012fe33 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Wed Oct 01 13:32:54 EDT 2025 Fri May 02 01:41:53 EDT 2025 Wed Oct 01 03:46:17 EDT 2025 Sat Mar 01 15:46:23 EST 2025 Tue Aug 26 19:05:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Residual learning Brain MRI Multimodal deformable registration Appearance residuals |
Language | English |
License | Copyright © 2025 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-bc1cf20b5ef6b6491e271f7efab5cd1cbd0efa3ca6a4a1ff717257b8aa012fe33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2039-6933 |
PMID | 39799721 |
PQID | 3154887730 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3154887730 pubmed_primary_39799721 crossref_primary_10_1016_j_cmpb_2024_108578 elsevier_sciencedirect_doi_10_1016_j_cmpb_2024_108578 elsevier_clinicalkey_doi_10_1016_j_cmpb_2024_108578 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2025 2025-04-00 2025-Apr 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lehmann, Gonner, Spitzer (b41) 1999; 18 Ronneberger, Fischer, Brox (b17) 2015 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (b13) 2019; 38 Ganzetti, Wenderoth, Mantini (b2) 2014; 8 Legg, Rosin, Marshall, Morgan (b6) 2015; 48 Hoffmann, Billot, Greve, Iglesias, Fischl, Dalca (b37) 2021 Hu, Modat, Gibson, Ghavami, Bonmati, Moore, Emberton, Noble, Barratt, Vercauteren (b11) 2018 Yang, Li, Zhao, Fan, Eric, Chang, Xu (b14) 2020; 10 Ségonne, Dale, Busa, Glessner, Salat, Hahn, Fischl (b40) 2004; 22 Mahmoudzadeh, Kashou (b42) 2013; 2013 Hoffmann, Billot, Greve, Iglesias, Fischl, Dalca (b38) 2021 Iglesias, Liu, Thompson, Tu (b29) 2011; 30 Su, Dai, He, Kong (b22) 2022 Xu, Luo, Yan, Li, Jayender (b20) 2021; 16 Zhao, Chen, McDonald, Yu, Mohamed, Fuller, Court, Pan, Wang, Wang (b36) 2023; 108 Brunet, Vrscay, Wang (b24) 2012; 21 Liu, Li, Jia (b25) 2008 Heinrich, Jenkinson, Brady, Schnabel (b34) 2013; 32 Ganzetti, Wenderoth, Mantini (b3) 2015; 57 Avants, Tustison, Song, Cook, Klein, Gee (b31) 2011; 54 He, Zhang, Ren, Sun (b21) 2016 Heinrich, Jenkinson, Bhushan, Matin, Gleeson, Brady, Schnabel (b8) 2012; 16 Babayan, Erbey, Kumral, Reinelt, Reiter, Röbbig, Schaare, Uhlig, Anwander, Bazin, Horstmann, Lampe, Nikulin, Okon-Singer, Preusser, Pampel, Rohr, Sacher, Thöne-Otto, Trapp, Nierhaus, Altmann, Arélin, Blöchl, Bongartz, Breig, Cesnaite, Chen, Cozatl, Czerwonatis, Dambrauskaite, Dreyer, Enders, Engelhardt, Fischer, Forschack, Golchert, Golz, Guran, Hedrich, Hentschel, Hoffmann, Huntenburg, Jost, Kosatschek, Kunzendorf, Lammers, Lauckner, Mahjoory, Kanaan, Mendes, Menger, Morino, Näthe, Neubauer, Noyan, Oligschläger, Panczyszyn-Trzewik, Poehlchen, Putzke, Roski, Schaller, Schieferbein, Schlaak, Schmidt, Gorgolewski, Schmidt, Schrimpf, Stasch, Voss, Wiedemann, Margulies, Gaebler, Villringer (b27) 2019; 6 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Essen, Jenkinson (b28) 2013; 80 Özbey, Dalmaz, Dar, Bedel, Özturk, Güngör, Çukur (b18) 2023; 42 Pech-Pacheco, Cristóbal, Chamorro-Martinez, Fernández-Valdivia (b26) 2000; 3 Zhang, Brady, Smith (b32) 2001; 20 Avants, Epstein, Grossman, Gee (b33) 2008; 12 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (b4) 2018 Pluim, Maintz, Viergever (b7) 2003; 22 Hu, Modat, Gibson, Li, Ghavami, Bonmati, Wang, Bandula, Moore, Emberton (b12) 2018; 49 Jog, Carass, Roy, Pham, Prince (b15) 2017; 35 Han (b16) 2017; 44 Isola, Zhu, Zhou, Efros (b23) 2017 Zhu, Park, Isola, Efros (b39) 2017 Vo, Nguyen, Le, Lee (b43) 2021; 570 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b9) 2020; 63 Lakshmi, Rajasekaran, Jeevitha, Selvendran (b19) 2022; 47 Modat, Ridgway, Taylor, Lehmann, Barnes, Hawkes, Fox, Ourselin (b35) 2010; 98 So, Chung (b5) 2017; 62 Fonov, Evans, Botteron, Almli, McKinstry, Collins (b30) 2011; 54 Pelkmans, Dicks, Barkhof, Vrenken, Scheltens, van der Flier, Tijms (b1) 2019; 40 Fan, Cao, Wang, Yap, Shen (b10) 2019; 58 Pelkmans (10.1016/j.cmpb.2024.108578_b1) 2019; 40 Legg (10.1016/j.cmpb.2024.108578_b6) 2015; 48 Lehmann (10.1016/j.cmpb.2024.108578_b41) 1999; 18 Hoffmann (10.1016/j.cmpb.2024.108578_b38) 2021 Ronneberger (10.1016/j.cmpb.2024.108578_b17) 2015 Ségonne (10.1016/j.cmpb.2024.108578_b40) 2004; 22 Balakrishnan (10.1016/j.cmpb.2024.108578_b13) 2019; 38 Glasser (10.1016/j.cmpb.2024.108578_b28) 2013; 80 Yang (10.1016/j.cmpb.2024.108578_b14) 2020; 10 So (10.1016/j.cmpb.2024.108578_b5) 2017; 62 Balakrishnan (10.1016/j.cmpb.2024.108578_b4) 2018 Avants (10.1016/j.cmpb.2024.108578_b33) 2008; 12 Fan (10.1016/j.cmpb.2024.108578_b10) 2019; 58 Özbey (10.1016/j.cmpb.2024.108578_b18) 2023; 42 Brunet (10.1016/j.cmpb.2024.108578_b24) 2012; 21 Liu (10.1016/j.cmpb.2024.108578_b25) 2008 Isola (10.1016/j.cmpb.2024.108578_b23) 2017 Ganzetti (10.1016/j.cmpb.2024.108578_b3) 2015; 57 Jog (10.1016/j.cmpb.2024.108578_b15) 2017; 35 Vo (10.1016/j.cmpb.2024.108578_b43) 2021; 570 Hoffmann (10.1016/j.cmpb.2024.108578_b37) 2021 Lakshmi (10.1016/j.cmpb.2024.108578_b19) 2022; 47 He (10.1016/j.cmpb.2024.108578_b21) 2016 Su (10.1016/j.cmpb.2024.108578_b22) 2022 Hu (10.1016/j.cmpb.2024.108578_b11) 2018 Zhang (10.1016/j.cmpb.2024.108578_b32) 2001; 20 Modat (10.1016/j.cmpb.2024.108578_b35) 2010; 98 Han (10.1016/j.cmpb.2024.108578_b16) 2017; 44 Pech-Pacheco (10.1016/j.cmpb.2024.108578_b26) 2000; 3 Babayan (10.1016/j.cmpb.2024.108578_b27) 2019; 6 Zhu (10.1016/j.cmpb.2024.108578_b39) 2017 Heinrich (10.1016/j.cmpb.2024.108578_b34) 2013; 32 Heinrich (10.1016/j.cmpb.2024.108578_b8) 2012; 16 Hu (10.1016/j.cmpb.2024.108578_b12) 2018; 49 Fonov (10.1016/j.cmpb.2024.108578_b30) 2011; 54 Xu (10.1016/j.cmpb.2024.108578_b20) 2021; 16 Goodfellow (10.1016/j.cmpb.2024.108578_b9) 2020; 63 Mahmoudzadeh (10.1016/j.cmpb.2024.108578_b42) 2013; 2013 Ganzetti (10.1016/j.cmpb.2024.108578_b2) 2014; 8 Avants (10.1016/j.cmpb.2024.108578_b31) 2011; 54 Zhao (10.1016/j.cmpb.2024.108578_b36) 2023; 108 Iglesias (10.1016/j.cmpb.2024.108578_b29) 2011; 30 Pluim (10.1016/j.cmpb.2024.108578_b7) 2003; 22 |
References_xml | – start-page: 1 year: 2021 ident: b38 article-title: SynthMorph: learning contrast-invariant registration without acquired images publication-title: IEEE Trans. Med. Imaging – volume: 570 start-page: 225 year: 2021 end-page: 240 ident: b43 article-title: HI-GAN: A hierarchical generative adversarial network for blind denoising of real photographs publication-title: Inform. Sci. – volume: 16 start-page: 1423 year: 2012 end-page: 1435 ident: b8 article-title: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration publication-title: Med. Image Anal. – volume: 22 start-page: 1060 year: 2004 end-page: 1075 ident: b40 article-title: A hybrid approach to the skull stripping problem in MRI publication-title: Neuroimage – start-page: 770 year: 2016 end-page: 778 ident: b21 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 108 year: 2023 ident: b36 article-title: A transformer-based hierarchical registration framework for multimodality deformable image registration publication-title: Comput. Med. Imaging Graph. – volume: 62 start-page: 161 year: 2017 end-page: 174 ident: b5 article-title: A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya Distances publication-title: Pattern Recognit. – volume: 35 start-page: 475 year: 2017 end-page: 488 ident: b15 article-title: Random forest regression for magnetic resonance image synthesis publication-title: Med. Image Anal. – start-page: 1 year: 2008 end-page: 8 ident: b25 article-title: Image partial blur detection and classification publication-title: 2008 IEEE Conference on Computer Vision and Pattern Recognition – volume: 54 start-page: 313 year: 2011 end-page: 327 ident: b30 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: NeuroImage – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: b33 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 49 start-page: 1 year: 2018 end-page: 13 ident: b12 article-title: Weakly-supervised convolutional neural networks for multimodal image registration publication-title: Med. Image Anal. – start-page: 234 year: 2015 end-page: 241 ident: b17 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1070 year: 2018 end-page: 1074 ident: b11 article-title: Label-driven weakly-supervised learning for multimodal deformable image registration publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018 – volume: 44 start-page: 1408 year: 2017 end-page: 1419 ident: b16 article-title: MR-based synthetic CT generation using a deep convolutional neural network method publication-title: Med. Phys. – start-page: 9252 year: 2018 end-page: 9260 ident: b4 article-title: An unsupervised learning model for deformable medical image registration publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 6 start-page: 180308 year: 2019 ident: b27 article-title: A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults publication-title: Sci. Data – volume: 98 start-page: 278 year: 2010 end-page: 284 ident: b35 article-title: Fast free-form deformation using graphics processing units publication-title: Comput. Methods Programs Biomed. – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: b28 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage – volume: 40 start-page: 3900 year: 2019 end-page: 3909 ident: b1 article-title: Gray matter T1-w/T2-w ratios are higher in Alzheimer’s disease publication-title: Hum. Brain Mapp. – volume: 18 start-page: 1049 year: 1999 end-page: 1075 ident: b41 article-title: Survey: Interpolation methods in medical image processing publication-title: IEEE Trans. Med. Imaging – volume: 10 start-page: 1 year: 2020 end-page: 18 ident: b14 article-title: MRI cross-modality image-to-image translation publication-title: Sci. Rep. – volume: 3 start-page: 314 year: 2000 end-page: 317 ident: b26 article-title: Diatom autofocusing in brightfield microscopy: a comparative study publication-title: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000 – volume: 47 start-page: 10025 year: 2022 end-page: 10042 ident: b19 article-title: An adaptive MRI-PET image fusion model based on deep residual learning and self-adaptive total variation publication-title: Arab. J. Sci. Eng. – volume: 58 year: 2019 ident: b10 article-title: Adversarial learning for mono- or multi-modal registration publication-title: Med. Image Anal. – volume: 21 start-page: 1488 year: 2012 end-page: 1499 ident: b24 article-title: On the mathematical properties of the structural similarity index publication-title: IEEE Trans. Image Process. – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: b32 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging – start-page: 1125 year: 2017 end-page: 1134 ident: b23 article-title: Image-to-image translation with conditional adversarial networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 63 start-page: 139 year: 2020 end-page: 144 ident: b9 article-title: Generative adversarial networks publication-title: Commun. ACM – volume: 42 start-page: 3524 year: 2023 end-page: 3539 ident: b18 article-title: Unsupervised medical image translation with adversarial diffusion models publication-title: IEEE Trans. Med. Imaging – volume: 30 start-page: 1617 year: 2011 end-page: 1634 ident: b29 article-title: Robust brain extraction across datasets and comparison with publicly available methods publication-title: IEEE Trans. Med. Imaging – volume: 48 start-page: 1937 year: 2015 end-page: 1946 ident: b6 article-title: Feature neighbourhood mutual information for multi-modal image registration: an application to eye fundus imaging publication-title: Pattern Recognit. – volume: 32 start-page: 1239 year: 2013 end-page: 1248 ident: b34 article-title: MRF-based deformable registration and ventilation estimation of lung CT publication-title: IEEE Trans. Med. Imaging – year: 2021 ident: b37 article-title: SynthMorph: learning contrast-invariant registration without acquired images publication-title: IEEE Trans. Med. Imaging – volume: 16 start-page: 923 year: 2021 end-page: 932 ident: b20 article-title: F3rnet: full-resolution residual registration network for deformable image registration publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 22 start-page: 986 year: 2003 end-page: 1004 ident: b7 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Trans. Med. Imaging – volume: 38 start-page: 1788 year: 2019 end-page: 1800 ident: b13 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging – volume: 57 start-page: 917 year: 2015 end-page: 928 ident: b3 article-title: Mapping pathological changes in brain structure by combining T1-and T2-weighted MR imaging data publication-title: Neuroradiology – start-page: 468 year: 2022 end-page: 477 ident: b22 article-title: ABN: Anti-blur neural networks for multi-stage deformable image registration publication-title: 2022 IEEE International Conference on Data Mining – volume: 8 start-page: 671 year: 2014 ident: b2 article-title: Whole brain myelin mapping using T1- and T2-weighted MR imaging data publication-title: Front. Hum. Neurosci. – volume: 54 start-page: 2033 year: 2011 end-page: 2044 ident: b31 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage – start-page: 2223 year: 2017 end-page: 2232 ident: b39 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 2013 start-page: 16 year: 2013 ident: b42 article-title: Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration publication-title: J. Biomed. Imaging – year: 2021 ident: 10.1016/j.cmpb.2024.108578_b37 article-title: SynthMorph: learning contrast-invariant registration without acquired images publication-title: IEEE Trans. Med. Imaging – start-page: 1070 year: 2018 ident: 10.1016/j.cmpb.2024.108578_b11 article-title: Label-driven weakly-supervised learning for multimodal deformable image registration – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.cmpb.2024.108578_b32 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 58 year: 2019 ident: 10.1016/j.cmpb.2024.108578_b10 article-title: Adversarial learning for mono- or multi-modal registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101545 – volume: 54 start-page: 2033 year: 2011 ident: 10.1016/j.cmpb.2024.108578_b31 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 32 start-page: 1239 year: 2013 ident: 10.1016/j.cmpb.2024.108578_b34 article-title: MRF-based deformable registration and ventilation estimation of lung CT publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2246577 – volume: 44 start-page: 1408 year: 2017 ident: 10.1016/j.cmpb.2024.108578_b16 article-title: MR-based synthetic CT generation using a deep convolutional neural network method publication-title: Med. Phys. doi: 10.1002/mp.12155 – volume: 42 start-page: 3524 year: 2023 ident: 10.1016/j.cmpb.2024.108578_b18 article-title: Unsupervised medical image translation with adversarial diffusion models publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3290149 – start-page: 2223 year: 2017 ident: 10.1016/j.cmpb.2024.108578_b39 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – volume: 35 start-page: 475 year: 2017 ident: 10.1016/j.cmpb.2024.108578_b15 article-title: Random forest regression for magnetic resonance image synthesis publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.08.009 – volume: 570 start-page: 225 year: 2021 ident: 10.1016/j.cmpb.2024.108578_b43 article-title: HI-GAN: A hierarchical generative adversarial network for blind denoising of real photographs publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.04.045 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.cmpb.2024.108578_b14 article-title: MRI cross-modality image-to-image translation publication-title: Sci. Rep. – start-page: 1 year: 2008 ident: 10.1016/j.cmpb.2024.108578_b25 article-title: Image partial blur detection and classification – volume: 22 start-page: 1060 year: 2004 ident: 10.1016/j.cmpb.2024.108578_b40 article-title: A hybrid approach to the skull stripping problem in MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.032 – volume: 16 start-page: 923 year: 2021 ident: 10.1016/j.cmpb.2024.108578_b20 article-title: F3rnet: full-resolution residual registration network for deformable image registration publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-021-02359-4 – start-page: 1125 year: 2017 ident: 10.1016/j.cmpb.2024.108578_b23 article-title: Image-to-image translation with conditional adversarial networks – volume: 108 year: 2023 ident: 10.1016/j.cmpb.2024.108578_b36 article-title: A transformer-based hierarchical registration framework for multimodality deformable image registration publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2023.102286 – volume: 98 start-page: 278 year: 2010 ident: 10.1016/j.cmpb.2024.108578_b35 article-title: Fast free-form deformation using graphics processing units publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2009.09.002 – volume: 16 start-page: 1423 year: 2012 ident: 10.1016/j.cmpb.2024.108578_b8 article-title: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.05.008 – volume: 8 start-page: 671 year: 2014 ident: 10.1016/j.cmpb.2024.108578_b2 article-title: Whole brain myelin mapping using T1- and T2-weighted MR imaging data publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00671 – volume: 57 start-page: 917 year: 2015 ident: 10.1016/j.cmpb.2024.108578_b3 article-title: Mapping pathological changes in brain structure by combining T1-and T2-weighted MR imaging data publication-title: Neuroradiology doi: 10.1007/s00234-015-1550-4 – start-page: 9252 year: 2018 ident: 10.1016/j.cmpb.2024.108578_b4 article-title: An unsupervised learning model for deformable medical image registration – start-page: 468 year: 2022 ident: 10.1016/j.cmpb.2024.108578_b22 article-title: ABN: Anti-blur neural networks for multi-stage deformable image registration – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.cmpb.2024.108578_b28 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 54 start-page: 313 year: 2011 ident: 10.1016/j.cmpb.2024.108578_b30 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.033 – start-page: 1 year: 2021 ident: 10.1016/j.cmpb.2024.108578_b38 article-title: SynthMorph: learning contrast-invariant registration without acquired images publication-title: IEEE Trans. Med. Imaging – volume: 3 start-page: 314 year: 2000 ident: 10.1016/j.cmpb.2024.108578_b26 article-title: Diatom autofocusing in brightfield microscopy: a comparative study – volume: 12 start-page: 26 year: 2008 ident: 10.1016/j.cmpb.2024.108578_b33 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 6 start-page: 180308 year: 2019 ident: 10.1016/j.cmpb.2024.108578_b27 article-title: A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults publication-title: Sci. Data doi: 10.1038/sdata.2018.308 – volume: 48 start-page: 1937 year: 2015 ident: 10.1016/j.cmpb.2024.108578_b6 article-title: Feature neighbourhood mutual information for multi-modal image registration: an application to eye fundus imaging publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.12.014 – start-page: 770 year: 2016 ident: 10.1016/j.cmpb.2024.108578_b21 article-title: Deep residual learning for image recognition – start-page: 234 year: 2015 ident: 10.1016/j.cmpb.2024.108578_b17 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 49 start-page: 1 year: 2018 ident: 10.1016/j.cmpb.2024.108578_b12 article-title: Weakly-supervised convolutional neural networks for multimodal image registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.07.002 – volume: 30 start-page: 1617 year: 2011 ident: 10.1016/j.cmpb.2024.108578_b29 article-title: Robust brain extraction across datasets and comparison with publicly available methods publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2138152 – volume: 21 start-page: 1488 year: 2012 ident: 10.1016/j.cmpb.2024.108578_b24 article-title: On the mathematical properties of the structural similarity index publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2173206 – volume: 62 start-page: 161 year: 2017 ident: 10.1016/j.cmpb.2024.108578_b5 article-title: A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya Distances publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.004 – volume: 63 start-page: 139 year: 2020 ident: 10.1016/j.cmpb.2024.108578_b9 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 18 start-page: 1049 year: 1999 ident: 10.1016/j.cmpb.2024.108578_b41 article-title: Survey: Interpolation methods in medical image processing publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.816070 – volume: 22 start-page: 986 year: 2003 ident: 10.1016/j.cmpb.2024.108578_b7 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.815867 – volume: 47 start-page: 10025 year: 2022 ident: 10.1016/j.cmpb.2024.108578_b19 article-title: An adaptive MRI-PET image fusion model based on deep residual learning and self-adaptive total variation publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-05201-2 – volume: 38 start-page: 1788 year: 2019 ident: 10.1016/j.cmpb.2024.108578_b13 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2897538 – volume: 40 start-page: 3900 year: 2019 ident: 10.1016/j.cmpb.2024.108578_b1 article-title: Gray matter T1-w/T2-w ratios are higher in Alzheimer’s disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24638 – volume: 2013 start-page: 16 year: 2013 ident: 10.1016/j.cmpb.2024.108578_b42 article-title: Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration publication-title: J. Biomed. Imaging |
SSID | ssj0002556 |
Score | 2.4252622 |
Snippet | Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 108578 |
SubjectTerms | Algorithms Appearance residuals Brain - diagnostic imaging Brain MRI Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Multimodal deformable registration Multimodal Imaging Residual learning |
Title | Symmetric deformable registration of multimodal brain magnetic resonance images via appearance residuals |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260724005716 https://dx.doi.org/10.1016/j.cmpb.2024.108578 https://www.ncbi.nlm.nih.gov/pubmed/39799721 https://www.proquest.com/docview/3154887730 |
Volume | 261 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Sciencedirect - Freedom Collection customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iUPoi2g89tZJC32R7t5tkPx5FKqdSX6zgW5h82ZPu3tI7BV_8253J7iqFtoJvSzazGybJ5DfkNzOMfamkM0I6m1SQVomEYBPwAhIAGVAicxlElu95Pr2Up1fqaoUdDbEwRKvsbX9n06O17lvGvTbH7Ww2vqA8IojGC2JBKoT9FMEuc6L1fX14pnlQiq0uv3eVUO8-cKbjeNm6NegjZpKodopKrf39cPoX-IyH0PEGW-_RIz_sBrjJVnzzjr353t-Pv2c_L-7rmmpkWe58hKPml-dUfGFIj8vngUcSYT13-CVDFSJ4DdcNBTNiT0LmqAM-wza_4Hcz4NC2uB1iK76PwVuLD-zy-NuPo2nS11JIrFDlMjE2tSGbGOVDbnJZpT4r0lD4AEZZl1rjJvgsLOQgIQ0BvTzczKYEwBMseCE-stVm3vhtxpUrQVRpmDgPOMsKitKClFlhhU3LSTFiB4MSddulzNADl-xGk8o1qVx3Kh8xMehZD8GgaL40WvT_SqknqT-Wy4tyn4ep1LiP6HIEGj-_XWhBvltZoMEbsa1ujp9GH-8-0VXeeeVfd9nbjMoGR8LPHltd_r71nxDLLM1-XKz7bO3w5Gx6_ggy4_Zf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6xIm17mWBsrBtjnrS3KWoT203yiNBQGdAXQOLNOv8aRSSNaEHaf7-zk1RC2pjEW-T4Eutsf76Tv7sD-FYKq7mwJikxLROB3iToOCaIwpNEZjOMLN_ZZHopfl7Jqw047GNhAq2yw_4W0yNady2jTpujZj4fnYc8ImSN54EFKcnsfwGbQhImD2Dz4PhkOlsDcsiy1ab4LpMg0MXOtDQvUzWa3MRMBLadDNXW_n4-_cv-jOfQ0Ra86QxIdtCOcRs2XP0WXp51V-Q7cH3-u6pCmSzDrIsWqb51LNRf6DPksoVnkUdYLSx9SYciEazCX3WIZ6SewTgnNbA5tbkle5gjw6ahHRFb6X2M31q-g8ujHxeH06Qrp5AYLotVok1qfDbW0vmJnogydVme-tx51NLY1Gg7pmducIICU-_J0aP9rAtEOsS84_w9DOpF7T4Ak7ZAXqZ-bB3SREvMC4NCZLnhJi3G-RC-90pUTZs1Q_V0shsVVK6CylWr8iHwXs-qjwclBFME6k9KybXUoxXzX7mv_VQq2krhfgRrt7hfKh7ctyInzBvCbjvH69HH60_ylj8-869f4NX04uxUnR7PTj7B6yxUEY78nz0YrO7u3WcybVZ6v1u6fwCP7vkK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetric+deformable+registration+of+multimodal+brain+magnetic+resonance+images+via+appearance+residuals&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Huang%2C+Yunzhi&rft.au=Han%2C+Luyi&rft.au=Dou%2C+Haoran&rft.au=Ahmad%2C+Sahar&rft.date=2025-04-01&rft.pub=Elsevier+B.V&rft.issn=0169-2607&rft.volume=261&rft_id=info:doi/10.1016%2Fj.cmpb.2024.108578&rft.externalDocID=S0169260724005716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |