Heat transfer performance and optimization of a close-loop R410A flash evaporation spray cooling
•Heat transfer performance of close-loop R410A spray cooling was first studied.•CHF and HTC first presented an increase and then a decrease with spray distance.•Appropriate nozzle diameter of 0.56 mm dictated a superior cooling performance.•CHF of 264 W/cm2 was achieved while surface temperature was...
        Saved in:
      
    
          | Published in | Applied thermal engineering Vol. 159; p. 113966 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Elsevier Ltd
    
        01.08.2019
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1359-4311 1873-5606  | 
| DOI | 10.1016/j.applthermaleng.2019.113966 | 
Cover
| Abstract | •Heat transfer performance of close-loop R410A spray cooling was first studied.•CHF and HTC first presented an increase and then a decrease with spray distance.•Appropriate nozzle diameter of 0.56 mm dictated a superior cooling performance.•CHF of 264 W/cm2 was achieved while surface temperature was below 30 °C at 25 mm.
Flash spray cooling has been subject to increased attention because of its high heat dissipation capacity at low surface temperature in the application of high power technologies. In this study, experiment was conducted to study the effects of spray distance and nozzle diameter on heat transfer performance in a closed-loop R410A flash spray cooling system for the first time. Five spray distance from 10 mm to 30 mm and three nozzles with same internal structure but different diameters of 0.51, 0.56 and 0.69 mm were employed. The experiment results indicated the critical heat flux (CHF) value firstly increased and then deceased with the increase of spray distance, which is consistent with previous research of spray cooling with FC-72 and FC-87. The highest CHF value reached 264 W/cm2 while maintaining surface temperature below 30 °C and heat transfer coefficient (HTC) was about 210 kW/(m2·K) at 25 mm, which were 60% higher than those at 10 mm spray distance. The nozzle with medium orifice diameter of 0.56 mm showed a superior cooling performance, instead of larger nozzle with higher refrigerant flow rate. Therefore, there existed a counterbalance between the mass flow and outlet velocity in determining the optimum nozzle orifice diameter. | 
    
|---|---|
| AbstractList | •Heat transfer performance of close-loop R410A spray cooling was first studied.•CHF and HTC first presented an increase and then a decrease with spray distance.•Appropriate nozzle diameter of 0.56 mm dictated a superior cooling performance.•CHF of 264 W/cm2 was achieved while surface temperature was below 30 °C at 25 mm.
Flash spray cooling has been subject to increased attention because of its high heat dissipation capacity at low surface temperature in the application of high power technologies. In this study, experiment was conducted to study the effects of spray distance and nozzle diameter on heat transfer performance in a closed-loop R410A flash spray cooling system for the first time. Five spray distance from 10 mm to 30 mm and three nozzles with same internal structure but different diameters of 0.51, 0.56 and 0.69 mm were employed. The experiment results indicated the critical heat flux (CHF) value firstly increased and then deceased with the increase of spray distance, which is consistent with previous research of spray cooling with FC-72 and FC-87. The highest CHF value reached 264 W/cm2 while maintaining surface temperature below 30 °C and heat transfer coefficient (HTC) was about 210 kW/(m2·K) at 25 mm, which were 60% higher than those at 10 mm spray distance. The nozzle with medium orifice diameter of 0.56 mm showed a superior cooling performance, instead of larger nozzle with higher refrigerant flow rate. Therefore, there existed a counterbalance between the mass flow and outlet velocity in determining the optimum nozzle orifice diameter. Flash spray cooling has been subject to increased attention because of its high heat dissipation capacity at low surface temperature in the application of high power technologies. In this study, experiment was conducted to study the effects of spray distance and nozzle diameter on heat transfer performance in a closed-loop R410A flash spray cooling system for the first time. Five spray distance from 10 mm to 30 mm and three nozzles with same internal structure but different diameters of 0.51, 0.56 and 0.69 mm were employed. The experiment results indicated the critical heat flux (CHF) value firstly increased and then deceased with the increase of spray distance, which is consistent with previous research of spray cooling with FC-72 and FC-87. The highest CHF value reached 264 W/cm2 while maintaining surface temperature below 30 °C and heat transfer coefficient (HTC) was about 210 kW/(m2·K) at 25 mm, which were 60% higher than those at 10 mm spray distance. The nozzle with medium orifice diameter of 0.56 mm showed a superior cooling performance, instead of larger nozzle with higher refrigerant flow rate. Therefore, there existed a counterbalance between the mass flow and outlet velocity in determining the optimum nozzle orifice diameter.  | 
    
| ArticleNumber | 113966 | 
    
| Author | Chen, Bin Zhou, Zhi-Fu Lin, Yan-Ke Tang, Hong-Lin Fang, Yu  | 
    
| Author_xml | – sequence: 1 givenname: Yan-Ke surname: Lin fullname: Lin, Yan-Ke – sequence: 2 givenname: Zhi-Fu surname: Zhou fullname: Zhou, Zhi-Fu email: zfzhou@mail.xjtu.edu.cn – sequence: 3 givenname: Yu surname: Fang fullname: Fang, Yu – sequence: 4 givenname: Hong-Lin surname: Tang fullname: Tang, Hong-Lin – sequence: 5 givenname: Bin orcidid: 0000-0001-6821-2008 surname: Chen fullname: Chen, Bin  | 
    
| BookMark | eNqNkM1q3TAQRkVJoUnadxC0W99oLFm2oZs0ND8QKJRmrcyVR4kuvpIqOYHk6avU3TSrrGYW33eGOUfsIMRAjH0BsQEB-mS3wZTm5Z7yHmcKd5tWwLgBkKPW79ghDL1sOi30Qd1lNzZKAnxgR6XshIB26NUhu70kXPiSMRRHmSfKLlZasMQxTDymxe_9My4-Bh4dR27nWKiZY0z8pwJxyt2M5Z7TI6aY11xJGZ-4jXH24e4je-9wLvTp3zxmN-fff51dNtc_Lq7OTq8bK7thaUYkue17AV3fDbZXgjRKIOVaFLAlHLeDowmo1YACtRDdpCbdOTtNoEYn5TH7vHJTjr8fqCxmFx9yqCdN2-pK7pXqa-rrmrI5lpLJmZT9HvOTAWFenJqd-d-peXFqVqe1_u1V3frl79PVoJ_fCjlfIVR1PHrKplhP1fjkM9nFTNG_DfQHK1aiOg | 
    
| CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2020_116253 crossref_primary_10_3390_en16010403 crossref_primary_10_1016_j_applthermaleng_2023_121328 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121041 crossref_primary_10_1088_1742_6596_1626_1_012122 crossref_primary_10_1016_j_egyr_2022_10_255 crossref_primary_10_1088_1755_1315_701_1_012061 crossref_primary_10_1016_j_dwt_2024_100203 crossref_primary_10_1016_j_energy_2023_129224 crossref_primary_10_1016_j_molliq_2023_122044 crossref_primary_10_1016_j_applthermaleng_2020_115343 crossref_primary_10_1016_j_applthermaleng_2020_115640 crossref_primary_10_1016_j_applthermaleng_2022_119322 crossref_primary_10_1016_j_applthermaleng_2024_122913 crossref_primary_10_1016_j_applthermaleng_2020_116172 crossref_primary_10_1016_j_prime_2021_100009 crossref_primary_10_1080_03019233_2020_1732649 crossref_primary_10_1016_j_tsep_2022_101332 crossref_primary_10_1016_j_applthermaleng_2021_117109 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121787 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121546 crossref_primary_10_1016_j_ijheatfluidflow_2024_109355 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120159 crossref_primary_10_1016_j_sna_2021_113135 crossref_primary_10_1016_j_applthermaleng_2023_119978 crossref_primary_10_3390_en12244618 crossref_primary_10_1016_j_desal_2025_118572 crossref_primary_10_3390_en15228547 crossref_primary_10_1016_j_applthermaleng_2021_117217 crossref_primary_10_1016_j_applthermaleng_2022_118360 crossref_primary_10_3390_en15239219 crossref_primary_10_1007_s11630_020_1395_y crossref_primary_10_1016_j_egyr_2025_01_068 crossref_primary_10_1016_j_dwt_2024_100814 crossref_primary_10_1016_j_energy_2021_120575 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120740 crossref_primary_10_1039_D2NJ02505A crossref_primary_10_1007_s00231_023_03349_9 crossref_primary_10_1016_j_icheatmasstransfer_2023_106630 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123216 crossref_primary_10_1016_j_ijthermalsci_2020_106530 crossref_primary_10_1016_j_applthermaleng_2023_121196 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124768 crossref_primary_10_1016_j_renene_2022_06_058  | 
    
| Cites_doi | 10.1016/S0017-9310(03)00217-5 10.1007/s00231-010-0631-5 10.1016/j.ijheatmasstransfer.2019.03.042 10.1016/j.ijthermalsci.2012.12.015 10.1115/1.2953237 10.1016/j.ijheatmasstransfer.2005.02.013 10.1109/6144.926375 10.1016/j.applthermaleng.2012.06.029 10.1016/j.applthermaleng.2015.01.055 10.1016/j.applthermaleng.2016.05.096 10.1016/j.applthermaleng.2017.11.142 10.1016/j.expthermflusci.2014.09.006 10.1016/j.ijheatmasstransfer.2014.04.019 10.1016/j.cja.2016.04.005 10.1016/j.ijheatmasstransfer.2019.05.063 10.1080/01457630601117799 10.1115/1.2911248 10.1016/j.applthermaleng.2012.08.057 10.1007/s00231-010-0632-4 10.1115/1.2822685 10.1016/j.ijheatmasstransfer.2012.04.021 10.1016/j.rser.2015.11.014 10.1016/j.ijheatmasstransfer.2014.04.010 10.1016/j.applthermaleng.2016.04.004 10.1016/j.expthermflusci.2014.10.026 10.1016/j.microrel.2014.07.069 10.1038/nmat4194 10.1080/01457630601023245 10.1016/j.ijheatmasstransfer.2016.11.035 10.1016/j.ijheatmasstransfer.2017.06.029 10.1016/j.ijthermalsci.2018.07.018 10.1016/j.ijheatfluidflow.2006.09.003 10.1016/j.applthermaleng.2016.08.160 10.1016/j.ijheatmasstransfer.2014.01.077 10.1016/j.expthermflusci.2015.03.015 10.1016/j.powtec.2012.07.002 10.1016/j.applthermaleng.2013.05.047 10.1016/j.applthermaleng.2018.10.054 10.1016/j.expthermflusci.2010.02.010 10.1016/j.expthermflusci.2016.11.016  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Aug 2019  | 
    
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2019  | 
    
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7  | 
    
| DOI | 10.1016/j.applthermaleng.2019.113966 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-5606 | 
    
| ExternalDocumentID | 10_1016_j_applthermaleng_2019_113966 S1359431118376725  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS FR3 KR7 SSH  | 
    
| ID | FETCH-LOGICAL-c358t-9ae3b77015758c740e6a31e4f2a01bea9b8fed1e261a0a6005d4d65fcdd149f33 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1359-4311 | 
    
| IngestDate | Sun Jul 13 05:17:41 EDT 2025 Wed Oct 29 21:21:40 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Fri Feb 23 02:33:32 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Nozzle diameter R410A Spray distance Flash spray cooling Electronics thermal management  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c358t-9ae3b77015758c740e6a31e4f2a01bea9b8fed1e261a0a6005d4d65fcdd149f33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-6821-2008 | 
    
| PQID | 2267707447 | 
    
| PQPubID | 2045278 | 
    
| ParticipantIDs | proquest_journals_2267707447 crossref_primary_10_1016_j_applthermaleng_2019_113966 crossref_citationtrail_10_1016_j_applthermaleng_2019_113966 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2019_113966  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2019 2019-08-00 20190801  | 
    
| PublicationDateYYYYMMDD | 2019-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2019 text: August 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Applied thermal engineering | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Zhang, Li, Jiang (b0175) 2013; 51 Mudawar (b0030) 2001; 24 Cheng, Zhang, Chen, Hu (b0045) 2016; 55 Shedd, Pautsch (b0060) 2005; 48 Yang, Wang, Zhu, Liao, Ding, Chen (b0100) 2013; 50 Bostanci, He, Chow (b0110) 2017; 107 Zhou, Lin, Tang, Fang, Chen, Wang (b0010) 2019; 139 Cheng, Liu, Zhao, Fan (b0150) 2010; 46 Bostanci, Rini, Kizito, Singh, Seal, Chow (b0105) 2014; 75 Xie, Gan, Wong, Duan, Yu, Wu (b0145) 2014; 73 Zhou, Hu, Xin, Chen, Wang (b9000) 2019; 136 Liu, Cai, Yin, Luo, Jia, Gao (b0090) 2018; 133 Xie, Gan, Duan, Wong, Yu, Zhao (b0155) 2013; 68 Andresen, Liserre (b0005) 2014; 54 Lin, Ponnappan (b0085) 2003; 46 Zhifu, Guoxiang, Bin, Liejin, Yueshe (b0200) 2013; 240 Zhifu, Weitao, Bin, Guoxiang, Liejin (b0205) 2012; 55 Smakulski, Pietrowicz (b0020) 2016; 104 Chen, Liu, Liu, Hou (b0120) 2015; 66 Wang, Liu, Liu, Xu, Chen (b0065) 2010; 34 Hou, Liu, Su, Qian, Liu, Liu (b0130) 2015; 61 Zhou, Wang, Chen, Yang, Wang (b0140) 2016; 102 Li, Tie, Xuan (b0015) 2015; 60 Cheng, Zhang, Jiang, Yang, Hu, Chen (b0170) 2015; 80 Zhou, Li, Chen, Wang (b0190) 2017; 110 Pais, Chow, Mahefkey (b0080) 1992; 114 Michel, Agostini, Fabbri, Park, Wojtan, Thome (b0025) 2007; 28 Shedd (b0040) 2007; 28 Zhang, Li, Wang, Liu, Zhong (b0180) 2016; 29 Chen, Tan, Lin, Chow, Griffin, Rini (b0185) 2008; 130 Zhou, Chen, Wang, Wang (b0195) 2017; 82 Zhang, Jiang, Ouyang, Chen, Christopher (b0070) 2014; 76 Mudawar, Estes (b0075) 1996; 118 Liang, Mudawar (b0160) 2017; 115 Xie, Tan, Duan, Ranjith, Wong, Toh, Choo, Chan (b0115) 2013; 59 Zhou, Hu, Xin, Chen, Wang (b0165) 2019; 136 Kim (b0050) 2007; 28 Bostanci, Altalidi, Nasrazadani (b0125) 2018; 131 Cho, Goodson (b0035) 2015; 14 Liu, Liu, Xue, Chen, Hou (b0135) 2018 Zhao, Cheng, Liu, Fan (b0055) 2010; 46 Liu, Cai, Jia, Gao, Yin, Chen (b0095) 2019; 146 Bostanci (10.1016/j.applthermaleng.2019.113966_b0110) 2017; 107 Chen (10.1016/j.applthermaleng.2019.113966_b0120) 2015; 66 Zhou (10.1016/j.applthermaleng.2019.113966_b0190) 2017; 110 Mudawar (10.1016/j.applthermaleng.2019.113966_b0030) 2001; 24 Zhou (10.1016/j.applthermaleng.2019.113966_b0140) 2016; 102 Zhou (10.1016/j.applthermaleng.2019.113966_b9000) 2019; 136 Xie (10.1016/j.applthermaleng.2019.113966_b0145) 2014; 73 Liu (10.1016/j.applthermaleng.2019.113966_b0090) 2018; 133 Wang (10.1016/j.applthermaleng.2019.113966_b0065) 2010; 34 Andresen (10.1016/j.applthermaleng.2019.113966_b0005) 2014; 54 Cheng (10.1016/j.applthermaleng.2019.113966_b0045) 2016; 55 Zhifu (10.1016/j.applthermaleng.2019.113966_b0205) 2012; 55 Zhang (10.1016/j.applthermaleng.2019.113966_b0180) 2016; 29 Lin (10.1016/j.applthermaleng.2019.113966_b0085) 2003; 46 Shedd (10.1016/j.applthermaleng.2019.113966_b0040) 2007; 28 Shedd (10.1016/j.applthermaleng.2019.113966_b0060) 2005; 48 Liu (10.1016/j.applthermaleng.2019.113966_b0095) 2019; 146 Michel (10.1016/j.applthermaleng.2019.113966_b0025) 2007; 28 Zhou (10.1016/j.applthermaleng.2019.113966_b0195) 2017; 82 Cho (10.1016/j.applthermaleng.2019.113966_b0035) 2015; 14 Xie (10.1016/j.applthermaleng.2019.113966_b0115) 2013; 59 Zhou (10.1016/j.applthermaleng.2019.113966_b0010) 2019; 139 Cheng (10.1016/j.applthermaleng.2019.113966_b0170) 2015; 80 Zhao (10.1016/j.applthermaleng.2019.113966_b0055) 2010; 46 Cheng (10.1016/j.applthermaleng.2019.113966_b0150) 2010; 46 Bostanci (10.1016/j.applthermaleng.2019.113966_b0125) 2018; 131 Yang (10.1016/j.applthermaleng.2019.113966_b0100) 2013; 50 Zhang (10.1016/j.applthermaleng.2019.113966_b0070) 2014; 76 Bostanci (10.1016/j.applthermaleng.2019.113966_b0105) 2014; 75 Chen (10.1016/j.applthermaleng.2019.113966_b0185) 2008; 130 Hou (10.1016/j.applthermaleng.2019.113966_b0130) 2015; 61 Liu (10.1016/j.applthermaleng.2019.113966_b0135) 2018 Zhang (10.1016/j.applthermaleng.2019.113966_b0175) 2013; 51 Kim (10.1016/j.applthermaleng.2019.113966_b0050) 2007; 28 Smakulski (10.1016/j.applthermaleng.2019.113966_b0020) 2016; 104 Pais (10.1016/j.applthermaleng.2019.113966_b0080) 1992; 114 Liang (10.1016/j.applthermaleng.2019.113966_b0160) 2017; 115 Zhifu (10.1016/j.applthermaleng.2019.113966_b0200) 2013; 240 Mudawar (10.1016/j.applthermaleng.2019.113966_b0075) 1996; 118 Li (10.1016/j.applthermaleng.2019.113966_b0015) 2015; 60 Xie (10.1016/j.applthermaleng.2019.113966_b0155) 2013; 68 Zhou (10.1016/j.applthermaleng.2019.113966_b0165) 2019; 136  | 
    
| References_xml | – volume: 82 start-page: 189 year: 2017 end-page: 197 ident: b0195 article-title: Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens publication-title: Exp. Therm Fluid Sci. – volume: 14 start-page: 136 year: 2015 end-page: 137 ident: b0035 article-title: Thermal transport: cool electronics publication-title: Nat. Mater. – volume: 46 start-page: 821 year: 2010 end-page: 829 ident: b0055 article-title: Study on heat transfer performance of spray cooling: model and analysis publication-title: Heat Mass Transf. – volume: 107 start-page: 45 year: 2017 end-page: 52 ident: b0110 article-title: Spray cooling with ammonium hydroxide publication-title: Int. J. Heat Mass Transf. – volume: 75 start-page: 718 year: 2014 end-page: 725 ident: b0105 article-title: High heat flux spray cooling with ammonia: investigation of enhanced surfaces for HTC publication-title: Int. J. Heat Mass Transf. – volume: 114 start-page: 211 year: 1992 end-page: 219 ident: b0080 article-title: Surface roughness and its effects on the heat transfer mechanism in spray cooling publication-title: J. Heat Transf. – volume: 24 start-page: 122 year: 2001 end-page: 141 ident: b0030 article-title: Assessment of high-heat-flux thermal management schemes publication-title: IEEE Trans. Compon. Packag. Technol. – volume: 115 start-page: 1174 year: 2017 end-page: 1205 ident: b0160 article-title: Review of spray cooling–Part 1: Single-phase and nucleate boiling regimes, and critical heat flux publication-title: Int. J. Heat Mass Transf. – volume: 146 start-page: 921 year: 2019 end-page: 930 ident: b0095 article-title: Experimental investigation on spray cooling with low-alcohol additives publication-title: Appl. Therm. Eng. – volume: 60 start-page: 182 year: 2015 end-page: 187 ident: b0015 article-title: Investigation on heat transfer characteristics of R134a spray cooling publication-title: Exp. Therm Fluid Sci. – volume: 133 start-page: 62 year: 2018 end-page: 68 ident: b0090 article-title: Experimental investigation on heat transfer of spray cooling with the mixture of ethanol and water publication-title: Int. J. Therm. Sci. – volume: 51 start-page: 102 year: 2013 end-page: 111 ident: b0175 article-title: Experimental investigation of spray cooling on flat and enhanced surfaces publication-title: Appl. Therm. Eng. – volume: 66 start-page: 206 year: 2015 end-page: 212 ident: b0120 article-title: An experimental comparison of heat transfer characteristic between R134-a and R22 in spray cooling publication-title: Exp. Therm Fluid Sci. – volume: 131 start-page: 150 year: 2018 end-page: 158 ident: b0125 article-title: Two-phase spray cooling with HFC-134a and HFO-1234yf on practical enhanced surfaces publication-title: Appl. Therm. Eng. – volume: 28 start-page: 87 year: 2007 end-page: 92 ident: b0040 article-title: Next generation spray cooling: high heat flux management in compact spaces publication-title: Heat Transfer Eng. – volume: 48 start-page: 3176 year: 2005 end-page: 3184 ident: b0060 article-title: Spray impingement cooling with single-and multiple-nozzle arrays. Part II: Visualization and empirical models publication-title: Int. J. Heat Mass Transf. – volume: 76 start-page: 366 year: 2014 end-page: 375 ident: b0070 article-title: Experimental investigation of spray cooling on smooth and micro-structured surfaces publication-title: Int. J. Heat Mass Transf. – volume: 80 start-page: 160 year: 2015 end-page: 167 ident: b0170 article-title: Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime publication-title: Appl. Therm. Eng. – volume: 73 start-page: 130 year: 2014 end-page: 140 ident: b0145 article-title: Thermal effects on a pressure swirl nozzle in spray cooling publication-title: Int. J. Heat Mass Transf. – volume: 130 start-page: 101501 year: 2008 end-page: 101509 ident: b0185 article-title: Droplet and bubble dynamics in saturated FC-72 spray cooling on a smooth surface publication-title: J. Heat Transf. – volume: 118 start-page: 672 year: 1996 end-page: 679 ident: b0075 article-title: Optimizing and predicting CHF in spray cooling of a square surface publication-title: J. Heat Transf. – volume: 61 start-page: 194 year: 2015 end-page: 200 ident: b0130 article-title: Experimental study on the characteristics of a closed loop R134-a spray cooling publication-title: Exp. Therm Fluid Sci. – volume: 136 start-page: 664 year: 2019 end-page: 673 ident: b9000 article-title: Experimental and theoretical studies on the droplet temperature behavior of R407C two-phase flashing spray publication-title: Int. J. Heat Mass Transf. – volume: 240 start-page: 95 year: 2013 end-page: 102 ident: b0200 article-title: Evaluation of evaporation models for single moving droplet with a high evaporation rate publication-title: Powder Technol. – volume: 54 start-page: 1935 year: 2014 end-page: 1939 ident: b0005 article-title: Impact of active thermal management on power electronics design publication-title: Microelectron. Reliab. – volume: 46 start-page: 911 year: 2010 end-page: 921 ident: b0150 article-title: Experimental investigation of parameters effect on heat transfer of spray cooling publication-title: Heat Mass Transf. – volume: 59 start-page: 464 year: 2013 end-page: 472 ident: b0115 article-title: Study of heat transfer enhancement for structured surfaces in spray cooling publication-title: Appl. Therm. Eng. – volume: 104 start-page: 636 year: 2016 end-page: 646 ident: b0020 article-title: A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques publication-title: Appl. Therm. Eng. – volume: 29 start-page: 630 year: 2016 end-page: 638 ident: b0180 article-title: Ground experimental investigations into an ejected spray cooling system for space closed-loop application publication-title: Chin. J. Aeronaut. – volume: 46 start-page: 3737 year: 2003 end-page: 3746 ident: b0085 article-title: Heat transfer characteristics of spray cooling in a closed loop publication-title: Int. J. Heat Mass Transf. – volume: 139 start-page: 1047 year: 2019 end-page: 1055 ident: b0010 article-title: Heat transfer enhancement due to surface modification in the close-loop R410A flash evaporation spray cooling publication-title: Int. J. Heat Mass Transf. – volume: 50 start-page: 245 year: 2013 end-page: 250 ident: b0100 article-title: Heat transfer enhancement of spray cooling with ammonia by microcavity surfaces publication-title: Appl. Therm. Eng. – volume: 55 start-page: 614 year: 2016 end-page: 628 ident: b0045 article-title: Spray cooling and flash evaporation cooling: the current development and application publication-title: Renew. Sustain. Energy Rev. – volume: 34 start-page: 933 year: 2010 end-page: 942 ident: b0065 article-title: Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime publication-title: Exp. Therm Fluid Sci. – volume: 102 start-page: 813 year: 2016 end-page: 821 ident: b0140 article-title: Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures publication-title: Appl. Therm. Eng. – volume: 68 start-page: 94 year: 2013 end-page: 102 ident: b0155 article-title: Characterization of spray atomization and heat transfer of pressure swirl nozzles publication-title: Int. J. Therm. Sci. – volume: 136 start-page: 664 year: 2019 end-page: 673 ident: b0165 article-title: Experimental and theoretical studies on the droplet temperature behavior of R407C two-phase flashing spray publication-title: Int. J. Heat Mass Transf. – volume: 110 start-page: 162 year: 2017 end-page: 170 ident: b0190 article-title: A 3rd-order polynomial temperature profile model for the heating and evaporation of moving droplets publication-title: Appl. Therm. Eng. – volume: 55 start-page: 4460 year: 2012 end-page: 4468 ident: b0205 article-title: An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray publication-title: Int. J. Heat Mass Transf. – volume: 28 start-page: 753 year: 2007 end-page: 767 ident: b0050 article-title: Spray cooling heat transfer: the state of the art publication-title: Int. J. Heat Fluid Flow – volume: 28 start-page: 258 year: 2007 end-page: 281 ident: b0025 article-title: State-of-the-art of high heat flux cooling technologies publication-title: Heat Transfer Eng. – year: 2018 ident: b0135 article-title: Heat transfer optimization of R134a phase change spray cooling in a closed loop system publication-title: Exp. Therm. Fluid. – volume: 46 start-page: 3737 year: 2003 ident: 10.1016/j.applthermaleng.2019.113966_b0085 article-title: Heat transfer characteristics of spray cooling in a closed loop publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00217-5 – volume: 46 start-page: 911 year: 2010 ident: 10.1016/j.applthermaleng.2019.113966_b0150 article-title: Experimental investigation of parameters effect on heat transfer of spray cooling publication-title: Heat Mass Transf. doi: 10.1007/s00231-010-0631-5 – volume: 136 start-page: 664 year: 2019 ident: 10.1016/j.applthermaleng.2019.113966_b9000 article-title: Experimental and theoretical studies on the droplet temperature behavior of R407C two-phase flashing spray publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.03.042 – volume: 68 start-page: 94 year: 2013 ident: 10.1016/j.applthermaleng.2019.113966_b0155 article-title: Characterization of spray atomization and heat transfer of pressure swirl nozzles publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2012.12.015 – volume: 130 start-page: 101501 year: 2008 ident: 10.1016/j.applthermaleng.2019.113966_b0185 article-title: Droplet and bubble dynamics in saturated FC-72 spray cooling on a smooth surface publication-title: J. Heat Transf. doi: 10.1115/1.2953237 – volume: 48 start-page: 3176 year: 2005 ident: 10.1016/j.applthermaleng.2019.113966_b0060 article-title: Spray impingement cooling with single-and multiple-nozzle arrays. Part II: Visualization and empirical models publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.02.013 – volume: 24 start-page: 122 year: 2001 ident: 10.1016/j.applthermaleng.2019.113966_b0030 article-title: Assessment of high-heat-flux thermal management schemes publication-title: IEEE Trans. Compon. Packag. Technol. doi: 10.1109/6144.926375 – volume: 50 start-page: 245 year: 2013 ident: 10.1016/j.applthermaleng.2019.113966_b0100 article-title: Heat transfer enhancement of spray cooling with ammonia by microcavity surfaces publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.06.029 – volume: 80 start-page: 160 year: 2015 ident: 10.1016/j.applthermaleng.2019.113966_b0170 article-title: Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.01.055 – volume: 104 start-page: 636 year: 2016 ident: 10.1016/j.applthermaleng.2019.113966_b0020 article-title: A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.05.096 – volume: 131 start-page: 150 year: 2018 ident: 10.1016/j.applthermaleng.2019.113966_b0125 article-title: Two-phase spray cooling with HFC-134a and HFO-1234yf on practical enhanced surfaces publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.11.142 – year: 2018 ident: 10.1016/j.applthermaleng.2019.113966_b0135 article-title: Heat transfer optimization of R134a phase change spray cooling in a closed loop system publication-title: Exp. Therm. Fluid. – volume: 60 start-page: 182 year: 2015 ident: 10.1016/j.applthermaleng.2019.113966_b0015 article-title: Investigation on heat transfer characteristics of R134a spray cooling publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2014.09.006 – volume: 75 start-page: 718 year: 2014 ident: 10.1016/j.applthermaleng.2019.113966_b0105 article-title: High heat flux spray cooling with ammonia: investigation of enhanced surfaces for HTC publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.04.019 – volume: 29 start-page: 630 year: 2016 ident: 10.1016/j.applthermaleng.2019.113966_b0180 article-title: Ground experimental investigations into an ejected spray cooling system for space closed-loop application publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2016.04.005 – volume: 139 start-page: 1047 year: 2019 ident: 10.1016/j.applthermaleng.2019.113966_b0010 article-title: Heat transfer enhancement due to surface modification in the close-loop R410A flash evaporation spray cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.05.063 – volume: 28 start-page: 258 year: 2007 ident: 10.1016/j.applthermaleng.2019.113966_b0025 article-title: State-of-the-art of high heat flux cooling technologies publication-title: Heat Transfer Eng. doi: 10.1080/01457630601117799 – volume: 114 start-page: 211 year: 1992 ident: 10.1016/j.applthermaleng.2019.113966_b0080 article-title: Surface roughness and its effects on the heat transfer mechanism in spray cooling publication-title: J. Heat Transf. doi: 10.1115/1.2911248 – volume: 51 start-page: 102 year: 2013 ident: 10.1016/j.applthermaleng.2019.113966_b0175 article-title: Experimental investigation of spray cooling on flat and enhanced surfaces publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.08.057 – volume: 46 start-page: 821 year: 2010 ident: 10.1016/j.applthermaleng.2019.113966_b0055 article-title: Study on heat transfer performance of spray cooling: model and analysis publication-title: Heat Mass Transf. doi: 10.1007/s00231-010-0632-4 – volume: 118 start-page: 672 year: 1996 ident: 10.1016/j.applthermaleng.2019.113966_b0075 article-title: Optimizing and predicting CHF in spray cooling of a square surface publication-title: J. Heat Transf. doi: 10.1115/1.2822685 – volume: 55 start-page: 4460 year: 2012 ident: 10.1016/j.applthermaleng.2019.113966_b0205 article-title: An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.04.021 – volume: 55 start-page: 614 year: 2016 ident: 10.1016/j.applthermaleng.2019.113966_b0045 article-title: Spray cooling and flash evaporation cooling: the current development and application publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.014 – volume: 76 start-page: 366 year: 2014 ident: 10.1016/j.applthermaleng.2019.113966_b0070 article-title: Experimental investigation of spray cooling on smooth and micro-structured surfaces publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.04.010 – volume: 102 start-page: 813 year: 2016 ident: 10.1016/j.applthermaleng.2019.113966_b0140 article-title: Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.04.004 – volume: 61 start-page: 194 year: 2015 ident: 10.1016/j.applthermaleng.2019.113966_b0130 article-title: Experimental study on the characteristics of a closed loop R134-a spray cooling publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2014.10.026 – volume: 54 start-page: 1935 year: 2014 ident: 10.1016/j.applthermaleng.2019.113966_b0005 article-title: Impact of active thermal management on power electronics design publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2014.07.069 – volume: 14 start-page: 136 year: 2015 ident: 10.1016/j.applthermaleng.2019.113966_b0035 article-title: Thermal transport: cool electronics publication-title: Nat. Mater. doi: 10.1038/nmat4194 – volume: 28 start-page: 87 year: 2007 ident: 10.1016/j.applthermaleng.2019.113966_b0040 article-title: Next generation spray cooling: high heat flux management in compact spaces publication-title: Heat Transfer Eng. doi: 10.1080/01457630601023245 – volume: 136 start-page: 664 year: 2019 ident: 10.1016/j.applthermaleng.2019.113966_b0165 article-title: Experimental and theoretical studies on the droplet temperature behavior of R407C two-phase flashing spray publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.03.042 – volume: 107 start-page: 45 year: 2017 ident: 10.1016/j.applthermaleng.2019.113966_b0110 article-title: Spray cooling with ammonium hydroxide publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.11.035 – volume: 115 start-page: 1174 year: 2017 ident: 10.1016/j.applthermaleng.2019.113966_b0160 article-title: Review of spray cooling–Part 1: Single-phase and nucleate boiling regimes, and critical heat flux publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.06.029 – volume: 133 start-page: 62 year: 2018 ident: 10.1016/j.applthermaleng.2019.113966_b0090 article-title: Experimental investigation on heat transfer of spray cooling with the mixture of ethanol and water publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2018.07.018 – volume: 28 start-page: 753 year: 2007 ident: 10.1016/j.applthermaleng.2019.113966_b0050 article-title: Spray cooling heat transfer: the state of the art publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2006.09.003 – volume: 110 start-page: 162 year: 2017 ident: 10.1016/j.applthermaleng.2019.113966_b0190 article-title: A 3rd-order polynomial temperature profile model for the heating and evaporation of moving droplets publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.08.160 – volume: 73 start-page: 130 year: 2014 ident: 10.1016/j.applthermaleng.2019.113966_b0145 article-title: Thermal effects on a pressure swirl nozzle in spray cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.01.077 – volume: 66 start-page: 206 year: 2015 ident: 10.1016/j.applthermaleng.2019.113966_b0120 article-title: An experimental comparison of heat transfer characteristic between R134-a and R22 in spray cooling publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2015.03.015 – volume: 240 start-page: 95 year: 2013 ident: 10.1016/j.applthermaleng.2019.113966_b0200 article-title: Evaluation of evaporation models for single moving droplet with a high evaporation rate publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.07.002 – volume: 59 start-page: 464 year: 2013 ident: 10.1016/j.applthermaleng.2019.113966_b0115 article-title: Study of heat transfer enhancement for structured surfaces in spray cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.05.047 – volume: 146 start-page: 921 year: 2019 ident: 10.1016/j.applthermaleng.2019.113966_b0095 article-title: Experimental investigation on spray cooling with low-alcohol additives publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.054 – volume: 34 start-page: 933 year: 2010 ident: 10.1016/j.applthermaleng.2019.113966_b0065 article-title: Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2010.02.010 – volume: 82 start-page: 189 year: 2017 ident: 10.1016/j.applthermaleng.2019.113966_b0195 article-title: Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2016.11.016  | 
    
| SSID | ssj0012874 | 
    
| Score | 2.4881015 | 
    
| Snippet | •Heat transfer performance of close-loop R410A spray cooling was first studied.•CHF and HTC first presented an increase and then a decrease with spray... Flash spray cooling has been subject to increased attention because of its high heat dissipation capacity at low surface temperature in the application of high...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 113966 | 
    
| SubjectTerms | Cooling Cooling rate Cooling systems Electronics thermal management Evaporative cooling Flash spray cooling Flow velocity Heat conductivity Heat flux Heat transfer Heat transfer coefficients Mass flow Nozzle diameter Nozzles Optimization Orifices R410A Refrigerants Spray cooling Spray distance Surface temperature  | 
    
| Title | Heat transfer performance and optimization of a close-loop R410A flash evaporation spray cooling | 
    
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2019.113966 https://www.proquest.com/docview/2267707447  | 
    
| Volume | 159 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AKRWK dateStart: 19960101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kguhBfOKz7KHX2E2TbbJ4kCJKVfTgA3pbJ9mND2oT2ip48bc7k2x84UHwmJBNwmTyzTfJNzOMtSJk0SR-8jomkpigZMIDEYOH0SFVQZzFSUIf9M8vuv2b8HQgBzPssK6FIVmlw_4K00u0dnvazprt4uGhfeUHUmH4Q4ZMHUk6VGgehhFNMdh7-5B5-NTPvUy6pPLo6DnW-tR40U9i4llPQGNLSOilaMiJKnsm_hqmfgB2GYWOl9iio4-8V93hMpuxoxW28KWp4Cq77SO88mlJSO2YF5-VARxGhueIEU-u-JLnGQeeDvOJ9YZ5XvDL0Bc9niGjvuf2BQrnH3xSjOGVpzlN-LlbYzfHR9eHfc_NUfDSQMZTT4ENkijCwI_JQRqFwnYh8G2YdUD4iQWVxJk1vsVkCgQgA5ImNF2ZpcZg_pQFwTprjPKR3WA8VMJIGQHiAPIooQBEgpwvMD5YieRmk-3XZtOpazJOsy6GulaTPervRtdkdF0ZfZPJj9VF1Wzjj-sO6iekvzmPxrjwxzPs1A9Wu5d4opGZotUidKqtf19gm83TViUd3GGN6fjZ7iKdmSbN0l-bbLZ3cta_eAcBDvba | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BlSgcEI9W5VHqA9ewzsZex-oBIQTatsCBh8TNTGKHbrVsot0FiUt_O-PE4VH1gMQ1iZNoPPnmG-fzDMCOIhbtxU9R1ypJCUrBI-QpRhQdcp2kRZplfkH_5LTXvxQ_r-TVDBy0e2G8rDJgf4PpNVqHI51gzU41GHTO40RqCn_EkH1Fkq6chQ9CdpXPwHb_Puk8Yl_Qvc66pI785fOw8yzy8n-JPdG6Rd-3xCu9tO9youuiif-NU_8gdh2GjpZhKfBHtt-84grMuNEqLL6oKrgG133CVzatGakbs-p5awDDkWUlgcRt2H3JyoIhy4flxEXDsqzYmYj5PiuIUv9m7h6r4CBsUo3xgeWlb_Fz8wkujw4vDvpRaKQQ5YlMp5FGl2RKUeSn7CBXgrseJrETRRd5nDnUWVo4GzvKppAjUSBphe3JIreWEqgiST7D3KgcuS_AhOZWSoUEBESkuEbkGZG-xMboJLGbdfjems3kocq4b3YxNK2c7I95bXTjjW4ao6-DfBpdNdU23jhur50h88p7DAWGN95hq51YE77iiSFqSlZTQqiNdz_gG3zsX5wcm-Mfp782YcGfaXSEWzA3Hd-5r8Rtptl27buPso74bw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+performance+and+optimization+of+a+close-loop+R410A+flash+evaporation+spray+cooling&rft.jtitle=Applied+thermal+engineering&rft.au=Lin%2C+Yan-Ke&rft.au=Zhou%2C+Zhi-Fu&rft.au=Fang%2C+Yu&rft.au=Tang%2C+Hong-Lin&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=159&rft_id=info:doi/10.1016%2Fj.applthermaleng.2019.113966&rft.externalDocID=S1359431118376725 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |