Interpolation of Lipschitz functions

This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 196; no. 1; pp. 20 - 44
Main Author Beliakov, Gleb
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2006
Elsevier
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2005.08.011

Cover

Abstract This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. This paper develops a computationally efficient algorithm for evaluating the interpolant in the multivariate case. We compare the proposed method with the radial basis functions and natural neighbor interpolation, provide the details of the algorithm and illustrate it on numerical experiments. The efficiency of this method surpasses alternative interpolation methods for scattered data.
AbstractList This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. This paper develops a computationally efficient algorithm for evaluating the interpolant in the multivariate case. We compare the proposed method with the radial basis functions and natural neighbor interpolation, provide the details of the algorithm and illustrate it on numerical experiments. The efficiency of this method surpasses alternative interpolation methods for scattered data.
This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz continuous function f. The proposed approach uses the central interpolation scheme, which produces an optimal interpolant in the worst case scenario. It provides best uniform error bounds on f, and thus translates into reliable learning of f. This paper develops a computationally efficient algorithm for evaluating the interpolant in the multivariate case. We compare the proposed method with the radial basis functions and natural neighbor interpolation, provide the details of the algorithm and illustrate it on numerical experiments. The efficiency of this method surpasses alternative interpolation methods for scattered data.
Author Beliakov, Gleb
Author_xml – sequence: 1
  givenname: Gleb
  surname: Beliakov
  fullname: Beliakov, Gleb
  email: gleb@deakin.edu.au
  organization: School of Information Technology, Deakin University, 221 Burwood Hwy, Burwood, 3125, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17949127$$DView record in Pascal Francis
BookMark eNp9kE1LAzEQQINUsK3-AG89qLddJx-7SfAkxY9CwYueQzabxZRtUpNU0F_v1hYEDz0NDO8Nw5ugkQ_eInSJocSA69tVafS6JABVCaIEjE_QGAsuC8y5GKExUM4LYISfoUlKKwCoJWZjdLXw2cZN6HV2wc9CN1u6TTLvLn_Puq03u206R6ed7pO9OMwpent8eJ0_F8uXp8X8flkYWolcSKCU1mAqjVlFG2CYN43ALZVCsrpqALjtCOZG1JyyqiHDB00LhHOJtelqOkU3-7ubGD62NmW1dsnYvtfehm1SRDBZC0EG8PoA6mR030XtjUtqE91axy-FuWQSEz5weM-ZGFKKtvtDQO26qZUauqldNwVCDd0Gh_9zjMu_dXLUrj9q3u1NOzT6dDaqZJz1xrYuWpNVG9wR-wf3WYbP
CODEN JCAMDI
CitedBy_id crossref_primary_10_1002_rnc_6525
crossref_primary_10_1016_j_automatica_2020_109247
crossref_primary_10_1287_moor_1070_0309
crossref_primary_10_1109_TSP_2020_3021985
crossref_primary_10_1016_j_fss_2013_09_007
crossref_primary_10_1109_TCST_2021_3136616
crossref_primary_10_1016_j_ifacol_2020_12_1210
crossref_primary_10_1016_j_ifacol_2022_11_150
crossref_primary_10_1137_22M1526010
crossref_primary_10_1109_TAC_2021_3056356
crossref_primary_10_1007_s00500_015_1878_z
crossref_primary_10_1109_TAC_2010_2049776
crossref_primary_10_1002_rnc_5124
crossref_primary_10_2139_ssrn_3087420
crossref_primary_10_1016_j_ifacol_2018_11_039
crossref_primary_10_2139_ssrn_1346816
crossref_primary_10_1016_j_ifacol_2023_10_786
crossref_primary_10_1109_LCSYS_2022_3185410
crossref_primary_10_1111_j_2044_8317_2011_02016_x
crossref_primary_10_1002_rnc_5688
crossref_primary_10_17979_ja_cea_2024_45_10952
crossref_primary_10_1146_annurev_control_090419_075625
crossref_primary_10_1080_10556780701393591
crossref_primary_10_1109_TSP_2019_2959221
crossref_primary_10_3982_ECTA16907
crossref_primary_10_1016_j_sysconle_2010_05_002
crossref_primary_10_1016_j_fss_2007_03_007
crossref_primary_10_1016_j_ifacol_2020_12_513
crossref_primary_10_1016_j_automatica_2020_108948
crossref_primary_10_1016_j_ifacol_2020_12_1265
crossref_primary_10_1016_j_jbankfin_2010_12_011
crossref_primary_10_3982_QE1762
crossref_primary_10_2139_ssrn_3309772
crossref_primary_10_1016_j_automatica_2020_109216
crossref_primary_10_1002_aisy_202100040
crossref_primary_10_1142_S0218488507004522
crossref_primary_10_1007_s10898_023_01297_6
crossref_primary_10_1109_OJCSYS_2023_3322069
crossref_primary_10_1016_j_knosys_2014_08_028
crossref_primary_10_1016_j_isatra_2024_11_018
Cites_doi 10.1007/BF02837633
10.1016/0041-5553(78)90035-6
10.1137/0709036
10.1016/0885-064X(86)90009-9
10.1007/978-1-4757-3200-9
10.1007/978-1-4615-4677-1
10.1016/0041-5553(71)90017-6
10.1007/BF01395972
10.1016/0041-5553(72)90115-2
10.1007/978-94-011-2759-2
10.1080/00207169508804450
10.1002/int.10120
10.1016/S0305-0548(02)00082-5
10.1007/PL00009366
10.1016/S0898-1221(97)00087-4
10.1023/A:1020256900863
10.1080/02331930310001611556
10.1016/0041-5553(76)90069-0
10.1145/116873.116880
10.1007/BF00229304
ContentType Journal Article
Copyright 2005 Elsevier B.V.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: 2006 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2005.08.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 44
ExternalDocumentID 17949127
10_1016_j_cam_2005_08_011
S0377042705005157
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-9033360c5a1453b0417bb81d3989465b007ef217c867345b2914bd027791acf63
IEDL.DBID AIKHN
ISSN 0377-0427
IngestDate Sun Sep 28 08:03:26 EDT 2025
Mon Jul 21 09:14:44 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Oct 01 04:36:44 EDT 2025
Fri Feb 23 02:30:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Optimal interpolation
Multivariate approximation
41A30
41A63
65D05
41A50
Lipschitz approximation
41A05
Scattered data interpolation
Central algorithm
65D05; 41A05; 41A30; 41A50; 41A63
Finite volume method
Numerical approximation
Radial basis function
Multivariate interpolation
Numerical analysis
Scattered data interpolation; Lipschitz approximation; Optimal interpolation; Central algorithm; Multivariate approximation
Efficiency
Lipschitz function
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-9033360c5a1453b0417bb81d3989465b007ef217c867345b2914bd027791acf63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0377042705005157
PQID 28496882
PQPubID 23500
PageCount 25
ParticipantIDs proquest_miscellaneous_28496882
pascalfrancis_primary_17949127
crossref_primary_10_1016_j_cam_2005_08_011
crossref_citationtrail_10_1016_j_cam_2005_08_011
elsevier_sciencedirect_doi_10_1016_j_cam_2005_08_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-11-01
PublicationDateYYYYMMDD 2006-11-01
PublicationDate_xml – month: 11
  year: 2006
  text: 2006-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lay (bib22) 1972
G. Beliakov, Extended cutting angle method of constrained global optimization, in: L. Caccetta (Ed.), Optimization in Industry, Springer, Heidelberg, 2005, in press.
Sukharev (bib36) 1986; 2
Zabinsky, Kristinsdottir, Smith (bib41) 2003; 30
Bakhvalov (bib3) 1971; 11
Sikorski (bib31) 2001
Sukharev (bib35) 1978; 18
A.G. Sukharev, Minimax Models in the Theory of Numerical Methods, Theory and Decision Library Series B, vol. 21, Kluwer Academic Publishers, Dordrecht, 1992.
Cherkassky, Mulier (bib11) 1998
De Boor (bib13) 1977
Beliakov (bib5) 2000; 16
Sibson (bib30) 1981
Shubert (bib29) 1972; 9
Kocic, Milovanovic (bib20) 1997; 3
Wood, Zhang (bib40) 1996; 8
Aurenhammer (bib2) 1991; 23
Beliakov (bib7) 2003; 18
Micchelli, Rivlin, Winograd (bib25) 1976; 26
Gaffney, Powell (bib17) 1976; vol. 506
Dierckx (bib16) 1995
Micchelli, Rivlin (bib24) 1984; vol. 1129
Thiessen (bib38) 1911; 39
Belikov, Ivanov, Kontorovich, Korytnik, Semenov (bib9) 1997; 37
Demyanov, Rubinov (bib14) 1995
Micchelli, Rivlin (bib23) 1977
Golomb, Weinberger (bib18) 1959
R.G. Strongin, Y.D. Sergeyev, Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms, Nonconvex Optimization and its Applications, vol. 45, Kluwer Academic, Dordrecht, London, 2000.
Beliakov (bib6) 2003; 52
Kvasov (bib21) 2000
Okabe, Boots, Sugihara, Chiu (bib26) 2000
Smolyak (bib32) 1963; 4
A.M. Rubinov, Abstract Convexity and Global Optimization, Nonconvex Optimization and its Applications, vol. 44, Kluwer Academic Publishers, Dordrecht, Boston, 2000.
Cooper (bib12) 1995; 59
Traub, Wozniakowski (bib39) 1980
Devroye (bib15) 1986
Alfeld (bib1) 1989
Hastie, Tibshirani, Friedman (bib19) 2001
Batten, Beliakov (bib4) 2002; 24
Pijavski (bib27) 1972; 2
Boissonnat, Sharir, Tagansky, Yvinec (bib10) 1998; 19
Sukharev (bib34) 1976; 16
10.1016/j.cam.2005.08.011_bib28
Alfeld (10.1016/j.cam.2005.08.011_bib1) 1989
Zabinsky (10.1016/j.cam.2005.08.011_bib41) 2003; 30
Boissonnat (10.1016/j.cam.2005.08.011_bib10) 1998; 19
Aurenhammer (10.1016/j.cam.2005.08.011_bib2) 1991; 23
Dierckx (10.1016/j.cam.2005.08.011_bib16) 1995
Micchelli (10.1016/j.cam.2005.08.011_bib25) 1976; 26
Cooper (10.1016/j.cam.2005.08.011_bib12) 1995; 59
Okabe (10.1016/j.cam.2005.08.011_bib26) 2000
Wood (10.1016/j.cam.2005.08.011_bib40) 1996; 8
Thiessen (10.1016/j.cam.2005.08.011_bib38) 1911; 39
Demyanov (10.1016/j.cam.2005.08.011_bib14) 1995
Batten (10.1016/j.cam.2005.08.011_bib4) 2002; 24
Kocic (10.1016/j.cam.2005.08.011_bib20) 1997; 3
Belikov (10.1016/j.cam.2005.08.011_bib9) 1997; 37
Lay (10.1016/j.cam.2005.08.011_bib22) 1972
Sikorski (10.1016/j.cam.2005.08.011_bib31) 2001
De Boor (10.1016/j.cam.2005.08.011_bib13) 1977
Golomb (10.1016/j.cam.2005.08.011_bib18) 1959
Beliakov (10.1016/j.cam.2005.08.011_bib6) 2003; 52
Sukharev (10.1016/j.cam.2005.08.011_bib34) 1976; 16
Pijavski (10.1016/j.cam.2005.08.011_bib27) 1972; 2
10.1016/j.cam.2005.08.011_bib33
Sukharev (10.1016/j.cam.2005.08.011_bib35) 1978; 18
Traub (10.1016/j.cam.2005.08.011_bib39) 1980
Micchelli (10.1016/j.cam.2005.08.011_bib23) 1977
Sibson (10.1016/j.cam.2005.08.011_bib30) 1981
Bakhvalov (10.1016/j.cam.2005.08.011_bib3) 1971; 11
10.1016/j.cam.2005.08.011_bib37
Micchelli (10.1016/j.cam.2005.08.011_bib24) 1984; vol. 1129
Gaffney (10.1016/j.cam.2005.08.011_bib17) 1976; vol. 506
Beliakov (10.1016/j.cam.2005.08.011_bib7) 2003; 18
Devroye (10.1016/j.cam.2005.08.011_bib15) 1986
Shubert (10.1016/j.cam.2005.08.011_bib29) 1972; 9
Smolyak (10.1016/j.cam.2005.08.011_bib32) 1963; 4
Beliakov (10.1016/j.cam.2005.08.011_bib5) 2000; 16
Cherkassky (10.1016/j.cam.2005.08.011_bib11) 1998
Kvasov (10.1016/j.cam.2005.08.011_bib21) 2000
10.1016/j.cam.2005.08.011_bib8
Hastie (10.1016/j.cam.2005.08.011_bib19) 2001
Sukharev (10.1016/j.cam.2005.08.011_bib36) 1986; 2
References_xml – year: 1986
  ident: bib15
  article-title: Non-uniform Random Variate Generation
– volume: 39
  start-page: 1082
  year: 1911
  end-page: 1084
  ident: bib38
  article-title: Precipitation averages for large areas
  publication-title: Monthly Weather Report
– volume: 9
  start-page: 379
  year: 1972
  end-page: 388
  ident: bib29
  article-title: A sequential method seeking the global maximum of a function
  publication-title: SIAM J. Numer. Anal.
– volume: 4
  start-page: 240
  year: 1963
  end-page: 243
  ident: bib32
  article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions
  publication-title: Math. U.S.S.R. Doklady
– volume: vol. 1129
  start-page: 12
  year: 1984
  end-page: 93
  ident: bib24
  article-title: Lectures on optimal recovery
  publication-title: Numerical Analysis, Lecture Notes in Mathematics
– year: 2001
  ident: bib31
  article-title: Optimal Solution of Nonlinear Equations
– reference: A.M. Rubinov, Abstract Convexity and Global Optimization, Nonconvex Optimization and its Applications, vol. 44, Kluwer Academic Publishers, Dordrecht, Boston, 2000.
– year: 2001
  ident: bib19
  article-title: The Elements of Statistical Learning
– year: 2000
  ident: bib21
  article-title: Methods of Shape Preserving Spline Approximation
– volume: 23
  start-page: 345
  year: 1991
  end-page: 405
  ident: bib2
  article-title: Voronoi diagrams—a survey of a fundamental data structure
  publication-title: ACM Computing Surveys
– volume: 37
  start-page: 9
  year: 1997
  end-page: 15
  ident: bib9
  article-title: The non-sibsonian interpolation
  publication-title: Comput. Math. and Math. Phys.
– start-page: 1
  year: 1977
  end-page: 54
  ident: bib23
  article-title: A survey of optimal recovery
  publication-title: Optimal Estimation in Approximation
– volume: 8
  start-page: 91
  year: 1996
  end-page: 103
  ident: bib40
  article-title: Estimation of the Lipschitz constant of a function
  publication-title: J. Global Optim.
– year: 2000
  ident: bib26
  article-title: Spatial Tessellations
– year: 1972
  ident: bib22
  article-title: Convex Sets and their Applications
– reference: A.G. Sukharev, Minimax Models in the Theory of Numerical Methods, Theory and Decision Library Series B, vol. 21, Kluwer Academic Publishers, Dordrecht, 1992.
– start-page: 117
  year: 1959
  end-page: 190
  ident: bib18
  article-title: Optimal approximation and error bounds
  publication-title: On Numerical Approximation
– volume: 19
  start-page: 485
  year: 1998
  end-page: 519
  ident: bib10
  article-title: Voronoi diagrams in higher dimensions under certain polyhedral distance functions
  publication-title: Discrete Comput. Geom.
– year: 1995
  ident: bib14
  article-title: Constructive Nonsmooth Analysis
– year: 1998
  ident: bib11
  article-title: Learning from Data
– volume: 16
  start-page: 17
  year: 1976
  end-page: 26
  ident: bib34
  article-title: Optimal search for the roots of a function satisfying a Lipschitz condition
  publication-title: U.S.S.R. Comput. Math. and Math. Phys.
– volume: 59
  start-page: 15
  year: 1995
  end-page: 26
  ident: bib12
  article-title: Learning Lipschitz functions
  publication-title: Internat. J. Comput. Math.
– volume: 3
  start-page: 59
  year: 1997
  end-page: 97
  ident: bib20
  article-title: Shape-preserving approximations by polynomials and splines
  publication-title: Comput. Math. Appl.
– volume: 18
  start-page: 21
  year: 1978
  end-page: 31
  ident: bib35
  article-title: Optimal method of constructing best uniform approximation for functions of a certain class
  publication-title: U.S.S.R. Comput. Math. and Math. Phys.
– start-page: 69
  year: 1977
  end-page: 91
  ident: bib13
  article-title: Computational aspects of optimal recovery
  publication-title: Optimal Estimation in Approximation Theory
– volume: 2
  start-page: 317
  year: 1986
  end-page: 322
  ident: bib36
  article-title: On the existence of optimal affine methods for approximating linear functionals
  publication-title: J. Complexity
– volume: vol. 506
  start-page: 90
  year: 1976
  end-page: 99
  ident: bib17
  article-title: Optimal interpolation
  publication-title: On Numerical Analysis, Lecture Notes in Mathematics
– start-page: 21
  year: 1981
  end-page: 36
  ident: bib30
  article-title: A brief description of natural neighbor interpolation
  publication-title: Interpreting Multivariate Data
– start-page: 1
  year: 1989
  end-page: 34
  ident: bib1
  article-title: Scattered data interpolation in three or more variables
  publication-title: Mathematical Methods in Computer Aided Geometric Design
– reference: G. Beliakov, Extended cutting angle method of constrained global optimization, in: L. Caccetta (Ed.), Optimization in Industry, Springer, Heidelberg, 2005, in press.
– year: 1995
  ident: bib16
  article-title: Curve and Surface Fitting with Splines
– volume: 24
  start-page: 149
  year: 2002
  end-page: 161
  ident: bib4
  article-title: Fast algorithm for the cutting angle method of global optimization
  publication-title: J. Global Optim.
– reference: R.G. Strongin, Y.D. Sergeyev, Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms, Nonconvex Optimization and its Applications, vol. 45, Kluwer Academic, Dordrecht, London, 2000.
– volume: 30
  start-page: 1539
  year: 2003
  end-page: 1553
  ident: bib41
  article-title: Optimal estimation of univariate black box Lipschitz functions with upper and lower error bounds
  publication-title: Internat. J. Comput. Oper. Res.
– volume: 52
  start-page: 379
  year: 2003
  end-page: 394
  ident: bib6
  article-title: Geometry and combinatorics of the cutting angle method
  publication-title: Optimization
– volume: 18
  start-page: 903
  year: 2003
  end-page: 923
  ident: bib7
  article-title: How to build aggregation operators from data
  publication-title: Internat. J. Intelligent Systems
– volume: 11
  start-page: 244
  year: 1971
  end-page: 249
  ident: bib3
  article-title: On the optimality of linear methods for operator approximation in convex classes of functions
  publication-title: U.S.S.R. Comput. Math. and Math. Phys.
– volume: 26
  start-page: 191
  year: 1976
  end-page: 200
  ident: bib25
  article-title: The optimal recovery of smooth functions
  publication-title: Numer. Math.
– year: 1980
  ident: bib39
  article-title: A General Theory of Optimal Algorithms
– volume: 16
  start-page: 80
  year: 2000
  end-page: 98
  ident: bib5
  article-title: Shape preserving approximation using least squares splines
  publication-title: Approx. Theory Appl.
– volume: 2
  start-page: 57
  year: 1972
  end-page: 67
  ident: bib27
  article-title: An algorithm for finding the absolute extremum of a function
  publication-title: U.S.S.R. Comput. Math. and Math. Phys.
– volume: 16
  start-page: 80
  year: 2000
  ident: 10.1016/j.cam.2005.08.011_bib5
  article-title: Shape preserving approximation using least squares splines
  publication-title: Approx. Theory Appl.
  doi: 10.1007/BF02837633
– volume: 18
  start-page: 21
  issue: 1
  year: 1978
  ident: 10.1016/j.cam.2005.08.011_bib35
  article-title: Optimal method of constructing best uniform approximation for functions of a certain class
  publication-title: U.S.S.R. Comput. Math. and Math. Phys.
  doi: 10.1016/0041-5553(78)90035-6
– start-page: 1
  year: 1977
  ident: 10.1016/j.cam.2005.08.011_bib23
  article-title: A survey of optimal recovery
– volume: 39
  start-page: 1082
  year: 1911
  ident: 10.1016/j.cam.2005.08.011_bib38
  article-title: Precipitation averages for large areas
  publication-title: Monthly Weather Report
– volume: 37
  start-page: 9
  year: 1997
  ident: 10.1016/j.cam.2005.08.011_bib9
  article-title: The non-sibsonian interpolation
  publication-title: Comput. Math. and Math. Phys.
– year: 1995
  ident: 10.1016/j.cam.2005.08.011_bib16
– start-page: 117
  year: 1959
  ident: 10.1016/j.cam.2005.08.011_bib18
  article-title: Optimal approximation and error bounds
– year: 1998
  ident: 10.1016/j.cam.2005.08.011_bib11
– volume: 9
  start-page: 379
  year: 1972
  ident: 10.1016/j.cam.2005.08.011_bib29
  article-title: A sequential method seeking the global maximum of a function
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0709036
– volume: 2
  start-page: 317
  year: 1986
  ident: 10.1016/j.cam.2005.08.011_bib36
  article-title: On the existence of optimal affine methods for approximating linear functionals
  publication-title: J. Complexity
  doi: 10.1016/0885-064X(86)90009-9
– volume: vol. 1129
  start-page: 12
  year: 1984
  ident: 10.1016/j.cam.2005.08.011_bib24
  article-title: Lectures on optimal recovery
– ident: 10.1016/j.cam.2005.08.011_bib28
  doi: 10.1007/978-1-4757-3200-9
– ident: 10.1016/j.cam.2005.08.011_bib33
  doi: 10.1007/978-1-4615-4677-1
– start-page: 69
  year: 1977
  ident: 10.1016/j.cam.2005.08.011_bib13
  article-title: Computational aspects of optimal recovery
– volume: 11
  start-page: 244
  year: 1971
  ident: 10.1016/j.cam.2005.08.011_bib3
  article-title: On the optimality of linear methods for operator approximation in convex classes of functions
  publication-title: U.S.S.R. Comput. Math. and Math. Phys.
  doi: 10.1016/0041-5553(71)90017-6
– volume: 26
  start-page: 191
  year: 1976
  ident: 10.1016/j.cam.2005.08.011_bib25
  article-title: The optimal recovery of smooth functions
  publication-title: Numer. Math.
  doi: 10.1007/BF01395972
– year: 2001
  ident: 10.1016/j.cam.2005.08.011_bib19
– volume: 2
  start-page: 57
  year: 1972
  ident: 10.1016/j.cam.2005.08.011_bib27
  article-title: An algorithm for finding the absolute extremum of a function
  publication-title: U.S.S.R. Comput. Math. and Math. Phys.
  doi: 10.1016/0041-5553(72)90115-2
– ident: 10.1016/j.cam.2005.08.011_bib37
  doi: 10.1007/978-94-011-2759-2
– ident: 10.1016/j.cam.2005.08.011_bib8
– volume: 59
  start-page: 15
  year: 1995
  ident: 10.1016/j.cam.2005.08.011_bib12
  article-title: Learning Lipschitz functions
  publication-title: Internat. J. Comput. Math.
  doi: 10.1080/00207169508804450
– start-page: 1
  year: 1989
  ident: 10.1016/j.cam.2005.08.011_bib1
  article-title: Scattered data interpolation in three or more variables
– year: 2001
  ident: 10.1016/j.cam.2005.08.011_bib31
– start-page: 21
  year: 1981
  ident: 10.1016/j.cam.2005.08.011_bib30
  article-title: A brief description of natural neighbor interpolation
– year: 2000
  ident: 10.1016/j.cam.2005.08.011_bib21
– volume: vol. 506
  start-page: 90
  year: 1976
  ident: 10.1016/j.cam.2005.08.011_bib17
  article-title: Optimal interpolation
– volume: 18
  start-page: 903
  year: 2003
  ident: 10.1016/j.cam.2005.08.011_bib7
  article-title: How to build aggregation operators from data
  publication-title: Internat. J. Intelligent Systems
  doi: 10.1002/int.10120
– year: 1995
  ident: 10.1016/j.cam.2005.08.011_bib14
– year: 1986
  ident: 10.1016/j.cam.2005.08.011_bib15
– volume: 30
  start-page: 1539
  year: 2003
  ident: 10.1016/j.cam.2005.08.011_bib41
  article-title: Optimal estimation of univariate black box Lipschitz functions with upper and lower error bounds
  publication-title: Internat. J. Comput. Oper. Res.
  doi: 10.1016/S0305-0548(02)00082-5
– volume: 19
  start-page: 485
  year: 1998
  ident: 10.1016/j.cam.2005.08.011_bib10
  article-title: Voronoi diagrams in higher dimensions under certain polyhedral distance functions
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/PL00009366
– volume: 3
  start-page: 59
  year: 1997
  ident: 10.1016/j.cam.2005.08.011_bib20
  article-title: Shape-preserving approximations by polynomials and splines
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(97)00087-4
– volume: 24
  start-page: 149
  year: 2002
  ident: 10.1016/j.cam.2005.08.011_bib4
  article-title: Fast algorithm for the cutting angle method of global optimization
  publication-title: J. Global Optim.
  doi: 10.1023/A:1020256900863
– volume: 4
  start-page: 240
  year: 1963
  ident: 10.1016/j.cam.2005.08.011_bib32
  article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions
  publication-title: Math. U.S.S.R. Doklady
– volume: 52
  start-page: 379
  year: 2003
  ident: 10.1016/j.cam.2005.08.011_bib6
  article-title: Geometry and combinatorics of the cutting angle method
  publication-title: Optimization
  doi: 10.1080/02331930310001611556
– year: 1980
  ident: 10.1016/j.cam.2005.08.011_bib39
– volume: 16
  start-page: 17
  year: 1976
  ident: 10.1016/j.cam.2005.08.011_bib34
  article-title: Optimal search for the roots of a function satisfying a Lipschitz condition
  publication-title: U.S.S.R. Comput. Math. and Math. Phys.
  doi: 10.1016/0041-5553(76)90069-0
– year: 1972
  ident: 10.1016/j.cam.2005.08.011_bib22
– year: 2000
  ident: 10.1016/j.cam.2005.08.011_bib26
– volume: 23
  start-page: 345
  year: 1991
  ident: 10.1016/j.cam.2005.08.011_bib2
  article-title: Voronoi diagrams—a survey of a fundamental data structure
  publication-title: ACM Computing Surveys
  doi: 10.1145/116873.116880
– volume: 8
  start-page: 91
  year: 1996
  ident: 10.1016/j.cam.2005.08.011_bib40
  article-title: Estimation of the Lipschitz constant of a function
  publication-title: J. Global Optim.
  doi: 10.1007/BF00229304
SSID ssj0006914
Score 2.1102884
Snippet This paper describes a new computational approach to multivariate scattered data interpolation. It is assumed that the data is generated by a Lipschitz...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms Approximations and expansions
Central algorithm
Exact sciences and technology
Lipschitz approximation
Mathematical analysis
Mathematics
Multivariate approximation
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Optimal interpolation
Scattered data interpolation
Sciences and techniques of general use
Title Interpolation of Lipschitz functions
URI https://dx.doi.org/10.1016/j.cam.2005.08.011
https://www.proquest.com/docview/28496882
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: ACRLP
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIKHN
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: IXB
  dateStart: 19750301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AKRWK
  dateStart: 19750301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe1FEfOKz7qEnYW2yee6xFqVa7cEH9rYk-4CKtsXWiwd_u5N9VET04Gkh7JDdSfJNJjP5BqBlA5VlgbR-4hgIuabM1xnjfmqsViHOIZnmbJ8D2XvgV0MxrEG3ugvj0ipL7C8wPUfrsqVdarM9HY3ad4Qp5SpFEJEXKlFL0ED7o3UdGp3Lfm-wAGQZFhTf-L7vBKrgZp7mFZuX8mRFnxJKfzNPq1MzQ6VlRbWLH8CdW6OLdVgrt5Fep_jSDail401YuVlwsM62oFXkE06KZDdvknnXo-nMhQ3ePWfN8gm3DQ8X5_fdnl_WRPBjJvTcDwljTJJYGMoFs4RTZS3uOZkjUpcCF5FKM3QzYi0V48IG-O82cYHakJo4k2wH6uPJON0FzyRBYsIEXWsdc5LakEh0vyw3VghpFN0DUqkiikvCcFe34jmqMsOeItSeK2QpIlfLkqLIyUJkWrBl_PUyr_QbfRvyCNH8L7Hmt7H46gihJaSB2oPjanAiXCsuAGLG6eRtFqEpDiW6FPv_6_kAlvMDmPwm4iHU569v6RFuSea2CUunH7RZTjz37N8-9rH1cnj2Cetj324
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDIAQ4imebYZOSKF2_IpHhEAFCgutxGbZiSMVQVvRsjDw2zk7SVGFYGCNbNm5s-98vvP3IdS2iSyKRNg49wiELCU0TgvKYmdsKhWsIeEC2ueD6A7Y7RN_aqDL-i2ML6usbH9p04O1rr50Kml2JsNh5xFTKT1TBOaBqEQuoRXGE-kjsPPP7zoPoUqAb2gd--Z1ajMUeWXmtbpXSc8xIb85p42JmYLIipLr4ofZDr7oegttVofI6KKc5zZquNEOWr-fI7BOd1G7rCYcl6Vu0biIesPJ1CcNPiLvy8Jy20OD66v-ZTeuGBHijPJ0FitMKRU444YwTi1mRFoLJ07qYdQFhy0kXQFBRpYKSRm3Cfy7zX2aVhGTFYLuo-XReOQOUGTyJDcqh8A6zRh2VmEBwZdlxnIujCSHCNei0FkFF-5ZK150XRf2rEF6nsaSa89kSaDL2bzLpMTK-Ksxq-WrFxSuwZb_1a25oIvvgcCwKJLIQ9SqlaNhp_j0hxm58ftUgyNWAgKKo_-N3EKr3f59T_duHu6O0Vq4iglvEk_Q8uzt3Z3C4WRmm2HxfQGUHN2P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation+of+Lipschitz+functions&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=BELIAKOV%2C+Gleb&rft.date=2006-11-01&rft.pub=Elsevier&rft.issn=0377-0427&rft.volume=196&rft.issue=1&rft.spage=20&rft.epage=44&rft_id=info:doi/10.1016%2Fj.cam.2005.08.011&rft.externalDBID=n%2Fa&rft.externalDocID=17949127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon