Dynamic optimization of heated oil pipeline operation using PSO–DE algorithm

•A dynamic p-T model of heated oil pipelines (HOP) is proposed.•An optimization model is proposed to minimize the energy cost of HOP operation.•The optimization results are successfully applied to a real digital long HOP. Crude oil, with relatively high viscosity, freezing-point and content of wax,...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 59; pp. 344 - 351
Main Authors Zhou, Ming, Zhang, Yu, Jin, Shijiu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2014.09.071

Cover

Abstract •A dynamic p-T model of heated oil pipelines (HOP) is proposed.•An optimization model is proposed to minimize the energy cost of HOP operation.•The optimization results are successfully applied to a real digital long HOP. Crude oil, with relatively high viscosity, freezing-point and content of wax, is usually transported by heated oil pipelines (HOP) containing many pumping and heating stations. There are many different selections of operation parameters or values of pumps and heating furnaces, but all these different “selections” can satisfy output task and safety requirements. The power and fuel cost of pumping and heating account for 1–3% of the total energy consumption. For the energy saving purpose, it is necessary to optimize the HOP operations. In this paper a dynamic model of HOP was proposed and used to calculate the soil temperature field outside HOP, and then both the spatial and temporal distributions of pressure and temperature of field inside HOP. Using this calculation method and its results, an optimization model is established aiming at minimizing energy cost of running HOP, with outlet temperatures of each heating station, on–off states of each pump, and their head matrix of delivery as the optimization variables. Then a mixed algorithm combining differential evolution algorithm with particle swarm optimization algorithm is used to solve this model. The optimization results are applied to Rizhao–Yizheng digital long distance HOP (375km). Research shows that: verified by real time data acquired by the SCADA, the relative error of the dynamic model’s result is 4.042%, much less than that of the steady-state model’s result (22.67%). The optimized operation scheme can save 17.59% of energy cost for oil transportation task of 2640m3/h. Energy saving effect is remarkable.
AbstractList •A dynamic p-T model of heated oil pipelines (HOP) is proposed.•An optimization model is proposed to minimize the energy cost of HOP operation.•The optimization results are successfully applied to a real digital long HOP. Crude oil, with relatively high viscosity, freezing-point and content of wax, is usually transported by heated oil pipelines (HOP) containing many pumping and heating stations. There are many different selections of operation parameters or values of pumps and heating furnaces, but all these different “selections” can satisfy output task and safety requirements. The power and fuel cost of pumping and heating account for 1–3% of the total energy consumption. For the energy saving purpose, it is necessary to optimize the HOP operations. In this paper a dynamic model of HOP was proposed and used to calculate the soil temperature field outside HOP, and then both the spatial and temporal distributions of pressure and temperature of field inside HOP. Using this calculation method and its results, an optimization model is established aiming at minimizing energy cost of running HOP, with outlet temperatures of each heating station, on–off states of each pump, and their head matrix of delivery as the optimization variables. Then a mixed algorithm combining differential evolution algorithm with particle swarm optimization algorithm is used to solve this model. The optimization results are applied to Rizhao–Yizheng digital long distance HOP (375km). Research shows that: verified by real time data acquired by the SCADA, the relative error of the dynamic model’s result is 4.042%, much less than that of the steady-state model’s result (22.67%). The optimized operation scheme can save 17.59% of energy cost for oil transportation task of 2640m3/h. Energy saving effect is remarkable.
Author Zhang, Yu
Zhou, Ming
Jin, Shijiu
Author_xml – sequence: 1
  givenname: Ming
  surname: Zhou
  fullname: Zhou, Ming
  organization: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  email: zhangyu@tju.edu.cn
  organization: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Shijiu
  surname: Jin
  fullname: Jin, Shijiu
  organization: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
BookMark eNqNkEtOwzAURS1UJNrCHsICEmwnceIRQm35SBVFAiRmlps8t6_KT7aLVEbsgR2yElLKADFi9Cb3Ht13RmTQtA0Qcs5oxCgTF5uoBu22FmpofMQpSyIqI5qxIzJkeRaHCeMvAzKkXMQh5wk7ISPnNpRSEUsxJPfTXaNrLIK281jjm_bYNkFrgjVoD2XQYhV02EGFDfQZsIfA1mGzCh4eF5_vH9NZoKtVa9Gv61NybHTl4Oznjsnz9expchvOFzd3k6t5WMRp7sNlbhKmJStBCmbywpRpzvKlKaWAJJMiFaVhKeSMG6NFbJZcp1kaG0i5hJIm8ZhcHriFbZ2zYFSB_nuatxorxaja61Eb9UuP2utRVKpeT0-QfwidxVrb3b-6k0MX-hdfEaxyBUJTQIkWCq_KFv9B-QKpbozr
CitedBy_id crossref_primary_10_3390_en15166022
crossref_primary_10_1016_j_measurement_2017_05_049
crossref_primary_10_1109_ACCESS_2019_2924515
crossref_primary_10_1155_2018_1267045
crossref_primary_10_1016_j_geoen_2024_213581
crossref_primary_10_1061__ASCE_PS_1949_1204_0000421
crossref_primary_10_3390_app9224868
crossref_primary_10_3390_en12163084
crossref_primary_10_1016_j_esr_2022_100933
crossref_primary_10_1016_j_energy_2023_127139
crossref_primary_10_1021_acs_iecr_0c00039
crossref_primary_10_1115_1_4054902
crossref_primary_10_3390_en15093299
crossref_primary_10_1002_aic_17124
crossref_primary_10_1002_cjce_22560
crossref_primary_10_1021_acsomega_3c03945
crossref_primary_10_1080_17480930_2019_1709012
crossref_primary_10_1115_1_4065951
crossref_primary_10_1016_j_petrol_2019_04_083
crossref_primary_10_1016_j_egyr_2022_08_010
crossref_primary_10_1016_j_jprocont_2022_04_020
crossref_primary_10_1002_ese3_795
crossref_primary_10_1080_0305215X_2022_2044805
crossref_primary_10_1007_s11831_022_09849_x
crossref_primary_10_1016_j_measurement_2020_107618
crossref_primary_10_1155_2021_5517060
Cites_doi 10.1016/j.petrol.2011.06.019
10.1061/41073(361)37
10.2495/AMITP130851
10.1016/j.fuel.2009.12.021
10.2118/8416-PA
10.1061/41202(423)79
10.1109/CDCIEM.2011.46
10.1109/ADVCOMP.2008.18
10.1021/ie201283z
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2014.09.071
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
EndPage 351
ExternalDocumentID 10_1016_j_measurement_2014_09_071
S0263224114004515
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c358t-b8f41a91de961f8cfd5818bfd96e479656df15e812ffa63fb2a5753fe529ed043
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Oct 01 05:13:28 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Fri Feb 23 02:27:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
Dynamic model
Heated oil pipeline
Particle swarm optimization
Algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-b8f41a91de961f8cfd5818bfd96e479656df15e812ffa63fb2a5753fe529ed043
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_measurement_2014_09_071
crossref_primary_10_1016_j_measurement_2014_09_071
elsevier_sciencedirect_doi_10_1016_j_measurement_2014_09_071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ji Li, Research on Technology of Pipeline Leak Detection and Localization based on Steady-state Modeling Method, Beijing Chemical Univeisity, 2010.
Dunia, Campo, Guzman (b0085) 2011
Ramteke (b0120) 2012
G.Q. Li, Z.Q. Huang, Optimal operation for long distance pipeline system of heated crude oil, in: Proc., Int. Offshore Mech. Arct. Eng. Symp, ASME, Hague, Neth., 1989, pp. 53–57.
D.E. Goldberg, Computer-Aided Gas Pipeline Using Genetic Algorithms and Rule Learning, PH.D Dissertation, University of Michigan, USA, 1993.
Jiang, Chen, Chen (b0055) 2009; 28
Y. Liu, L.X. Wei, Multi-objective parameters optimization design of oil–gas gathering and transportation pipe network, in: International Conference on Pipelines and Trenchless Technology 2009, ASCE, Shanghai, China, 2009, pp. 350–361.
Cui, Tian, Lu (b0130) 2008; 27
Cui, Wu (b0090) 2005; 29
Changjun Li, Jun Wang, Xia Wu, Wenlong Jia, Operation optimization of heated oil transportation pipeline, in: ICPTT 2011: Sustainable Solutions for Water, Sewer, Gas, and Oil Pipelines – Proceedings of the International Conference on Pipelines and Trenchless Technology, 2011, pp.733–743.
Wu Yuguo, A study on optimal operation and energy saving of super heavy oil pipeline, 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 2011.
M. Silva Maximiano, M.A. Vega-Rodriguez, J.A. Gomez-Pulido, J.M. Sanchez-Perez, Analysis of parameter settings for differential evolution algorithm to solve a real-world frequency assignment problem in GSM networks, in: Advanced Engineering Computing and Applications in Sciences, 2008.
Gopal (b0015) 1980; 32
Zhou, Li, Zhang, Li, Jin (b0135) 2014; 87
C.C. Wu, G.Z. Zhang, D.F. Yan, The solution of economical operation scheme for heated crude oil pipelines, in: Proceedings of Oil Storage and Transportation Technique Conference (in Chinese), 1985.
Jing, Ming (b0095) 2004; 6
Hasan, Ghannam, Esmail (b0005) 2010; 89
Guo-hua, Wei (b0100) 1998; 13
Gao, Wang, Xu (b0125) 2004; 23
Li (b0070) 2007; 29
Liu, Liu (b0040) 2004; 25
Jokic (b0035) 2001; 29
Afshar, Rohani (b0050) 2009; 2009
Gopal (10.1016/j.measurement.2014.09.071_b0015) 1980; 32
10.1016/j.measurement.2014.09.071_b0030
10.1016/j.measurement.2014.09.071_b0020
10.1016/j.measurement.2014.09.071_b0075
Guo-hua (10.1016/j.measurement.2014.09.071_b0100) 1998; 13
Ramteke (10.1016/j.measurement.2014.09.071_b0120) 2012
10.1016/j.measurement.2014.09.071_b0110
10.1016/j.measurement.2014.09.071_b0045
Li (10.1016/j.measurement.2014.09.071_b0070) 2007; 29
Afshar (10.1016/j.measurement.2014.09.071_b0050) 2009; 2009
10.1016/j.measurement.2014.09.071_b0025
Jing (10.1016/j.measurement.2014.09.071_b0095) 2004; 6
10.1016/j.measurement.2014.09.071_b0115
10.1016/j.measurement.2014.09.071_b0105
Jokic (10.1016/j.measurement.2014.09.071_b0035) 2001; 29
Liu (10.1016/j.measurement.2014.09.071_b0040) 2004; 25
Jiang (10.1016/j.measurement.2014.09.071_b0055) 2009; 28
Dunia (10.1016/j.measurement.2014.09.071_b0085) 2011
Cui (10.1016/j.measurement.2014.09.071_b0130) 2008; 27
Hasan (10.1016/j.measurement.2014.09.071_b0005) 2010; 89
Cui (10.1016/j.measurement.2014.09.071_b0090) 2005; 29
Gao (10.1016/j.measurement.2014.09.071_b0125) 2004; 23
Zhou (10.1016/j.measurement.2014.09.071_b0135) 2014; 87
References_xml – volume: 23
  start-page: 34
  year: 2004
  end-page: 37
  ident: b0125
  article-title: Application of hybrid genetic algorithm in optimal operation of oil pipeline
  publication-title: Oil Gas Stor. Transport.
– volume: 27
  start-page: 11
  year: 2008
  end-page: 15
  ident: b0130
  article-title: Optimization study on efficiency of Huachi-Quzi heated crude oil Pipeline
  publication-title: Oil Gas Stor. Transport.
– reference: D.E. Goldberg, Computer-Aided Gas Pipeline Using Genetic Algorithms and Rule Learning, PH.D Dissertation, University of Michigan, USA, 1993.
– volume: 89
  start-page: 1095
  year: 2010
  end-page: 1100
  ident: b0005
  article-title: Heavy crude oil viscosity reduction and rheology for pipeline transportation
  publication-title: Fuel
– reference: C.C. Wu, G.Z. Zhang, D.F. Yan, The solution of economical operation scheme for heated crude oil pipelines, in: Proceedings of Oil Storage and Transportation Technique Conference (in Chinese), 1985.
– volume: 6
  start-page: 38
  year: 2004
  end-page: 41
  ident: b0095
  article-title: Calculation for soil temperature field of underground oil pipeline by finite element method
  publication-title: J. Liaoning Univ. Petrol. Chem. Technol.
– volume: 25
  start-page: 558
  year: 2004
  end-page: 561
  ident: b0040
  article-title: Study of optimizing operations of oil pipelines J
  publication-title: J. Eng. Thermophys.
– volume: 29
  start-page: 101
  year: 2005
  end-page: 105
  ident: b0090
  article-title: Heat transfer and flow coupling calculation model of transient scenario for hot oil pipeline
  publication-title: J. Univ. Petrol.
– volume: 32
  start-page: 2063
  year: 1980
  end-page: 2067
  ident: b0015
  article-title: Optimizing pipeline operations
  publication-title: J. Petrol. Technol.
– start-page: 5256
  year: 2012
  end-page: 5272
  ident: b0120
  article-title: Large-scale refinery crude oil scheduling by integrating graph representation and genetic algorithm
  publication-title: Ind. Eng. Chem. Res.
– volume: 29
  start-page: 150
  year: 2007
  end-page: 153
  ident: b0070
  article-title: Application of PSO in optimal design of hot oil pipeline
  publication-title: J. Southwest Petrol. Univ.
– volume: 13
  start-page: 430
  year: 1998
  end-page: 440
  ident: b0100
  article-title: The dynamic flowing variation process analyzing of the long-distance pipeline by characteristic method
  publication-title: J. Hydrodyn.
– reference: Y. Liu, L.X. Wei, Multi-objective parameters optimization design of oil–gas gathering and transportation pipe network, in: International Conference on Pipelines and Trenchless Technology 2009, ASCE, Shanghai, China, 2009, pp. 350–361.
– reference: Changjun Li, Jun Wang, Xia Wu, Wenlong Jia, Operation optimization of heated oil transportation pipeline, in: ICPTT 2011: Sustainable Solutions for Water, Sewer, Gas, and Oil Pipelines – Proceedings of the International Conference on Pipelines and Trenchless Technology, 2011, pp.733–743.
– volume: 28
  start-page: 32
  year: 2009
  end-page: 35
  ident: b0055
  article-title: Application of improved genetic algorithm in optimal operation of long-distance natural gas pipeline
  publication-title: Oil Gas Stor. Transport.
– reference: M. Silva Maximiano, M.A. Vega-Rodriguez, J.A. Gomez-Pulido, J.M. Sanchez-Perez, Analysis of parameter settings for differential evolution algorithm to solve a real-world frequency assignment problem in GSM networks, in: Advanced Engineering Computing and Applications in Sciences, 2008.
– volume: 2009
  start-page: 1399
  year: 2009
  end-page: 1405
  ident: b0050
  article-title: Optimal operation of pipeline systems using genetic algorithm
  publication-title: IEEE Congr. Evol. Comput.
– volume: 29
  start-page: 113
  year: 2001
  end-page: 117
  ident: b0035
  article-title: Optimization of pipeline network for oil transport
  publication-title: J Hung. J. Ind. Chem.
– volume: 87
  start-page: 713
  year: 2014
  end-page: 722
  ident: b0135
  article-title: A combined particle swarm optimization-simulated annealing algorithm for heated oil pipeline optimal operation
  publication-title: WIT Trans. Eng. Sci.
– start-page: 486
  year: 2011
  end-page: 496
  ident: b0085
  article-title: Study of pressure and temperature developing profiles in crude oil pipe flows
  publication-title: J. Petrol. Sci. Eng.
– reference: Ji Li, Research on Technology of Pipeline Leak Detection and Localization based on Steady-state Modeling Method, Beijing Chemical Univeisity, 2010.
– reference: Wu Yuguo, A study on optimal operation and energy saving of super heavy oil pipeline, 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 2011.
– reference: G.Q. Li, Z.Q. Huang, Optimal operation for long distance pipeline system of heated crude oil, in: Proc., Int. Offshore Mech. Arct. Eng. Symp, ASME, Hague, Neth., 1989, pp. 53–57.
– volume: 25
  start-page: 558
  issue: 5
  year: 2004
  ident: 10.1016/j.measurement.2014.09.071_b0040
  article-title: Study of optimizing operations of oil pipelines J
  publication-title: J. Eng. Thermophys.
– start-page: 486
  year: 2011
  ident: 10.1016/j.measurement.2014.09.071_b0085
  article-title: Study of pressure and temperature developing profiles in crude oil pipe flows
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2011.06.019
– ident: 10.1016/j.measurement.2014.09.071_b0045
  doi: 10.1061/41073(361)37
– volume: 13
  start-page: 430
  issue: 4
  year: 1998
  ident: 10.1016/j.measurement.2014.09.071_b0100
  article-title: The dynamic flowing variation process analyzing of the long-distance pipeline by characteristic method
  publication-title: J. Hydrodyn.
– volume: 87
  start-page: 713
  year: 2014
  ident: 10.1016/j.measurement.2014.09.071_b0135
  article-title: A combined particle swarm optimization-simulated annealing algorithm for heated oil pipeline optimal operation
  publication-title: WIT Trans. Eng. Sci.
  doi: 10.2495/AMITP130851
– volume: 89
  start-page: 1095
  issue: 5
  year: 2010
  ident: 10.1016/j.measurement.2014.09.071_b0005
  article-title: Heavy crude oil viscosity reduction and rheology for pipeline transportation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.12.021
– ident: 10.1016/j.measurement.2014.09.071_b0020
– volume: 28
  start-page: 32
  issue: 7
  year: 2009
  ident: 10.1016/j.measurement.2014.09.071_b0055
  article-title: Application of improved genetic algorithm in optimal operation of long-distance natural gas pipeline
  publication-title: Oil Gas Stor. Transport.
– volume: 29
  start-page: 150
  issue: 3
  year: 2007
  ident: 10.1016/j.measurement.2014.09.071_b0070
  article-title: Application of PSO in optimal design of hot oil pipeline
  publication-title: J. Southwest Petrol. Univ.
– volume: 29
  start-page: 113
  issue: 2
  year: 2001
  ident: 10.1016/j.measurement.2014.09.071_b0035
  article-title: Optimization of pipeline network for oil transport
  publication-title: J Hung. J. Ind. Chem.
– volume: 32
  start-page: 2063
  issue: 11
  year: 1980
  ident: 10.1016/j.measurement.2014.09.071_b0015
  article-title: Optimizing pipeline operations
  publication-title: J. Petrol. Technol.
  doi: 10.2118/8416-PA
– ident: 10.1016/j.measurement.2014.09.071_b0030
– ident: 10.1016/j.measurement.2014.09.071_b0075
  doi: 10.1061/41202(423)79
– ident: 10.1016/j.measurement.2014.09.071_b0025
– volume: 6
  start-page: 38
  issue: 2
  year: 2004
  ident: 10.1016/j.measurement.2014.09.071_b0095
  article-title: Calculation for soil temperature field of underground oil pipeline by finite element method
  publication-title: J. Liaoning Univ. Petrol. Chem. Technol.
– ident: 10.1016/j.measurement.2014.09.071_b0110
  doi: 10.1109/CDCIEM.2011.46
– ident: 10.1016/j.measurement.2014.09.071_b0115
  doi: 10.1109/ADVCOMP.2008.18
– volume: 23
  start-page: 34
  issue: 7
  year: 2004
  ident: 10.1016/j.measurement.2014.09.071_b0125
  article-title: Application of hybrid genetic algorithm in optimal operation of oil pipeline
  publication-title: Oil Gas Stor. Transport.
– start-page: 5256
  year: 2012
  ident: 10.1016/j.measurement.2014.09.071_b0120
  article-title: Large-scale refinery crude oil scheduling by integrating graph representation and genetic algorithm
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201283z
– volume: 2009
  start-page: 1399
  year: 2009
  ident: 10.1016/j.measurement.2014.09.071_b0050
  article-title: Optimal operation of pipeline systems using genetic algorithm
  publication-title: IEEE Congr. Evol. Comput.
– volume: 29
  start-page: 101
  issue: 3
  year: 2005
  ident: 10.1016/j.measurement.2014.09.071_b0090
  article-title: Heat transfer and flow coupling calculation model of transient scenario for hot oil pipeline
  publication-title: J. Univ. Petrol.
– volume: 27
  start-page: 11
  issue: 8
  year: 2008
  ident: 10.1016/j.measurement.2014.09.071_b0130
  article-title: Optimization study on efficiency of Huachi-Quzi heated crude oil Pipeline
  publication-title: Oil Gas Stor. Transport.
– ident: 10.1016/j.measurement.2014.09.071_b0105
SSID ssj0006396
Score 2.2539518
Snippet •A dynamic p-T model of heated oil pipelines (HOP) is proposed.•An optimization model is proposed to minimize the energy cost of HOP operation.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 344
SubjectTerms Algorithm
Differential evolution
Dynamic model
Heated oil pipeline
Particle swarm optimization
Title Dynamic optimization of heated oil pipeline operation using PSO–DE algorithm
URI https://dx.doi.org/10.1016/j.measurement.2014.09.071
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEB1KRdEH8Yp3VvA1tml2k13wpVSlKlZBC30Lm73USNsUra_iP_iHfomzTWorCAo-JuxAmNnMGYYzZwCOQkNDLrn1JGXMozWLv1SipUdDmQiqJCKWm3e-boXNNr3ssE4JGpNZGEerLHJ_ntPH2bp4Uym8WRmmaeWu6qTGEYB8OhZJcYPmlEZui8Hx65TmgQgc5n2WwHOnF-BwyvHqT_twjuWVS55G_s8YNYM75yuwXBSMpJ5_0yqUzGANlmZkBNdgfkzjVM_r0DrNF8yTDDNBvxixJJklLuUaTbK0R4bp0M2gGzxj8vATR37vktu7m4-399MzInvd7CkdPfQ3oH1-dt9oesXGBE8FjI-8hFvqS-FrI0LfcmU1Q0BOrBYYk0hg7aatzwyCurUyDGxSk1iuBdawmjC6SoNNKA-ygdkCoiLJONcKzSSNLOMi1IwmHIPOhOJqG_jER7Eq5MTdVotePOGNPcYz7o2de-OqiNG921D7Mh3mmhp_MTqZBCL-dkFizP2_m-_8z3wXFvGJ5b2XPSiPnl7MPlYjo-RgfN0OYK5-cdVsfQLGK-N6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0BFbQcKgpUpEDZSlxNYnvX3pW4IAhKSwhIgMRttd6P1FUSRyG9Iv5D_yG_hNnYIUFCKhJXe0eyZnbfG6_ezADsJ5YmXHEXKMpYQCOHRyozKqCJygTVChnL1zufd5LWDf11y24X4HhaC-NllRX2l5g-QevqSb3yZn2Y5_Wrhm81jgQU0kmTFLYIHyiLUv8HdnA_03kgBSflRUsc-OUr8GMm8urPLuK8zKvseZqGr5PUHPGcrsHnKmMkR-VHfYEFO1iH1bk-guuwPNFx6rsN6JyUE-ZJgVDQr2osSeGIx1xrSJH3yDAf-iJ0i2tsGX_i1e9dcnl18fjw76RJVK9bjPLx7_4m3Jw2r49bQTUyIdAx4-Mg446GSoTGiiR0XDvDkJEzZwQGJRWYvBkXMous7pxKYpdFCvO12FkWCWsaNP4KS4NiYLeA6FQxzo1GM0VTx7hIDKMZx6gzobmuAZ_6SOqqn7gfa9GTU-HYHznnXundKxtContrED2bDsumGm8xOpwGQr7YIRLB___m395nvgcfW9fnbdn-2Tnbhk_4hpUXMTuwNB79tbuYmoyz75Ot9wQdGuUP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+optimization+of+heated+oil+pipeline+operation+using+PSO%E2%80%93DE+algorithm&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhou%2C+Ming&rft.au=Zhang%2C+Yu&rft.au=Jin%2C+Shijiu&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=59&rft.spage=344&rft.epage=351&rft_id=info:doi/10.1016%2Fj.measurement.2014.09.071&rft.externalDocID=S0263224114004515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon