Heat transfer performance and optimization of a close-loop R410A flash evaporation spray cooling

•Heat transfer performance of close-loop R410A spray cooling was first studied.•CHF and HTC first presented an increase and then a decrease with spray distance.•Appropriate nozzle diameter of 0.56 mm dictated a superior cooling performance.•CHF of 264 W/cm2 was achieved while surface temperature was...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 159; p. 113966
Main Authors Lin, Yan-Ke, Zhou, Zhi-Fu, Fang, Yu, Tang, Hong-Lin, Chen, Bin
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN1359-4311
1873-5606
DOI10.1016/j.applthermaleng.2019.113966

Cover

Abstract •Heat transfer performance of close-loop R410A spray cooling was first studied.•CHF and HTC first presented an increase and then a decrease with spray distance.•Appropriate nozzle diameter of 0.56 mm dictated a superior cooling performance.•CHF of 264 W/cm2 was achieved while surface temperature was below 30 °C at 25 mm. Flash spray cooling has been subject to increased attention because of its high heat dissipation capacity at low surface temperature in the application of high power technologies. In this study, experiment was conducted to study the effects of spray distance and nozzle diameter on heat transfer performance in a closed-loop R410A flash spray cooling system for the first time. Five spray distance from 10 mm to 30 mm and three nozzles with same internal structure but different diameters of 0.51, 0.56 and 0.69 mm were employed. The experiment results indicated the critical heat flux (CHF) value firstly increased and then deceased with the increase of spray distance, which is consistent with previous research of spray cooling with FC-72 and FC-87. The highest CHF value reached 264 W/cm2 while maintaining surface temperature below 30 °C and heat transfer coefficient (HTC) was about 210 kW/(m2·K) at 25 mm, which were 60% higher than those at 10 mm spray distance. The nozzle with medium orifice diameter of 0.56 mm showed a superior cooling performance, instead of larger nozzle with higher refrigerant flow rate. Therefore, there existed a counterbalance between the mass flow and outlet velocity in determining the optimum nozzle orifice diameter.
AbstractList •Heat transfer performance of close-loop R410A spray cooling was first studied.•CHF and HTC first presented an increase and then a decrease with spray distance.•Appropriate nozzle diameter of 0.56 mm dictated a superior cooling performance.•CHF of 264 W/cm2 was achieved while surface temperature was below 30 °C at 25 mm. Flash spray cooling has been subject to increased attention because of its high heat dissipation capacity at low surface temperature in the application of high power technologies. In this study, experiment was conducted to study the effects of spray distance and nozzle diameter on heat transfer performance in a closed-loop R410A flash spray cooling system for the first time. Five spray distance from 10 mm to 30 mm and three nozzles with same internal structure but different diameters of 0.51, 0.56 and 0.69 mm were employed. The experiment results indicated the critical heat flux (CHF) value firstly increased and then deceased with the increase of spray distance, which is consistent with previous research of spray cooling with FC-72 and FC-87. The highest CHF value reached 264 W/cm2 while maintaining surface temperature below 30 °C and heat transfer coefficient (HTC) was about 210 kW/(m2·K) at 25 mm, which were 60% higher than those at 10 mm spray distance. The nozzle with medium orifice diameter of 0.56 mm showed a superior cooling performance, instead of larger nozzle with higher refrigerant flow rate. Therefore, there existed a counterbalance between the mass flow and outlet velocity in determining the optimum nozzle orifice diameter.
Flash spray cooling has been subject to increased attention because of its high heat dissipation capacity at low surface temperature in the application of high power technologies. In this study, experiment was conducted to study the effects of spray distance and nozzle diameter on heat transfer performance in a closed-loop R410A flash spray cooling system for the first time. Five spray distance from 10 mm to 30 mm and three nozzles with same internal structure but different diameters of 0.51, 0.56 and 0.69 mm were employed. The experiment results indicated the critical heat flux (CHF) value firstly increased and then deceased with the increase of spray distance, which is consistent with previous research of spray cooling with FC-72 and FC-87. The highest CHF value reached 264 W/cm2 while maintaining surface temperature below 30 °C and heat transfer coefficient (HTC) was about 210 kW/(m2·K) at 25 mm, which were 60% higher than those at 10 mm spray distance. The nozzle with medium orifice diameter of 0.56 mm showed a superior cooling performance, instead of larger nozzle with higher refrigerant flow rate. Therefore, there existed a counterbalance between the mass flow and outlet velocity in determining the optimum nozzle orifice diameter.
ArticleNumber 113966
Author Chen, Bin
Zhou, Zhi-Fu
Lin, Yan-Ke
Tang, Hong-Lin
Fang, Yu
Author_xml – sequence: 1
  givenname: Yan-Ke
  surname: Lin
  fullname: Lin, Yan-Ke
– sequence: 2
  givenname: Zhi-Fu
  surname: Zhou
  fullname: Zhou, Zhi-Fu
  email: zfzhou@mail.xjtu.edu.cn
– sequence: 3
  givenname: Yu
  surname: Fang
  fullname: Fang, Yu
– sequence: 4
  givenname: Hong-Lin
  surname: Tang
  fullname: Tang, Hong-Lin
– sequence: 5
  givenname: Bin
  orcidid: 0000-0001-6821-2008
  surname: Chen
  fullname: Chen, Bin
BookMark eNqNkM1q3TAQRkVJoUnadxC0W99oLFm2oZs0ND8QKJRmrcyVR4kuvpIqOYHk6avU3TSrrGYW33eGOUfsIMRAjH0BsQEB-mS3wZTm5Z7yHmcKd5tWwLgBkKPW79ghDL1sOi30Qd1lNzZKAnxgR6XshIB26NUhu70kXPiSMRRHmSfKLlZasMQxTDymxe_9My4-Bh4dR27nWKiZY0z8pwJxyt2M5Z7TI6aY11xJGZ-4jXH24e4je-9wLvTp3zxmN-fff51dNtc_Lq7OTq8bK7thaUYkue17AV3fDbZXgjRKIOVaFLAlHLeDowmo1YACtRDdpCbdOTtNoEYn5TH7vHJTjr8fqCxmFx9yqCdN2-pK7pXqa-rrmrI5lpLJmZT9HvOTAWFenJqd-d-peXFqVqe1_u1V3frl79PVoJ_fCjlfIVR1PHrKplhP1fjkM9nFTNG_DfQHK1aiOg
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2020_116253
crossref_primary_10_3390_en16010403
crossref_primary_10_1016_j_applthermaleng_2023_121328
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121041
crossref_primary_10_1088_1742_6596_1626_1_012122
crossref_primary_10_1016_j_egyr_2022_10_255
crossref_primary_10_1088_1755_1315_701_1_012061
crossref_primary_10_1016_j_dwt_2024_100203
crossref_primary_10_1016_j_energy_2023_129224
crossref_primary_10_1016_j_molliq_2023_122044
crossref_primary_10_1016_j_applthermaleng_2020_115343
crossref_primary_10_1016_j_applthermaleng_2020_115640
crossref_primary_10_1016_j_applthermaleng_2022_119322
crossref_primary_10_1016_j_applthermaleng_2024_122913
crossref_primary_10_1016_j_applthermaleng_2020_116172
crossref_primary_10_1016_j_prime_2021_100009
crossref_primary_10_1080_03019233_2020_1732649
crossref_primary_10_1016_j_tsep_2022_101332
crossref_primary_10_1016_j_applthermaleng_2021_117109
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121787
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121546
crossref_primary_10_1016_j_ijheatfluidflow_2024_109355
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120159
crossref_primary_10_1016_j_sna_2021_113135
crossref_primary_10_1016_j_applthermaleng_2023_119978
crossref_primary_10_3390_en12244618
crossref_primary_10_1016_j_desal_2025_118572
crossref_primary_10_3390_en15228547
crossref_primary_10_1016_j_applthermaleng_2021_117217
crossref_primary_10_1016_j_applthermaleng_2022_118360
crossref_primary_10_3390_en15239219
crossref_primary_10_1007_s11630_020_1395_y
crossref_primary_10_1016_j_egyr_2025_01_068
crossref_primary_10_1016_j_dwt_2024_100814
crossref_primary_10_1016_j_energy_2021_120575
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120740
crossref_primary_10_1039_D2NJ02505A
crossref_primary_10_1007_s00231_023_03349_9
crossref_primary_10_1016_j_icheatmasstransfer_2023_106630
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123216
crossref_primary_10_1016_j_ijthermalsci_2020_106530
crossref_primary_10_1016_j_applthermaleng_2023_121196
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124768
crossref_primary_10_1016_j_renene_2022_06_058
Cites_doi 10.1016/S0017-9310(03)00217-5
10.1007/s00231-010-0631-5
10.1016/j.ijheatmasstransfer.2019.03.042
10.1016/j.ijthermalsci.2012.12.015
10.1115/1.2953237
10.1016/j.ijheatmasstransfer.2005.02.013
10.1109/6144.926375
10.1016/j.applthermaleng.2012.06.029
10.1016/j.applthermaleng.2015.01.055
10.1016/j.applthermaleng.2016.05.096
10.1016/j.applthermaleng.2017.11.142
10.1016/j.expthermflusci.2014.09.006
10.1016/j.ijheatmasstransfer.2014.04.019
10.1016/j.cja.2016.04.005
10.1016/j.ijheatmasstransfer.2019.05.063
10.1080/01457630601117799
10.1115/1.2911248
10.1016/j.applthermaleng.2012.08.057
10.1007/s00231-010-0632-4
10.1115/1.2822685
10.1016/j.ijheatmasstransfer.2012.04.021
10.1016/j.rser.2015.11.014
10.1016/j.ijheatmasstransfer.2014.04.010
10.1016/j.applthermaleng.2016.04.004
10.1016/j.expthermflusci.2014.10.026
10.1016/j.microrel.2014.07.069
10.1038/nmat4194
10.1080/01457630601023245
10.1016/j.ijheatmasstransfer.2016.11.035
10.1016/j.ijheatmasstransfer.2017.06.029
10.1016/j.ijthermalsci.2018.07.018
10.1016/j.ijheatfluidflow.2006.09.003
10.1016/j.applthermaleng.2016.08.160
10.1016/j.ijheatmasstransfer.2014.01.077
10.1016/j.expthermflusci.2015.03.015
10.1016/j.powtec.2012.07.002
10.1016/j.applthermaleng.2013.05.047
10.1016/j.applthermaleng.2018.10.054
10.1016/j.expthermflusci.2010.02.010
10.1016/j.expthermflusci.2016.11.016
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2019.113966
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2019_113966
S1359431118376725
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
KR7
SSH
ID FETCH-LOGICAL-c358t-9ae3b77015758c740e6a31e4f2a01bea9b8fed1e261a0a6005d4d65fcdd149f33
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Sun Jul 13 05:17:41 EDT 2025
Wed Oct 29 21:21:40 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Fri Feb 23 02:33:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nozzle diameter
R410A
Spray distance
Flash spray cooling
Electronics thermal management
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-9ae3b77015758c740e6a31e4f2a01bea9b8fed1e261a0a6005d4d65fcdd149f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6821-2008
PQID 2267707447
PQPubID 2045278
ParticipantIDs proquest_journals_2267707447
crossref_primary_10_1016_j_applthermaleng_2019_113966
crossref_citationtrail_10_1016_j_applthermaleng_2019_113966
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_113966
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhang, Li, Jiang (b0175) 2013; 51
Mudawar (b0030) 2001; 24
Cheng, Zhang, Chen, Hu (b0045) 2016; 55
Shedd, Pautsch (b0060) 2005; 48
Yang, Wang, Zhu, Liao, Ding, Chen (b0100) 2013; 50
Bostanci, He, Chow (b0110) 2017; 107
Zhou, Lin, Tang, Fang, Chen, Wang (b0010) 2019; 139
Cheng, Liu, Zhao, Fan (b0150) 2010; 46
Bostanci, Rini, Kizito, Singh, Seal, Chow (b0105) 2014; 75
Xie, Gan, Wong, Duan, Yu, Wu (b0145) 2014; 73
Zhou, Hu, Xin, Chen, Wang (b9000) 2019; 136
Liu, Cai, Yin, Luo, Jia, Gao (b0090) 2018; 133
Xie, Gan, Duan, Wong, Yu, Zhao (b0155) 2013; 68
Andresen, Liserre (b0005) 2014; 54
Lin, Ponnappan (b0085) 2003; 46
Zhifu, Guoxiang, Bin, Liejin, Yueshe (b0200) 2013; 240
Zhifu, Weitao, Bin, Guoxiang, Liejin (b0205) 2012; 55
Smakulski, Pietrowicz (b0020) 2016; 104
Chen, Liu, Liu, Hou (b0120) 2015; 66
Wang, Liu, Liu, Xu, Chen (b0065) 2010; 34
Hou, Liu, Su, Qian, Liu, Liu (b0130) 2015; 61
Zhou, Wang, Chen, Yang, Wang (b0140) 2016; 102
Li, Tie, Xuan (b0015) 2015; 60
Cheng, Zhang, Jiang, Yang, Hu, Chen (b0170) 2015; 80
Zhou, Li, Chen, Wang (b0190) 2017; 110
Pais, Chow, Mahefkey (b0080) 1992; 114
Michel, Agostini, Fabbri, Park, Wojtan, Thome (b0025) 2007; 28
Shedd (b0040) 2007; 28
Zhang, Li, Wang, Liu, Zhong (b0180) 2016; 29
Chen, Tan, Lin, Chow, Griffin, Rini (b0185) 2008; 130
Zhou, Chen, Wang, Wang (b0195) 2017; 82
Zhang, Jiang, Ouyang, Chen, Christopher (b0070) 2014; 76
Mudawar, Estes (b0075) 1996; 118
Liang, Mudawar (b0160) 2017; 115
Xie, Tan, Duan, Ranjith, Wong, Toh, Choo, Chan (b0115) 2013; 59
Zhou, Hu, Xin, Chen, Wang (b0165) 2019; 136
Kim (b0050) 2007; 28
Bostanci, Altalidi, Nasrazadani (b0125) 2018; 131
Cho, Goodson (b0035) 2015; 14
Liu, Liu, Xue, Chen, Hou (b0135) 2018
Zhao, Cheng, Liu, Fan (b0055) 2010; 46
Liu, Cai, Jia, Gao, Yin, Chen (b0095) 2019; 146
Bostanci (10.1016/j.applthermaleng.2019.113966_b0110) 2017; 107
Chen (10.1016/j.applthermaleng.2019.113966_b0120) 2015; 66
Zhou (10.1016/j.applthermaleng.2019.113966_b0190) 2017; 110
Mudawar (10.1016/j.applthermaleng.2019.113966_b0030) 2001; 24
Zhou (10.1016/j.applthermaleng.2019.113966_b0140) 2016; 102
Zhou (10.1016/j.applthermaleng.2019.113966_b9000) 2019; 136
Xie (10.1016/j.applthermaleng.2019.113966_b0145) 2014; 73
Liu (10.1016/j.applthermaleng.2019.113966_b0090) 2018; 133
Wang (10.1016/j.applthermaleng.2019.113966_b0065) 2010; 34
Andresen (10.1016/j.applthermaleng.2019.113966_b0005) 2014; 54
Cheng (10.1016/j.applthermaleng.2019.113966_b0045) 2016; 55
Zhifu (10.1016/j.applthermaleng.2019.113966_b0205) 2012; 55
Zhang (10.1016/j.applthermaleng.2019.113966_b0180) 2016; 29
Lin (10.1016/j.applthermaleng.2019.113966_b0085) 2003; 46
Shedd (10.1016/j.applthermaleng.2019.113966_b0040) 2007; 28
Shedd (10.1016/j.applthermaleng.2019.113966_b0060) 2005; 48
Liu (10.1016/j.applthermaleng.2019.113966_b0095) 2019; 146
Michel (10.1016/j.applthermaleng.2019.113966_b0025) 2007; 28
Zhou (10.1016/j.applthermaleng.2019.113966_b0195) 2017; 82
Cho (10.1016/j.applthermaleng.2019.113966_b0035) 2015; 14
Xie (10.1016/j.applthermaleng.2019.113966_b0115) 2013; 59
Zhou (10.1016/j.applthermaleng.2019.113966_b0010) 2019; 139
Cheng (10.1016/j.applthermaleng.2019.113966_b0170) 2015; 80
Zhao (10.1016/j.applthermaleng.2019.113966_b0055) 2010; 46
Cheng (10.1016/j.applthermaleng.2019.113966_b0150) 2010; 46
Bostanci (10.1016/j.applthermaleng.2019.113966_b0125) 2018; 131
Yang (10.1016/j.applthermaleng.2019.113966_b0100) 2013; 50
Zhang (10.1016/j.applthermaleng.2019.113966_b0070) 2014; 76
Bostanci (10.1016/j.applthermaleng.2019.113966_b0105) 2014; 75
Chen (10.1016/j.applthermaleng.2019.113966_b0185) 2008; 130
Hou (10.1016/j.applthermaleng.2019.113966_b0130) 2015; 61
Liu (10.1016/j.applthermaleng.2019.113966_b0135) 2018
Zhang (10.1016/j.applthermaleng.2019.113966_b0175) 2013; 51
Kim (10.1016/j.applthermaleng.2019.113966_b0050) 2007; 28
Smakulski (10.1016/j.applthermaleng.2019.113966_b0020) 2016; 104
Pais (10.1016/j.applthermaleng.2019.113966_b0080) 1992; 114
Liang (10.1016/j.applthermaleng.2019.113966_b0160) 2017; 115
Zhifu (10.1016/j.applthermaleng.2019.113966_b0200) 2013; 240
Mudawar (10.1016/j.applthermaleng.2019.113966_b0075) 1996; 118
Li (10.1016/j.applthermaleng.2019.113966_b0015) 2015; 60
Xie (10.1016/j.applthermaleng.2019.113966_b0155) 2013; 68
Zhou (10.1016/j.applthermaleng.2019.113966_b0165) 2019; 136
References_xml – volume: 82
  start-page: 189
  year: 2017
  end-page: 197
  ident: b0195
  article-title: Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens
  publication-title: Exp. Therm Fluid Sci.
– volume: 14
  start-page: 136
  year: 2015
  end-page: 137
  ident: b0035
  article-title: Thermal transport: cool electronics
  publication-title: Nat. Mater.
– volume: 46
  start-page: 821
  year: 2010
  end-page: 829
  ident: b0055
  article-title: Study on heat transfer performance of spray cooling: model and analysis
  publication-title: Heat Mass Transf.
– volume: 107
  start-page: 45
  year: 2017
  end-page: 52
  ident: b0110
  article-title: Spray cooling with ammonium hydroxide
  publication-title: Int. J. Heat Mass Transf.
– volume: 75
  start-page: 718
  year: 2014
  end-page: 725
  ident: b0105
  article-title: High heat flux spray cooling with ammonia: investigation of enhanced surfaces for HTC
  publication-title: Int. J. Heat Mass Transf.
– volume: 114
  start-page: 211
  year: 1992
  end-page: 219
  ident: b0080
  article-title: Surface roughness and its effects on the heat transfer mechanism in spray cooling
  publication-title: J. Heat Transf.
– volume: 24
  start-page: 122
  year: 2001
  end-page: 141
  ident: b0030
  article-title: Assessment of high-heat-flux thermal management schemes
  publication-title: IEEE Trans. Compon. Packag. Technol.
– volume: 115
  start-page: 1174
  year: 2017
  end-page: 1205
  ident: b0160
  article-title: Review of spray cooling–Part 1: Single-phase and nucleate boiling regimes, and critical heat flux
  publication-title: Int. J. Heat Mass Transf.
– volume: 146
  start-page: 921
  year: 2019
  end-page: 930
  ident: b0095
  article-title: Experimental investigation on spray cooling with low-alcohol additives
  publication-title: Appl. Therm. Eng.
– volume: 60
  start-page: 182
  year: 2015
  end-page: 187
  ident: b0015
  article-title: Investigation on heat transfer characteristics of R134a spray cooling
  publication-title: Exp. Therm Fluid Sci.
– volume: 133
  start-page: 62
  year: 2018
  end-page: 68
  ident: b0090
  article-title: Experimental investigation on heat transfer of spray cooling with the mixture of ethanol and water
  publication-title: Int. J. Therm. Sci.
– volume: 51
  start-page: 102
  year: 2013
  end-page: 111
  ident: b0175
  article-title: Experimental investigation of spray cooling on flat and enhanced surfaces
  publication-title: Appl. Therm. Eng.
– volume: 66
  start-page: 206
  year: 2015
  end-page: 212
  ident: b0120
  article-title: An experimental comparison of heat transfer characteristic between R134-a and R22 in spray cooling
  publication-title: Exp. Therm Fluid Sci.
– volume: 131
  start-page: 150
  year: 2018
  end-page: 158
  ident: b0125
  article-title: Two-phase spray cooling with HFC-134a and HFO-1234yf on practical enhanced surfaces
  publication-title: Appl. Therm. Eng.
– volume: 28
  start-page: 87
  year: 2007
  end-page: 92
  ident: b0040
  article-title: Next generation spray cooling: high heat flux management in compact spaces
  publication-title: Heat Transfer Eng.
– volume: 48
  start-page: 3176
  year: 2005
  end-page: 3184
  ident: b0060
  article-title: Spray impingement cooling with single-and multiple-nozzle arrays. Part II: Visualization and empirical models
  publication-title: Int. J. Heat Mass Transf.
– volume: 76
  start-page: 366
  year: 2014
  end-page: 375
  ident: b0070
  article-title: Experimental investigation of spray cooling on smooth and micro-structured surfaces
  publication-title: Int. J. Heat Mass Transf.
– volume: 80
  start-page: 160
  year: 2015
  end-page: 167
  ident: b0170
  article-title: Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime
  publication-title: Appl. Therm. Eng.
– volume: 73
  start-page: 130
  year: 2014
  end-page: 140
  ident: b0145
  article-title: Thermal effects on a pressure swirl nozzle in spray cooling
  publication-title: Int. J. Heat Mass Transf.
– volume: 130
  start-page: 101501
  year: 2008
  end-page: 101509
  ident: b0185
  article-title: Droplet and bubble dynamics in saturated FC-72 spray cooling on a smooth surface
  publication-title: J. Heat Transf.
– volume: 118
  start-page: 672
  year: 1996
  end-page: 679
  ident: b0075
  article-title: Optimizing and predicting CHF in spray cooling of a square surface
  publication-title: J. Heat Transf.
– volume: 61
  start-page: 194
  year: 2015
  end-page: 200
  ident: b0130
  article-title: Experimental study on the characteristics of a closed loop R134-a spray cooling
  publication-title: Exp. Therm Fluid Sci.
– volume: 136
  start-page: 664
  year: 2019
  end-page: 673
  ident: b9000
  article-title: Experimental and theoretical studies on the droplet temperature behavior of R407C two-phase flashing spray
  publication-title: Int. J. Heat Mass Transf.
– volume: 240
  start-page: 95
  year: 2013
  end-page: 102
  ident: b0200
  article-title: Evaluation of evaporation models for single moving droplet with a high evaporation rate
  publication-title: Powder Technol.
– volume: 54
  start-page: 1935
  year: 2014
  end-page: 1939
  ident: b0005
  article-title: Impact of active thermal management on power electronics design
  publication-title: Microelectron. Reliab.
– volume: 46
  start-page: 911
  year: 2010
  end-page: 921
  ident: b0150
  article-title: Experimental investigation of parameters effect on heat transfer of spray cooling
  publication-title: Heat Mass Transf.
– volume: 59
  start-page: 464
  year: 2013
  end-page: 472
  ident: b0115
  article-title: Study of heat transfer enhancement for structured surfaces in spray cooling
  publication-title: Appl. Therm. Eng.
– volume: 104
  start-page: 636
  year: 2016
  end-page: 646
  ident: b0020
  article-title: A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques
  publication-title: Appl. Therm. Eng.
– volume: 29
  start-page: 630
  year: 2016
  end-page: 638
  ident: b0180
  article-title: Ground experimental investigations into an ejected spray cooling system for space closed-loop application
  publication-title: Chin. J. Aeronaut.
– volume: 46
  start-page: 3737
  year: 2003
  end-page: 3746
  ident: b0085
  article-title: Heat transfer characteristics of spray cooling in a closed loop
  publication-title: Int. J. Heat Mass Transf.
– volume: 139
  start-page: 1047
  year: 2019
  end-page: 1055
  ident: b0010
  article-title: Heat transfer enhancement due to surface modification in the close-loop R410A flash evaporation spray cooling
  publication-title: Int. J. Heat Mass Transf.
– volume: 50
  start-page: 245
  year: 2013
  end-page: 250
  ident: b0100
  article-title: Heat transfer enhancement of spray cooling with ammonia by microcavity surfaces
  publication-title: Appl. Therm. Eng.
– volume: 55
  start-page: 614
  year: 2016
  end-page: 628
  ident: b0045
  article-title: Spray cooling and flash evaporation cooling: the current development and application
  publication-title: Renew. Sustain. Energy Rev.
– volume: 34
  start-page: 933
  year: 2010
  end-page: 942
  ident: b0065
  article-title: Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime
  publication-title: Exp. Therm Fluid Sci.
– volume: 102
  start-page: 813
  year: 2016
  end-page: 821
  ident: b0140
  article-title: Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures
  publication-title: Appl. Therm. Eng.
– volume: 68
  start-page: 94
  year: 2013
  end-page: 102
  ident: b0155
  article-title: Characterization of spray atomization and heat transfer of pressure swirl nozzles
  publication-title: Int. J. Therm. Sci.
– volume: 136
  start-page: 664
  year: 2019
  end-page: 673
  ident: b0165
  article-title: Experimental and theoretical studies on the droplet temperature behavior of R407C two-phase flashing spray
  publication-title: Int. J. Heat Mass Transf.
– volume: 110
  start-page: 162
  year: 2017
  end-page: 170
  ident: b0190
  article-title: A 3rd-order polynomial temperature profile model for the heating and evaporation of moving droplets
  publication-title: Appl. Therm. Eng.
– volume: 55
  start-page: 4460
  year: 2012
  end-page: 4468
  ident: b0205
  article-title: An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray
  publication-title: Int. J. Heat Mass Transf.
– volume: 28
  start-page: 753
  year: 2007
  end-page: 767
  ident: b0050
  article-title: Spray cooling heat transfer: the state of the art
  publication-title: Int. J. Heat Fluid Flow
– volume: 28
  start-page: 258
  year: 2007
  end-page: 281
  ident: b0025
  article-title: State-of-the-art of high heat flux cooling technologies
  publication-title: Heat Transfer Eng.
– year: 2018
  ident: b0135
  article-title: Heat transfer optimization of R134a phase change spray cooling in a closed loop system
  publication-title: Exp. Therm. Fluid.
– volume: 46
  start-page: 3737
  year: 2003
  ident: 10.1016/j.applthermaleng.2019.113966_b0085
  article-title: Heat transfer characteristics of spray cooling in a closed loop
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00217-5
– volume: 46
  start-page: 911
  year: 2010
  ident: 10.1016/j.applthermaleng.2019.113966_b0150
  article-title: Experimental investigation of parameters effect on heat transfer of spray cooling
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-010-0631-5
– volume: 136
  start-page: 664
  year: 2019
  ident: 10.1016/j.applthermaleng.2019.113966_b9000
  article-title: Experimental and theoretical studies on the droplet temperature behavior of R407C two-phase flashing spray
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.03.042
– volume: 68
  start-page: 94
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.113966_b0155
  article-title: Characterization of spray atomization and heat transfer of pressure swirl nozzles
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2012.12.015
– volume: 130
  start-page: 101501
  year: 2008
  ident: 10.1016/j.applthermaleng.2019.113966_b0185
  article-title: Droplet and bubble dynamics in saturated FC-72 spray cooling on a smooth surface
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2953237
– volume: 48
  start-page: 3176
  year: 2005
  ident: 10.1016/j.applthermaleng.2019.113966_b0060
  article-title: Spray impingement cooling with single-and multiple-nozzle arrays. Part II: Visualization and empirical models
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2005.02.013
– volume: 24
  start-page: 122
  year: 2001
  ident: 10.1016/j.applthermaleng.2019.113966_b0030
  article-title: Assessment of high-heat-flux thermal management schemes
  publication-title: IEEE Trans. Compon. Packag. Technol.
  doi: 10.1109/6144.926375
– volume: 50
  start-page: 245
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.113966_b0100
  article-title: Heat transfer enhancement of spray cooling with ammonia by microcavity surfaces
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.06.029
– volume: 80
  start-page: 160
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113966_b0170
  article-title: Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.01.055
– volume: 104
  start-page: 636
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113966_b0020
  article-title: A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.05.096
– volume: 131
  start-page: 150
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.113966_b0125
  article-title: Two-phase spray cooling with HFC-134a and HFO-1234yf on practical enhanced surfaces
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.11.142
– year: 2018
  ident: 10.1016/j.applthermaleng.2019.113966_b0135
  article-title: Heat transfer optimization of R134a phase change spray cooling in a closed loop system
  publication-title: Exp. Therm. Fluid.
– volume: 60
  start-page: 182
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113966_b0015
  article-title: Investigation on heat transfer characteristics of R134a spray cooling
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.09.006
– volume: 75
  start-page: 718
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113966_b0105
  article-title: High heat flux spray cooling with ammonia: investigation of enhanced surfaces for HTC
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.04.019
– volume: 29
  start-page: 630
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113966_b0180
  article-title: Ground experimental investigations into an ejected spray cooling system for space closed-loop application
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2016.04.005
– volume: 139
  start-page: 1047
  year: 2019
  ident: 10.1016/j.applthermaleng.2019.113966_b0010
  article-title: Heat transfer enhancement due to surface modification in the close-loop R410A flash evaporation spray cooling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.05.063
– volume: 28
  start-page: 258
  year: 2007
  ident: 10.1016/j.applthermaleng.2019.113966_b0025
  article-title: State-of-the-art of high heat flux cooling technologies
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630601117799
– volume: 114
  start-page: 211
  year: 1992
  ident: 10.1016/j.applthermaleng.2019.113966_b0080
  article-title: Surface roughness and its effects on the heat transfer mechanism in spray cooling
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2911248
– volume: 51
  start-page: 102
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.113966_b0175
  article-title: Experimental investigation of spray cooling on flat and enhanced surfaces
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.08.057
– volume: 46
  start-page: 821
  year: 2010
  ident: 10.1016/j.applthermaleng.2019.113966_b0055
  article-title: Study on heat transfer performance of spray cooling: model and analysis
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-010-0632-4
– volume: 118
  start-page: 672
  year: 1996
  ident: 10.1016/j.applthermaleng.2019.113966_b0075
  article-title: Optimizing and predicting CHF in spray cooling of a square surface
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2822685
– volume: 55
  start-page: 4460
  year: 2012
  ident: 10.1016/j.applthermaleng.2019.113966_b0205
  article-title: An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.04.021
– volume: 55
  start-page: 614
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113966_b0045
  article-title: Spray cooling and flash evaporation cooling: the current development and application
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.014
– volume: 76
  start-page: 366
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113966_b0070
  article-title: Experimental investigation of spray cooling on smooth and micro-structured surfaces
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.04.010
– volume: 102
  start-page: 813
  year: 2016
  ident: 10.1016/j.applthermaleng.2019.113966_b0140
  article-title: Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.04.004
– volume: 61
  start-page: 194
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113966_b0130
  article-title: Experimental study on the characteristics of a closed loop R134-a spray cooling
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.10.026
– volume: 54
  start-page: 1935
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113966_b0005
  article-title: Impact of active thermal management on power electronics design
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2014.07.069
– volume: 14
  start-page: 136
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113966_b0035
  article-title: Thermal transport: cool electronics
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4194
– volume: 28
  start-page: 87
  year: 2007
  ident: 10.1016/j.applthermaleng.2019.113966_b0040
  article-title: Next generation spray cooling: high heat flux management in compact spaces
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630601023245
– volume: 136
  start-page: 664
  year: 2019
  ident: 10.1016/j.applthermaleng.2019.113966_b0165
  article-title: Experimental and theoretical studies on the droplet temperature behavior of R407C two-phase flashing spray
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.03.042
– volume: 107
  start-page: 45
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113966_b0110
  article-title: Spray cooling with ammonium hydroxide
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.11.035
– volume: 115
  start-page: 1174
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113966_b0160
  article-title: Review of spray cooling–Part 1: Single-phase and nucleate boiling regimes, and critical heat flux
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.029
– volume: 133
  start-page: 62
  year: 2018
  ident: 10.1016/j.applthermaleng.2019.113966_b0090
  article-title: Experimental investigation on heat transfer of spray cooling with the mixture of ethanol and water
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2018.07.018
– volume: 28
  start-page: 753
  year: 2007
  ident: 10.1016/j.applthermaleng.2019.113966_b0050
  article-title: Spray cooling heat transfer: the state of the art
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2006.09.003
– volume: 110
  start-page: 162
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113966_b0190
  article-title: A 3rd-order polynomial temperature profile model for the heating and evaporation of moving droplets
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.08.160
– volume: 73
  start-page: 130
  year: 2014
  ident: 10.1016/j.applthermaleng.2019.113966_b0145
  article-title: Thermal effects on a pressure swirl nozzle in spray cooling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.01.077
– volume: 66
  start-page: 206
  year: 2015
  ident: 10.1016/j.applthermaleng.2019.113966_b0120
  article-title: An experimental comparison of heat transfer characteristic between R134-a and R22 in spray cooling
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2015.03.015
– volume: 240
  start-page: 95
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.113966_b0200
  article-title: Evaluation of evaporation models for single moving droplet with a high evaporation rate
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.07.002
– volume: 59
  start-page: 464
  year: 2013
  ident: 10.1016/j.applthermaleng.2019.113966_b0115
  article-title: Study of heat transfer enhancement for structured surfaces in spray cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.05.047
– volume: 146
  start-page: 921
  year: 2019
  ident: 10.1016/j.applthermaleng.2019.113966_b0095
  article-title: Experimental investigation on spray cooling with low-alcohol additives
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.10.054
– volume: 34
  start-page: 933
  year: 2010
  ident: 10.1016/j.applthermaleng.2019.113966_b0065
  article-title: Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2010.02.010
– volume: 82
  start-page: 189
  year: 2017
  ident: 10.1016/j.applthermaleng.2019.113966_b0195
  article-title: Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.11.016
SSID ssj0012874
Score 2.4881015
Snippet •Heat transfer performance of close-loop R410A spray cooling was first studied.•CHF and HTC first presented an increase and then a decrease with spray...
Flash spray cooling has been subject to increased attention because of its high heat dissipation capacity at low surface temperature in the application of high...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113966
SubjectTerms Cooling
Cooling rate
Cooling systems
Electronics thermal management
Evaporative cooling
Flash spray cooling
Flow velocity
Heat conductivity
Heat flux
Heat transfer
Heat transfer coefficients
Mass flow
Nozzle diameter
Nozzles
Optimization
Orifices
R410A
Refrigerants
Spray cooling
Spray distance
Surface temperature
Title Heat transfer performance and optimization of a close-loop R410A flash evaporation spray cooling
URI https://dx.doi.org/10.1016/j.applthermaleng.2019.113966
https://www.proquest.com/docview/2267707447
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AKRWK
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kguhBfOKz7KHX2E2TbbJ4kCJKVfTgA3pbJ9mND2oT2ip48bc7k2x84UHwmJBNwmTyzTfJNzOMtSJk0SR-8jomkpigZMIDEYOH0SFVQZzFSUIf9M8vuv2b8HQgBzPssK6FIVmlw_4K00u0dnvazprt4uGhfeUHUmH4Q4ZMHUk6VGgehhFNMdh7-5B5-NTPvUy6pPLo6DnW-tR40U9i4llPQGNLSOilaMiJKnsm_hqmfgB2GYWOl9iio4-8V93hMpuxoxW28KWp4Cq77SO88mlJSO2YF5-VARxGhueIEU-u-JLnGQeeDvOJ9YZ5XvDL0Bc9niGjvuf2BQrnH3xSjOGVpzlN-LlbYzfHR9eHfc_NUfDSQMZTT4ENkijCwI_JQRqFwnYh8G2YdUD4iQWVxJk1vsVkCgQgA5ImNF2ZpcZg_pQFwTprjPKR3WA8VMJIGQHiAPIooQBEgpwvMD5YieRmk-3XZtOpazJOsy6GulaTPervRtdkdF0ZfZPJj9VF1Wzjj-sO6iekvzmPxrjwxzPs1A9Wu5d4opGZotUidKqtf19gm83TViUd3GGN6fjZ7iKdmSbN0l-bbLZ3cta_eAcBDvba
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BlSgcEI9W5VHqA9ewzsZex-oBIQTatsCBh8TNTGKHbrVsot0FiUt_O-PE4VH1gMQ1iZNoPPnmG-fzDMCOIhbtxU9R1ypJCUrBI-QpRhQdcp2kRZplfkH_5LTXvxQ_r-TVDBy0e2G8rDJgf4PpNVqHI51gzU41GHTO40RqCn_EkH1Fkq6chQ9CdpXPwHb_Puk8Yl_Qvc66pI785fOw8yzy8n-JPdG6Rd-3xCu9tO9youuiif-NU_8gdh2GjpZhKfBHtt-84grMuNEqLL6oKrgG133CVzatGakbs-p5awDDkWUlgcRt2H3JyoIhy4flxEXDsqzYmYj5PiuIUv9m7h6r4CBsUo3xgeWlb_Fz8wkujw4vDvpRaKQQ5YlMp5FGl2RKUeSn7CBXgrseJrETRRd5nDnUWVo4GzvKppAjUSBphe3JIreWEqgiST7D3KgcuS_AhOZWSoUEBESkuEbkGZG-xMboJLGbdfjems3kocq4b3YxNK2c7I95bXTjjW4ao6-DfBpdNdU23jhur50h88p7DAWGN95hq51YE77iiSFqSlZTQqiNdz_gG3zsX5wcm-Mfp782YcGfaXSEWzA3Hd-5r8Rtptl27buPso74bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+performance+and+optimization+of+a+close-loop+R410A+flash+evaporation+spray+cooling&rft.jtitle=Applied+thermal+engineering&rft.au=Lin%2C+Yan-Ke&rft.au=Zhou%2C+Zhi-Fu&rft.au=Fang%2C+Yu&rft.au=Tang%2C+Hong-Lin&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=159&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.113966&rft.externalDocID=S1359431118376725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon