Bayesian baseline-category logit random effects models for longitudinal nominal data
Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial corre...
Saved in:
| Published in | Communications for statistical applications and methods Vol. 27; no. 2; pp. 201 - 210 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
한국통계학회
01.03.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2287-7843 2383-4757 2383-4757 |
| DOI | 10.29220/CSAM.2020.27.2.201 |
Cover
| Abstract | Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project. KCI Citation Count: 0 |
|---|---|
| AbstractList | Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project. KCI Citation Count: 0 |
| Author | Jiyeong Kim Keunbaik Lee |
| Author_xml | – sequence: 1 fullname: Jiyeong Kim – sequence: 2 fullname: Keunbaik Lee |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002575986$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNo9kMFOwzAQRC1UJErpF3DJhQOHFHvtxM6xlAKVCpWgnK1NYlehiV0lqVD_HtNWnGZW-2ZXmmsycN4ZQm4ZnUAGQB9mn9O3CVAIs5xAcOyCDIErHguZyEHwoGQsleBXZNx135RSlihJmRiS9SMeTFehi3LsTF05ExfYm41vD1HtN1UftehK30TGWlP0XdT40tRdZH0b9i4A-7JyWEfON0ctsccbcmmx7sz4rCPy9Txfz17j5eplMZsu44Inqo-zLAdIk9QKw5TNTcohz1KhBJUSFKPcQE6RpQVjjNssURy5odxyUDSRCviI3J_uutbqbVFpj9VRN15vWz39WC90lmaJyFRgxYndux0efrCu9a6tGmwPmlF9LFIXHTb6r0gNUkNwLMTuzi_2gTZlhf-x99XTnDFBUxbO_wJ7WHPc |
| CitedBy_id | crossref_primary_10_1002_sim_9106 crossref_primary_10_1080_00949655_2022_2092867 |
| ContentType | Journal Article |
| DBID | DBRKI TDB ADTOC UNPAY ACYCR |
| DOI | 10.29220/CSAM.2020.27.2.201 |
| DatabaseName | DBPIA - 디비피아 누리미디어 DBpia Unpaywall for CDI: Periodical Content Unpaywall Korean Citation Index |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2383-4757 |
| EndPage | 210 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_9695498 10.29220/csam.2020.27.2.201 NODE11406198 |
| GroupedDBID | 9ZL ALMA_UNASSIGNED_HOLDINGS ARCSS DBRKI JDI TDB TUS ADTOC AMVHM UNPAY .UV ACYCR HZB M~E |
| ID | FETCH-LOGICAL-c358t-99b22656f4e18fbe632b9648407728103e2b0a16c1113f9583a3e03f328057823 |
| IEDL.DBID | UNPAY |
| ISSN | 2287-7843 2383-4757 |
| IngestDate | Fri Nov 17 19:17:42 EST 2023 Tue Aug 19 17:19:12 EDT 2025 Sun Mar 09 07:50:55 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | high-dimensional positive-definiteness heterogeneous covariance matrix modified Cholesky decomposition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-99b22656f4e18fbe632b9648407728103e2b0a16c1113f9583a3e03f328057823 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2020.27.2.201 |
| PageCount | 10 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9695498 unpaywall_primary_10_29220_csam_2020_27_2_201 nurimedia_primary_NODE11406198 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Communications for statistical applications and methods |
| PublicationYear | 2020 |
| Publisher | 한국통계학회 |
| Publisher_xml | – name: 한국통계학회 |
| SSID | ssj0001587014 |
| Score | 2.1151247 |
| Snippet | Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using... |
| SourceID | nrf unpaywall nurimedia |
| SourceType | Open Website Open Access Repository Publisher |
| StartPage | 201 |
| SubjectTerms | 통계학 |
| Title | Bayesian baseline-category logit random effects models for longitudinal nominal data |
| URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11406198 http://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2020.27.2.201 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002575986 |
| UnpaywallVersion | publishedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Communications for Statistical Applications and Methods, 2020, 27(2), , pp.201-210 |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 2383-4757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001587014 issn: 2287-7843 databaseCode: AMVHM dateStart: 20140901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQ7qFcKFVB0MLKqnp1NrGT2Dlw2PKhbaXdIsEiOFlOYqNqIVmFRAh-fWeSsCrqCYmTHcVyEo-jeU-emUfId6PyEBNxWBA6ICgZd0xlkjOb5jLiaQKQG5OTZ_N4ugh_XUfXG2Qtd4QiGw_m3isrb1mN-_Uc51g4vjS5XuWurRoB__sRRjEnnPvj44vJDJgeh2vpYXIVsKFhHAE2H5DhYn4-uUGFOaAGTKo2jA7clGChjGRXhqibpX3sq1nA3RQVeKkPRYOl9sFe0G-KlXl6NHd3_7ihs4-kfEnm6aJPll5Tp172_H9tx3f6wm2y1SNWOum22CeyYYvP5PKHebKYf0nRDSJUZRhahekuFF-mpuAD8_Ke9vEitFXceaAAkeE-aiQ1OepxUcyKxhYjVXfI4uz08njKeoEGlolI1SxJUkBvUexCGyiX2ligdUPgjIDZVeALy1PfBHGGevYuiZQwwvrCCa58LKMvdsmgKAu7RyieHgKT4rkFG3GlTOq7RBjr20xKF0T75BvYQi-zPxoLYmN7W-plpQH2_9RJjKeVap-M1qbSq65ah57_PjkF0ge4BQewtf3WA4AGtaus0SwaV1lzqTn0gi9vHP-VbOJ1F6N2QAZ11dhDAC11OiLDyexqOhv1O_IvSN7mDQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBYhPayX_mAba7sWMXqVY0u2JR96yNqErpC0sAa6k5BtaZSkdnBtSvfX7z3bDRs9FXqSjIVs68m870PvvY-QU6PyEBNxWBA6ICgZd0xlkjOb5jLiaQKQG5OTZ_P4chFe3UV3A7KRO0KRjUfz4JWVt6xG_XqOciwcX5pcr3PXVo2A__0Mo5gTzv3R-c_xDJgeh2vpYXIVsKGtOAJsPiRbi_nN-BcqzAE1YFK1YXTgpgQLZSS7MkTdLO1j_5sF3E1RgZf6UDRYah_sBf2mWJvnJ7Na_eOGprukfEnm6aJPll5Tp17253Vtx3f6wj2y0yNWOu622D4Z2OIjuf1uni3mX1J0gwhVGYZWYboLxZepKfjAvHygfbwIbRV3HilAZLiPGklNjnpcFLOiscVI1U9kMZ3cnl-yXqCBZSJSNUuSFNBbFLvQBsqlNhZo3RA4I2B2FfjC8tQ3QZyhnr1LIiWMsL5wgisfy-iLz2RYlIX9QiieHgKT4rkFG3GlTOq7RBjr20xKF0QH5BvYQi-ze40FsbH9XeplpQH2_9BJjKeV6oCcbEyl1121Dj2_vpgA6QPcggPYxn6bAUCD2lXWaBaNq6y51Bx6weEbxx-RbbzuYtS-kmFdNfYYQEudnvQ78S8gJ-Rx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+baseline-category+logit+random+effects+models+for+longitudinal+nominal+data&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=%EA%B9%80%EC%A7%80%EC%98%81&rft.au=%EC%9D%B4%EA%B7%BC%EB%B0%B1&rft.date=2020-03-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%86%B5%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=2287-7843&rft.spage=201&rft.epage=210&rft_id=info:doi/10.29220%2FCSAM.2020.27.2.201&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9695498 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon |