Bayesian baseline-category logit random effects models for longitudinal nominal data

Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial corre...

Full description

Saved in:
Bibliographic Details
Published inCommunications for statistical applications and methods Vol. 27; no. 2; pp. 201 - 210
Main Authors Jiyeong Kim, Keunbaik Lee
Format Journal Article
LanguageEnglish
Published 한국통계학회 01.03.2020
Subjects
Online AccessGet full text
ISSN2287-7843
2383-4757
2383-4757
DOI10.29220/CSAM.2020.27.2.201

Cover

Abstract Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project. KCI Citation Count: 0
AbstractList Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project. KCI Citation Count: 0
Author Jiyeong Kim
Keunbaik Lee
Author_xml – sequence: 1
  fullname: Jiyeong Kim
– sequence: 2
  fullname: Keunbaik Lee
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002575986$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo9kMFOwzAQRC1UJErpF3DJhQOHFHvtxM6xlAKVCpWgnK1NYlehiV0lqVD_HtNWnGZW-2ZXmmsycN4ZQm4ZnUAGQB9mn9O3CVAIs5xAcOyCDIErHguZyEHwoGQsleBXZNx135RSlihJmRiS9SMeTFehi3LsTF05ExfYm41vD1HtN1UftehK30TGWlP0XdT40tRdZH0b9i4A-7JyWEfON0ctsccbcmmx7sz4rCPy9Txfz17j5eplMZsu44Inqo-zLAdIk9QKw5TNTcohz1KhBJUSFKPcQE6RpQVjjNssURy5odxyUDSRCviI3J_uutbqbVFpj9VRN15vWz39WC90lmaJyFRgxYndux0efrCu9a6tGmwPmlF9LFIXHTb6r0gNUkNwLMTuzi_2gTZlhf-x99XTnDFBUxbO_wJ7WHPc
CitedBy_id crossref_primary_10_1002_sim_9106
crossref_primary_10_1080_00949655_2022_2092867
ContentType Journal Article
DBID DBRKI
TDB
ADTOC
UNPAY
ACYCR
DOI 10.29220/CSAM.2020.27.2.201
DatabaseName DBPIA - 디비피아
누리미디어 DBpia
Unpaywall for CDI: Periodical Content
Unpaywall
Korean Citation Index
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2383-4757
EndPage 210
ExternalDocumentID oai_kci_go_kr_ARTI_9695498
10.29220/csam.2020.27.2.201
NODE11406198
GroupedDBID 9ZL
ALMA_UNASSIGNED_HOLDINGS
ARCSS
DBRKI
JDI
TDB
TUS
ADTOC
AMVHM
UNPAY
.UV
ACYCR
HZB
M~E
ID FETCH-LOGICAL-c358t-99b22656f4e18fbe632b9648407728103e2b0a16c1113f9583a3e03f328057823
IEDL.DBID UNPAY
ISSN 2287-7843
2383-4757
IngestDate Fri Nov 17 19:17:42 EST 2023
Tue Aug 19 17:19:12 EDT 2025
Sun Mar 09 07:50:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords high-dimensional
positive-definiteness
heterogeneous
covariance matrix
modified Cholesky decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-99b22656f4e18fbe632b9648407728103e2b0a16c1113f9583a3e03f328057823
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2020.27.2.201
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9695498
unpaywall_primary_10_29220_csam_2020_27_2_201
nurimedia_primary_NODE11406198
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Communications for statistical applications and methods
PublicationYear 2020
Publisher 한국통계학회
Publisher_xml – name: 한국통계학회
SSID ssj0001587014
Score 2.1151247
Snippet Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using...
SourceID nrf
unpaywall
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 201
SubjectTerms 통계학
Title Bayesian baseline-category logit random effects models for longitudinal nominal data
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11406198
http://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2020.27.2.201
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002575986
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Communications for Statistical Applications and Methods, 2020, 27(2), , pp.201-210
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2383-4757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001587014
  issn: 2287-7843
  databaseCode: AMVHM
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELXQ7qFcKFVB0MLKqnp1NrGT2Dlw2PKhbaXdIsEiOFlOYqNqIVmFRAh-fWeSsCrqCYmTHcVyEo-jeU-emUfId6PyEBNxWBA6ICgZd0xlkjOb5jLiaQKQG5OTZ_N4ugh_XUfXG2Qtd4QiGw_m3isrb1mN-_Uc51g4vjS5XuWurRoB__sRRjEnnPvj44vJDJgeh2vpYXIVsKFhHAE2H5DhYn4-uUGFOaAGTKo2jA7clGChjGRXhqibpX3sq1nA3RQVeKkPRYOl9sFe0G-KlXl6NHd3_7ihs4-kfEnm6aJPll5Tp172_H9tx3f6wm2y1SNWOum22CeyYYvP5PKHebKYf0nRDSJUZRhahekuFF-mpuAD8_Ke9vEitFXceaAAkeE-aiQ1OepxUcyKxhYjVXfI4uz08njKeoEGlolI1SxJUkBvUexCGyiX2ligdUPgjIDZVeALy1PfBHGGevYuiZQwwvrCCa58LKMvdsmgKAu7RyieHgKT4rkFG3GlTOq7RBjr20xKF0T75BvYQi-zPxoLYmN7W-plpQH2_9RJjKeVap-M1qbSq65ah57_PjkF0ge4BQewtf3WA4AGtaus0SwaV1lzqTn0gi9vHP-VbOJ1F6N2QAZ11dhDAC11OiLDyexqOhv1O_IvSN7mDQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBYhPayX_mAba7sWMXqVY0u2JR96yNqErpC0sAa6k5BtaZSkdnBtSvfX7z3bDRs9FXqSjIVs68m870PvvY-QU6PyEBNxWBA6ICgZd0xlkjOb5jLiaQKQG5OTZ_P4chFe3UV3A7KRO0KRjUfz4JWVt6xG_XqOciwcX5pcr3PXVo2A__0Mo5gTzv3R-c_xDJgeh2vpYXIVsKGtOAJsPiRbi_nN-BcqzAE1YFK1YXTgpgQLZSS7MkTdLO1j_5sF3E1RgZf6UDRYah_sBf2mWJvnJ7Na_eOGprukfEnm6aJPll5Tp17253Vtx3f6wj2y0yNWOu622D4Z2OIjuf1uni3mX1J0gwhVGYZWYboLxZepKfjAvHygfbwIbRV3HilAZLiPGklNjnpcFLOiscVI1U9kMZ3cnl-yXqCBZSJSNUuSFNBbFLvQBsqlNhZo3RA4I2B2FfjC8tQ3QZyhnr1LIiWMsL5wgisfy-iLz2RYlIX9QiieHgKT4rkFG3GlTOq7RBjr20xKF0QH5BvYQi-ze40FsbH9XeplpQH2_9BJjKeV6oCcbEyl1121Dj2_vpgA6QPcggPYxn6bAUCD2lXWaBaNq6y51Bx6weEbxx-RbbzuYtS-kmFdNfYYQEudnvQ78S8gJ-Rx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+baseline-category+logit+random+effects+models+for+longitudinal+nominal+data&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=%EA%B9%80%EC%A7%80%EC%98%81&rft.au=%EC%9D%B4%EA%B7%BC%EB%B0%B1&rft.date=2020-03-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%86%B5%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=2287-7843&rft.spage=201&rft.epage=210&rft_id=info:doi/10.29220%2FCSAM.2020.27.2.201&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9695498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon