Optimization design of helical micro fin tubes based on exergy destruction minimization principle

•Increased heat exchange area and the secondary flow are the primary sources of heat transfer enhancement.•The local exergy destruction rates are related to the equivalent heat transfer coefficient and the unit pressure drop.•Optimal design tends to have a larger number of starts and a lower micro f...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 200; p. 117640
Main Authors Xie, J.H., Cui, H.C., Liu, Z.C., Liu, W.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.01.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN1359-4311
1873-5606
DOI10.1016/j.applthermaleng.2021.117640

Cover

Abstract •Increased heat exchange area and the secondary flow are the primary sources of heat transfer enhancement.•The local exergy destruction rates are related to the equivalent heat transfer coefficient and the unit pressure drop.•Optimal design tends to have a larger number of starts and a lower micro fin height.•The exergy destruction minimization principle is proved to be still applicable in the case of the periodic model and fully developed turbulence. The helical micro fin tubes (HFT) are commonly used in various double pipe heat exchangers because of the excellent processing and anti-fouling performance. It is of great significance to further improve the overall efficiency of the HFT so as to diminish energy consumption. In this work, the heat transfer and flow characteristics of the HFT are studied by numerical simulation. The results show that the heat transfer enhancement factors of the HFT are the secondary flow generated near the wall and the increase of the heat exchange area. In addition, the effects of the geometrical parameters on thermal–hydraulic performance are studied at Re = 36,636. It is found that the micro fin height (e), the helical angle (φ), and the number of starts (Ns) have a significant impact on the overall performance, and there is a strong mutual coupling between them. According to the parametric analysis, the HFT with a low micro fin height and a large number of starts is considered to be a better geometrical type. Finally, in order to select (or design) the HFT quickly under the specific working conditions, based on the exergy destruction minimization principle, the geometrical parameters are optimized by using the artificial neural network and genetic algorithm. An optimal solution (e = 0.23 mm, φ = 36.1°, and Ns = 66) is selected from the Pareto front by the TOPSIS method. The results indicate that the optimal solution has a sensible balance between the exergy destruction caused by heat transfer and fluid flow. Besides, it has a better thermal–hydraulic performance as well (PEC = 1.73). This work fills the gap of heat transfer and the geometrical optimization study of HFT based on the second law of thermodynamics and provides strong evidence that the exergy destruction minimization principle is still applicable in the case of the periodic model and fully developed turbulence. We hope that it will be contributed to the structural design of the HFT.
AbstractList The helical micro fin tubes (HFT) are commonly used in various double pipe heat exchangers because of the excellent processing and anti-fouling performance. It is of great significance to further improve the overall efficiency of the HFT so as to diminish energy consumption. In this work, the heat transfer and flow characteristics of the HFT are studied by numerical simulation. The results show that the heat transfer enhancement factors of the HFT are the secondary flow generated near the wall and the increase of the heat exchange area. In addition, the effects of the geometrical parameters on thermal–hydraulic performance are studied at Re = 36,636. It is found that the micro fin height (e), the helical angle (φ), and the number of starts (Ns) have a significant impact on the overall performance, and there is a strong mutual coupling between them. According to the parametric analysis, the HFT with a low micro fin height and a large number of starts is considered to be a better geometrical type. Finally, in order to select (or design) the HFT quickly under the specific working conditions, based on the exergy destruction minimization principle, the geometrical parameters are optimized by using the artificial neural network and genetic algorithm. An optimal solution (e = 0.23 mm, φ = 36.1°, and Ns = 66) is selected from the Pareto front by the TOPSIS method. The results indicate that the optimal solution has a sensible balance between the exergy destruction caused by heat transfer and fluid flow. Besides, it has a better thermal–hydraulic performance as well (PEC = 1.73). This work fills the gap of heat transfer and the geometrical optimization study of HFT based on the second law of thermodynamics and provides strong evidence that the exergy destruction minimization principle is still applicable in the case of the periodic model and fully developed turbulence. We hope that it will be contributed to the structural design of the HFT.
•Increased heat exchange area and the secondary flow are the primary sources of heat transfer enhancement.•The local exergy destruction rates are related to the equivalent heat transfer coefficient and the unit pressure drop.•Optimal design tends to have a larger number of starts and a lower micro fin height.•The exergy destruction minimization principle is proved to be still applicable in the case of the periodic model and fully developed turbulence. The helical micro fin tubes (HFT) are commonly used in various double pipe heat exchangers because of the excellent processing and anti-fouling performance. It is of great significance to further improve the overall efficiency of the HFT so as to diminish energy consumption. In this work, the heat transfer and flow characteristics of the HFT are studied by numerical simulation. The results show that the heat transfer enhancement factors of the HFT are the secondary flow generated near the wall and the increase of the heat exchange area. In addition, the effects of the geometrical parameters on thermal–hydraulic performance are studied at Re = 36,636. It is found that the micro fin height (e), the helical angle (φ), and the number of starts (Ns) have a significant impact on the overall performance, and there is a strong mutual coupling between them. According to the parametric analysis, the HFT with a low micro fin height and a large number of starts is considered to be a better geometrical type. Finally, in order to select (or design) the HFT quickly under the specific working conditions, based on the exergy destruction minimization principle, the geometrical parameters are optimized by using the artificial neural network and genetic algorithm. An optimal solution (e = 0.23 mm, φ = 36.1°, and Ns = 66) is selected from the Pareto front by the TOPSIS method. The results indicate that the optimal solution has a sensible balance between the exergy destruction caused by heat transfer and fluid flow. Besides, it has a better thermal–hydraulic performance as well (PEC = 1.73). This work fills the gap of heat transfer and the geometrical optimization study of HFT based on the second law of thermodynamics and provides strong evidence that the exergy destruction minimization principle is still applicable in the case of the periodic model and fully developed turbulence. We hope that it will be contributed to the structural design of the HFT.
ArticleNumber 117640
Author Liu, W.
Xie, J.H.
Liu, Z.C.
Cui, H.C.
Author_xml – sequence: 1
  givenname: J.H.
  surname: Xie
  fullname: Xie, J.H.
– sequence: 2
  givenname: H.C.
  surname: Cui
  fullname: Cui, H.C.
– sequence: 3
  givenname: Z.C.
  surname: Liu
  fullname: Liu, Z.C.
– sequence: 4
  givenname: W.
  surname: Liu
  fullname: Liu, W.
  email: w_liu@hust.edu.cn
BookMark eNqNkMtOwzAQRS1UJKDwD5Fgm-JXnERiAxUvqVI3sLYce1JcJU6wXQR8PS5FQrDqyrO493jmnKCJGxwgdEHwjGAiLtczNY5dfAHfqw7cakYxJTNCSsHxATomVcnyQmAxSTMr6pwzQo7QSQhrjAmtSn6M1HKMtrefKtrBZQaCXblsaLMX6KxWXdZb7YestS6LmwZC1qgAJktReAe_-tg2ot_o73Zv3S9q9NZpO3Zwig5b1QU4-3mn6Pnu9mn-kC-W94_z60WuWVHFvNKCa6WBGV4XpmUFM6UoCSW1YQ2HivCKUdrUNXCjOTTCiJJqzhtMTFW2jE3R-Y47-uF1k9aS62HjXfpSUkGKKsngNKWudql0VggeWpkW7ZX_kATLrVS5ln-lyq1UuZOa6jf_6trG74OjV7bbF3K3g0DS8WbBy6AtOA3GetBRmsHuB_oCN96jOw
CitedBy_id crossref_primary_10_1016_j_csite_2022_102391
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124541
crossref_primary_10_3390_pr11072192
crossref_primary_10_1080_10407782_2022_2156947
crossref_primary_10_1016_j_applthermaleng_2025_125418
crossref_primary_10_1360_SST_2021_0578
crossref_primary_10_1360_SST_2023_0055
crossref_primary_10_1016_j_ijthermalsci_2022_107895
crossref_primary_10_1109_TCE_2024_3416513
crossref_primary_10_3390_pr10020249
crossref_primary_10_1080_14685248_2022_2134571
crossref_primary_10_1007_s43153_022_00238_2
crossref_primary_10_1016_j_csite_2023_103852
crossref_primary_10_1051_e3sconf_202346501019
crossref_primary_10_1016_j_rineng_2022_100471
crossref_primary_10_1016_j_csite_2023_103689
Cites_doi 10.1016/j.icheatmasstransfer.2012.12.001
10.1016/j.ijthermalsci.2018.04.009
10.1016/j.ijheatmasstransfer.2013.09.062
10.1115/1.1409267
10.1051/epjconf/201818002096
10.1016/j.ijheatmasstransfer.2021.121002
10.1016/j.icheatmasstransfer.2010.11.014
10.1016/j.ijheatmasstransfer.2018.01.048
10.1115/1.3450666
10.1080/01457632.2015.1052665
10.1080/10407790600646792
10.1177/0957650913515669
10.1016/j.ijthermalsci.2017.12.028
10.1007/978-3-642-48318-9_3
10.1016/j.ijheatmasstransfer.2015.04.008
10.1057/jors.1987.44
10.1016/j.ijheatmasstransfer.2018.01.106
10.1063/1.362674
10.1016/j.applthermaleng.2014.09.076
10.1016/0017-9310(69)90012-X
10.1080/10255842.2010.518565
10.1080/10407780802289335
10.1016/j.ijheatmasstransfer.2006.11.034
10.1016/j.ijheatmasstransfer.2018.09.003
10.1016/0305-0548(93)90109-V
10.1016/j.applthermaleng.2015.11.033
10.1109/4235.996017
10.1016/j.ijthermalsci.2019.106185
10.1016/j.ijheatmasstransfer.2011.08.028
10.1016/j.applthermaleng.2015.08.066
10.1115/1.521444
10.1016/j.energy.2020.119059
10.1088/0022-3727/40/11/044
10.1016/j.expthermflusci.2007.09.006
10.1016/j.ijheatmasstransfer.2018.12.078
10.1016/j.cep.2021.108304
10.1016/j.applthermaleng.2018.09.009
10.1016/j.applthermaleng.2017.03.025
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 5, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 5, 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2021.117640
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2021_117640
S1359431121010668
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
SEW
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
KR7
SSH
ID FETCH-LOGICAL-c358t-8c64cace3d495df353d7671219d3b4e8148322b99e4dc4eb6d672c44b01d87f33
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Fri Jul 25 04:14:39 EDT 2025
Wed Oct 29 21:07:48 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Mon Mar 17 07:49:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Helical micro fin tubes
Exergy destruction minimization principle
Artificial neural network
Genetic algorithm
Geometrical parameters optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-8c64cace3d495df353d7671219d3b4e8148322b99e4dc4eb6d672c44b01d87f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2615887342
PQPubID 2045278
ParticipantIDs proquest_journals_2615887342
crossref_primary_10_1016_j_applthermaleng_2021_117640
crossref_citationtrail_10_1016_j_applthermaleng_2021_117640
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117640
PublicationCentury 2000
PublicationDate 2022-01-05
PublicationDateYYYYMMDD 2022-01-05
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Pethkool, Eiamsa-ard, Kwankaomeng, Promvonge (b0025) 2011; 38
Navickaitė, Cattani, Bahl, Engelbrecht (b0010) 2019; 128
Shuai, Zheng, Liang, Wang, Hu, Jie (b0015) 2018; 122
Celik, Ghia, Roache, Freitas (b0185) 2008; 130
Wijayanta, Yaningsih, Aziz, Miyazaki, Koyama (b0030) 2018; 145
Hwang, Yoon (b0200) 1981
Safikhani, Eiamsa-ard (b0080) 2016; 95
Guo, Zhu, Liang (b0110) 2007; 50
Hwang, Lai, Liu (b0210) 1993; 20
M. Sosnowski, J. Krzywanski, K. Grabowska, R. Gnatowska, Polyhedral meshing in numerical analysis of conjugate heat transfer, in: P. Dancova (Ed.) Efm17 - Experimental Fluid Mechanics 2017, E D P Sciences, Cedex A, 2018.
Ji, Zhang, He, Tao (b0055) 2012; 55
Cavazzuti, Corticelli (b0135) 2008; 54
Webb, Narayanamurthy, Thors (b0045) 2000; 122
Li, Fu, Li, Li, Thors (b0065) 2016; 37
Mekki, Langer, Lynch (b0095) 2021; 170
Deb, Pratap, Agarwal, Meyarivan (b0195) 2002; 6
S.M. Salim, S.C. Cheah, Wall y(+) Strategy for Dealing with Wall-bounded Turbulent Flows, in: O. Castillo, C. Douglas, D.D. Feng, J.A. Lee (Eds.) Imecs 2009: International Multi-Conference of Engineers and Computer Scientists, Vols I and Ii, Int Assoc Engineers-Iaeng, Hong Kong, 2009, pp. 2165-2170.
Wang, Liu, Liu (b0120) 2015; 88
Nobile, Pinto, Rizzetto (b0140) 2006; 50
Inc (b0160) 2019; 2019
Xiaoyue, Liu, Jensen, Michael, K., Geometry Effects on Turbulent Flow and Heat Transfer in Internally Finned Tubes, Journal of Heat Transfer, 123 (2001) 1035-1044.
Jasinski (b0130) 2011
Mann, Eckels (b0075) 2019; 132
Spiegel, Redel, Zhang, Struffert, Hornegger, Grossman, Doerfler, Karmonik (b0170) 2011; 14
Soleimani, Campbel, Eckels (b0145) 2020; 149
Wolfshtein (b0165) 1969; 12
Eiamsa-ard, Changcharoen, Beigzadeh, Eiamsa-ard, Wongcharee, Chuwattanakul (b0035) 2021; 160
Aroonrat, Jumpholkul, Leelaprachakul, Dalkilic, Mahian, Wongwises (b0020) 2013; 42
Ji, Jacobi, He, Tao (b0040) 2015; 88
Córcoles-Tendero, Belmonte, Molina, Almendros-Ibáñez (b0005) 2018; 126
Zdaniuk, Chamra, Mago (b0050) 2008; 32
Zarea, Kashkooli, Soltani, Rezaeian (b0085) 2018; 129
Hernadi, Kristof (b0060) 2014; 228
Bejan (b0100) 1996; 79
Liu, Liu, Wang, Zheng, Liu (b0115) 2018; 122
Ranut, Janiga, Nobile, Thévenin (b0150) 2014; 68
Abdollahi, Shams (b0190) 2015; 91
Yoon (b0205) 1987; 38
Ocłoń, Łopata, Stelmach, Li, Zhang, Mzad, Tao (b0090) 2021; 215
S. Patankar, C. Liu, E. Sparrow, Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area, 99 (1977) 180-186.
Zhou, Chen, Sun (b0105) 2007; 40
Dastmalchi, Sheikhzadeh, Arefmanesh (b0070) 2017; 119
Ocłoń (10.1016/j.applthermaleng.2021.117640_b0090) 2021; 215
Soleimani (10.1016/j.applthermaleng.2021.117640_b0145) 2020; 149
Liu (10.1016/j.applthermaleng.2021.117640_b0115) 2018; 122
Córcoles-Tendero (10.1016/j.applthermaleng.2021.117640_b0005) 2018; 126
Navickaitė (10.1016/j.applthermaleng.2021.117640_b0010) 2019; 128
Zarea (10.1016/j.applthermaleng.2021.117640_b0085) 2018; 129
Shuai (10.1016/j.applthermaleng.2021.117640_b0015) 2018; 122
Ji (10.1016/j.applthermaleng.2021.117640_b0040) 2015; 88
Ji (10.1016/j.applthermaleng.2021.117640_b0055) 2012; 55
Wang (10.1016/j.applthermaleng.2021.117640_b0120) 2015; 88
Aroonrat (10.1016/j.applthermaleng.2021.117640_b0020) 2013; 42
Mann (10.1016/j.applthermaleng.2021.117640_b0075) 2019; 132
Spiegel (10.1016/j.applthermaleng.2021.117640_b0170) 2011; 14
Webb (10.1016/j.applthermaleng.2021.117640_b0045) 2000; 122
Wijayanta (10.1016/j.applthermaleng.2021.117640_b0030) 2018; 145
Cavazzuti (10.1016/j.applthermaleng.2021.117640_b0135) 2008; 54
Hernadi (10.1016/j.applthermaleng.2021.117640_b0060) 2014; 228
Pethkool (10.1016/j.applthermaleng.2021.117640_b0025) 2011; 38
10.1016/j.applthermaleng.2021.117640_b0175
Safikhani (10.1016/j.applthermaleng.2021.117640_b0080) 2016; 95
Inc (10.1016/j.applthermaleng.2021.117640_b0160) 2019; 2019
10.1016/j.applthermaleng.2021.117640_b0155
Li (10.1016/j.applthermaleng.2021.117640_b0065) 2016; 37
Yoon (10.1016/j.applthermaleng.2021.117640_b0205) 1987; 38
Hwang (10.1016/j.applthermaleng.2021.117640_b0210) 1993; 20
Wolfshtein (10.1016/j.applthermaleng.2021.117640_b0165) 1969; 12
Abdollahi (10.1016/j.applthermaleng.2021.117640_b0190) 2015; 91
10.1016/j.applthermaleng.2021.117640_b0180
Nobile (10.1016/j.applthermaleng.2021.117640_b0140) 2006; 50
Ranut (10.1016/j.applthermaleng.2021.117640_b0150) 2014; 68
Celik (10.1016/j.applthermaleng.2021.117640_b0185) 2008; 130
Hwang (10.1016/j.applthermaleng.2021.117640_b0200) 1981
Eiamsa-ard (10.1016/j.applthermaleng.2021.117640_b0035) 2021; 160
Jasinski (10.1016/j.applthermaleng.2021.117640_b0130) 2011
Deb (10.1016/j.applthermaleng.2021.117640_b0195) 2002; 6
Dastmalchi (10.1016/j.applthermaleng.2021.117640_b0070) 2017; 119
Mekki (10.1016/j.applthermaleng.2021.117640_b0095) 2021; 170
Zdaniuk (10.1016/j.applthermaleng.2021.117640_b0050) 2008; 32
Bejan (10.1016/j.applthermaleng.2021.117640_b0100) 1996; 79
Guo (10.1016/j.applthermaleng.2021.117640_b0110) 2007; 50
10.1016/j.applthermaleng.2021.117640_b0125
Zhou (10.1016/j.applthermaleng.2021.117640_b0105) 2007; 40
References_xml – volume: 55
  start-page: 1375
  year: 2012
  end-page: 1384
  ident: b0055
  article-title: Prediction of fully developed turbulent heat transfer of internal helically ribbed tubes - An extension of Gnielinski equation
  publication-title: Int J Heat Mass Tran
– reference: S. Patankar, C. Liu, E. Sparrow, Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area, 99 (1977) 180-186.
– volume: 12
  start-page: 301
  year: 1969
  end-page: 318
  ident: b0165
  article-title: The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient
  publication-title: Int J Heat Mass Tran
– volume: 149
  year: 2020
  ident: b0145
  article-title: Performance analysis of different transverse and axial micro-fins in a turbulent-flow channel
  publication-title: Int J Therm Sci
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0195
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 889
  year: 1993
  end-page: 899
  ident: b0210
  article-title: A new approach for multiple objective decision making
  publication-title: Comput. Oper. Res.
– reference: M. Sosnowski, J. Krzywanski, K. Grabowska, R. Gnatowska, Polyhedral meshing in numerical analysis of conjugate heat transfer, in: P. Dancova (Ed.) Efm17 - Experimental Fluid Mechanics 2017, E D P Sciences, Cedex A, 2018.
– volume: 129
  start-page: 552
  year: 2018
  end-page: 564
  ident: b0085
  article-title: A novel single and multi-objective optimization approach based on Bees Algorithm Hybrid with Particle Swarm Optimization (BAHPSO): Application to thermal-economic design of plate fin heat exchangers
  publication-title: Int J Therm Sci
– volume: 2019
  start-page: R3
  year: 2019
  ident: b0160
  article-title: ANSYS Fluent Theory Guide
  publication-title: Release
– volume: 128
  start-page: 363
  year: 2019
  end-page: 377
  ident: b0010
  article-title: Elliptical double corrugated tubes for enhanced heat transfer
  publication-title: Int J Heat Mass Tran
– start-page: 47
  year: 2011
  end-page: 54
  ident: b0130
  article-title: Numerical optimization of flow-heat ducts with helical micro-fins, using Entropy Generation Minimization (EGM) method
  publication-title: in: IASME/WSEAS international conference on fluid mechanics & aerodynamics
– volume: 68
  start-page: 585
  year: 2014
  end-page: 598
  ident: b0150
  article-title: Multi-objective shape optimization of a tube bundle in cross-flow
  publication-title: Int J Heat Mass Tran
– volume: 38
  start-page: 277
  year: 1987
  end-page: 286
  ident: b0205
  article-title: A Reconciliation Among Discrete Compromise Solutions
  publication-title: Journal of the Operational Research Society
– volume: 145
  start-page: 27
  year: 2018
  end-page: 37
  ident: b0030
  article-title: Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 122
  start-page: 602
  year: 2018
  end-page: 613
  ident: b0015
  article-title: Numerical investigation on heat transfer performance and flow characteristics in enhanced tube with dimples and protrusions
  publication-title: Int J Heat Mass Tran
– volume: 42
  start-page: 62
  year: 2013
  end-page: 68
  ident: b0020
  article-title: Heat transfer and single-phase flow in internally grooved tubes
  publication-title: Int Commun Heat Mass
– volume: 170
  year: 2021
  ident: b0095
  article-title: Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications
  publication-title: Int J Heat Mass Tran
– volume: 122
  start-page: 134
  year: 2000
  end-page: 142
  ident: b0045
  article-title: Heat transfer and friction characteristics of internal helical-rib roughness
  publication-title: Journal of Heat Transfer-Transactions of the Asme
– volume: 54
  start-page: 603
  year: 2008
  end-page: 624
  ident: b0135
  article-title: Optimization of heat exchanger enhanced surfaces through multiobjective genetic algorithms
  publication-title: Numerical Heat Transfer, Part A: Applications
– volume: 91
  start-page: 1116
  year: 2015
  end-page: 1126
  ident: b0190
  article-title: Optimization of heat transfer enhancement of nanofluid in a channel with winglet vortex generator
  publication-title: Appl. Therm. Eng.
– volume: 79
  start-page: 1191
  year: 1996
  end-page: 1218
  ident: b0100
  article-title: Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes
  publication-title: J. Appl. Phys.
– volume: 88
  start-page: 384
  year: 2015
  end-page: 390
  ident: b0120
  article-title: The application of exergy destruction minimization in convective heat transfer optimization
  publication-title: Appl. Therm. Eng.
– reference: Xiaoyue, Liu, Jensen, Michael, K., Geometry Effects on Turbulent Flow and Heat Transfer in Internally Finned Tubes, Journal of Heat Transfer, 123 (2001) 1035-1044.
– volume: 50
  start-page: 2545
  year: 2007
  end-page: 2556
  ident: b0110
  article-title: Entransy—A physical quantity describing heat transfer ability
  publication-title: Int J Heat Mass Tran
– volume: 126
  start-page: 125
  year: 2018
  end-page: 136
  ident: b0005
  article-title: Numerical simulation of the heat transfer process in a corrugated tube
  publication-title: Int J Therm Sci
– volume: 215
  year: 2021
  ident: b0090
  article-title: Design optimization of a high-temperature fin-and-tube heat exchanger manifold – A case study
  publication-title: Energy
– volume: 88
  start-page: 735
  year: 2015
  end-page: 754
  ident: b0040
  article-title: Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow
  publication-title: Int J Heat Mass Tran
– volume: 38
  start-page: 340
  year: 2011
  end-page: 347
  ident: b0025
  article-title: Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube
  publication-title: Int Commun Heat Mass
– reference: S.M. Salim, S.C. Cheah, Wall y(+) Strategy for Dealing with Wall-bounded Turbulent Flows, in: O. Castillo, C. Douglas, D.D. Feng, J.A. Lee (Eds.) Imecs 2009: International Multi-Conference of Engineers and Computer Scientists, Vols I and Ii, Int Assoc Engineers-Iaeng, Hong Kong, 2009, pp. 2165-2170.
– volume: 160
  year: 2021
  ident: b0035
  article-title: Influence of co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification
  publication-title: Chemical Engineering and Processing - Process Intensification
– volume: 119
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0070
  article-title: Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm
  publication-title: Appl. Therm. Eng.
– volume: 132
  start-page: 1250
  year: 2019
  end-page: 1261
  ident: b0075
  article-title: Multi-objective heat transfer optimization of 2D helical micro-fins using NSGA-II
  publication-title: Int. J. Heat Mass Transf.
– volume: 95
  start-page: 275
  year: 2016
  end-page: 280
  ident: b0080
  article-title: Pareto based multi-objective optimization of turbulent heat transfer flow in helically corrugated tubes
  publication-title: Appl. Therm. Eng.
– volume: 122
  start-page: 11
  year: 2018
  end-page: 21
  ident: b0115
  article-title: Exergy destruction minimization: A principle to convective heat transfer enhancement
  publication-title: Int J Heat Mass Tran
– volume: 40
  start-page: 3545
  year: 2007
  end-page: 3550
  ident: b0105
  article-title: Constructal entropy generation minimization for heat and mass transfer in a solid–gas reactor based on triangular element
  publication-title: J. Phys. D Appl. Phys.
– volume: 50
  start-page: 425
  year: 2006
  end-page: 453
  ident: b0140
  article-title: Geometric parameterization and multiobjective shape optimization of convective periodic channels
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
– volume: 130
  start-page: 4
  year: 2008
  ident: b0185
  article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
  publication-title: J. Fluids Eng.-Trans. ASME
– volume: 37
  start-page: 279
  year: 2016
  end-page: 289
  ident: b0065
  article-title: Numerical-Theoretical Analysis of Heat Transfer, Pressure Drop, and Fouling in Internal Helically Ribbed Tubes of Different Geometries
  publication-title: Heat Transfer Eng
– year: 1981
  ident: b0200
  article-title: Methods for Multiple Attribute Decision Making
  publication-title: Multiple Attribute Decision Making
– volume: 14
  start-page: 9
  year: 2011
  end-page: 22
  ident: b0170
  article-title: Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation
  publication-title: Comput Methods Biomech Biomed Engin
– volume: 32
  start-page: 761
  year: 2008
  end-page: 775
  ident: b0050
  article-title: Experimental determination of heat transfer and friction in helically-finned tubes
  publication-title: Exp. Therm Fluid Sci.
– volume: 228
  start-page: 317
  year: 2014
  end-page: 327
  ident: b0060
  article-title: Prediction of pressure drop and heat transfer coefficient in helically grooved heat exchanger tubes using large eddy simulation
  publication-title: Proc. Inst. Mech. Eng. Part A-J. Power Energy
– volume: 42
  start-page: 62
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117640_b0020
  article-title: Heat transfer and single-phase flow in internally grooved tubes
  publication-title: Int Commun Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2012.12.001
– volume: 129
  start-page: 552
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117640_b0085
  article-title: A novel single and multi-objective optimization approach based on Bees Algorithm Hybrid with Particle Swarm Optimization (BAHPSO): Application to thermal-economic design of plate fin heat exchangers
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2018.04.009
– volume: 68
  start-page: 585
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117640_b0150
  article-title: Multi-objective shape optimization of a tube bundle in cross-flow
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2013.09.062
– ident: 10.1016/j.applthermaleng.2021.117640_b0125
  doi: 10.1115/1.1409267
– ident: 10.1016/j.applthermaleng.2021.117640_b0180
– ident: 10.1016/j.applthermaleng.2021.117640_b0175
  doi: 10.1051/epjconf/201818002096
– volume: 170
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117640_b0095
  article-title: Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2021.121002
– start-page: 47
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.117640_b0130
  article-title: Numerical optimization of flow-heat ducts with helical micro-fins, using Entropy Generation Minimization (EGM) method
– volume: 38
  start-page: 340
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.117640_b0025
  article-title: Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube
  publication-title: Int Commun Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2010.11.014
– volume: 122
  start-page: 11
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117640_b0115
  article-title: Exergy destruction minimization: A principle to convective heat transfer enhancement
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.01.048
– ident: 10.1016/j.applthermaleng.2021.117640_b0155
  doi: 10.1115/1.3450666
– volume: 37
  start-page: 279
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117640_b0065
  article-title: Numerical-Theoretical Analysis of Heat Transfer, Pressure Drop, and Fouling in Internal Helically Ribbed Tubes of Different Geometries
  publication-title: Heat Transfer Eng
  doi: 10.1080/01457632.2015.1052665
– volume: 130
  start-page: 4
  year: 2008
  ident: 10.1016/j.applthermaleng.2021.117640_b0185
  article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
  publication-title: J. Fluids Eng.-Trans. ASME
– volume: 50
  start-page: 425
  year: 2006
  ident: 10.1016/j.applthermaleng.2021.117640_b0140
  article-title: Geometric parameterization and multiobjective shape optimization of convective periodic channels
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
  doi: 10.1080/10407790600646792
– volume: 228
  start-page: 317
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117640_b0060
  article-title: Prediction of pressure drop and heat transfer coefficient in helically grooved heat exchanger tubes using large eddy simulation
  publication-title: Proc. Inst. Mech. Eng. Part A-J. Power Energy
  doi: 10.1177/0957650913515669
– volume: 126
  start-page: 125
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117640_b0005
  article-title: Numerical simulation of the heat transfer process in a corrugated tube
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2017.12.028
– volume: 2019
  start-page: R3
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117640_b0160
  article-title: ANSYS Fluent Theory Guide
  publication-title: Release
– year: 1981
  ident: 10.1016/j.applthermaleng.2021.117640_b0200
  article-title: Methods for Multiple Attribute Decision Making
  publication-title: Multiple Attribute Decision Making
  doi: 10.1007/978-3-642-48318-9_3
– volume: 88
  start-page: 735
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117640_b0040
  article-title: Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2015.04.008
– volume: 38
  start-page: 277
  year: 1987
  ident: 10.1016/j.applthermaleng.2021.117640_b0205
  article-title: A Reconciliation Among Discrete Compromise Solutions
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.1987.44
– volume: 122
  start-page: 602
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117640_b0015
  article-title: Numerical investigation on heat transfer performance and flow characteristics in enhanced tube with dimples and protrusions
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.01.106
– volume: 79
  start-page: 1191
  year: 1996
  ident: 10.1016/j.applthermaleng.2021.117640_b0100
  article-title: Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.362674
– volume: 88
  start-page: 384
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117640_b0120
  article-title: The application of exergy destruction minimization in convective heat transfer optimization
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.09.076
– volume: 12
  start-page: 301
  issue: 3
  year: 1969
  ident: 10.1016/j.applthermaleng.2021.117640_b0165
  article-title: The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/0017-9310(69)90012-X
– volume: 14
  start-page: 9
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.117640_b0170
  article-title: Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2010.518565
– volume: 54
  start-page: 603
  issue: 6
  year: 2008
  ident: 10.1016/j.applthermaleng.2021.117640_b0135
  article-title: Optimization of heat exchanger enhanced surfaces through multiobjective genetic algorithms
  publication-title: Numerical Heat Transfer, Part A: Applications
  doi: 10.1080/10407780802289335
– volume: 50
  start-page: 2545
  year: 2007
  ident: 10.1016/j.applthermaleng.2021.117640_b0110
  article-title: Entransy—A physical quantity describing heat transfer ability
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2006.11.034
– volume: 128
  start-page: 363
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117640_b0010
  article-title: Elliptical double corrugated tubes for enhanced heat transfer
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2018.09.003
– volume: 20
  start-page: 889
  year: 1993
  ident: 10.1016/j.applthermaleng.2021.117640_b0210
  article-title: A new approach for multiple objective decision making
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(93)90109-V
– volume: 95
  start-page: 275
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117640_b0080
  article-title: Pareto based multi-objective optimization of turbulent heat transfer flow in helically corrugated tubes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.11.033
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.applthermaleng.2021.117640_b0195
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 149
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117640_b0145
  article-title: Performance analysis of different transverse and axial micro-fins in a turbulent-flow channel
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2019.106185
– volume: 55
  start-page: 1375
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117640_b0055
  article-title: Prediction of fully developed turbulent heat transfer of internal helically ribbed tubes - An extension of Gnielinski equation
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2011.08.028
– volume: 91
  start-page: 1116
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117640_b0190
  article-title: Optimization of heat transfer enhancement of nanofluid in a channel with winglet vortex generator
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.08.066
– volume: 122
  start-page: 134
  year: 2000
  ident: 10.1016/j.applthermaleng.2021.117640_b0045
  article-title: Heat transfer and friction characteristics of internal helical-rib roughness
  publication-title: Journal of Heat Transfer-Transactions of the Asme
  doi: 10.1115/1.521444
– volume: 215
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117640_b0090
  article-title: Design optimization of a high-temperature fin-and-tube heat exchanger manifold – A case study
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119059
– volume: 40
  start-page: 3545
  year: 2007
  ident: 10.1016/j.applthermaleng.2021.117640_b0105
  article-title: Constructal entropy generation minimization for heat and mass transfer in a solid–gas reactor based on triangular element
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/40/11/044
– volume: 32
  start-page: 761
  year: 2008
  ident: 10.1016/j.applthermaleng.2021.117640_b0050
  article-title: Experimental determination of heat transfer and friction in helically-finned tubes
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2007.09.006
– volume: 132
  start-page: 1250
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117640_b0075
  article-title: Multi-objective heat transfer optimization of 2D helical micro-fins using NSGA-II
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.12.078
– volume: 160
  year: 2021
  ident: 10.1016/j.applthermaleng.2021.117640_b0035
  article-title: Influence of co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification
  publication-title: Chemical Engineering and Processing - Process Intensification
  doi: 10.1016/j.cep.2021.108304
– volume: 145
  start-page: 27
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117640_b0030
  article-title: Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.09.009
– volume: 119
  start-page: 1
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117640_b0070
  article-title: Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.025
SSID ssj0012874
Score 2.429289
Snippet •Increased heat exchange area and the secondary flow are the primary sources of heat transfer enhancement.•The local exergy destruction rates are related to...
The helical micro fin tubes (HFT) are commonly used in various double pipe heat exchangers because of the excellent processing and anti-fouling performance. It...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117640
SubjectTerms Artificial neural network
Artificial neural networks
Design optimization
Destruction
Energy consumption
Exergy
Exergy destruction minimization principle
Flow characteristics
Fluid dynamics
Fluid flow
Genetic algorithm
Genetic algorithms
Geometrical parameters optimization
Heat exchange
Heat exchangers
Heat transfer
Helical micro fin tubes
Hydraulics
Mathematical models
Mutual coupling
Optimization
Parameters
Parametric analysis
Pipes
Secondary flow
Structural design
Thermodynamics
Tubes
Title Optimization design of helical micro fin tubes based on exergy destruction minimization principle
URI https://dx.doi.org/10.1016/j.applthermaleng.2021.117640
https://www.proquest.com/docview/2615887342
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AKRWK
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGK1lhx6XdvdvHbxIKVYqkI9aKG3sHlppS9oPXjxt5vZR7XiQfC6bLLLJJmZbzLzDUJNpShxEbVBYhMXUCZckAJwNURb5YR3YtOM7XPA-0N6N2KjCuqWtTCQVlno_lynZ9q6eNIqpNlajMetx5CwxJs_YMDyuIZDwS-lAroYXH6s0zxC4HPPQBdLAnh7GzW_crzgkhj8rGkKbUs8WoxCuMXkEAr53Uz9UNiZFerto73CfcSd_A8PUMXODtHuN1LBI5Q-eC0wLcorsckyNPDc4RcL8bkJnkIKHnbjGV69KbvEYMcM9q9C96XndxhRcspiIB5ZT7Uo4_LHaNi7eer2g6KRQqAJi1dBrDnVqbbEeDhkHGHECC684BJDFLWxh0T-XKsksdRoahU3XESaUtUOTSwcISeoOpvP7CnCbe4E1Yry1B_ktlAJaWulbUjTKNY2djV0VcpN6oJlHJpdTGSZTvYqN6UuQeoyl3oNsfXoRc628cdx1-USyY3dI71h-OMM9XJlZXGKl9KjS-aVMKHR2b8_cI52IqicgOgNq6OqX0l74f2ZlWpkG7aBtjq39_3BJ0hA-dE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSCwHxCp2fOAa2sRbIg4IIVCBAgdA4mbFGxR1k1oOXPh2PGlSKOKAxDXyEo3tmXnj8RuAQ60Z9QlzUeYyHzEufZQjcLXUOO1lcGLzgu3zVjQe2dUTf5qCs-otDKZVlrp_pNMLbV1-qZXSrPVbrdp9THkWzB8yYAVcI9JpmGU8kYjAjj7GeR4xEroXqItnETafg8OvJC-8JUZHq5Nj3ZIAF5MYrzEFxkJ-t1M_NHZhhi6WYan0H8np6BdXYMp1V2HxG6vgGuR3QQ10yveVxBYpGqTnyYvDAF2bdDAHj_hWlwzftBsQNGSWhKZYfun5HXtUpLIEmUfGQ_WrwPw6PF6cP5w1orKSQmQoT4dRagQzuXHUBjxkPeXUSiGD5DJLNXNpwEThYOssc8wa5rSwQiaGMV2PbSo9pRsw0-113SaQuvCSGc1EHk5yXeqM1o02LmZ5khqX-i04ruSmTEkzjtUu2qrKJ3tVk1JXKHU1kvoW8HHv_ohu44_9TqolUhPbRwXL8McRdquVVeUxHqgAL3nQwpQl2_-e4ADmGw83TdW8vL3egYUEn1FgKIfvwkxYVbcXnJuh3i827ycHWftm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+design+of+helical+micro+fin+tubes+based+on+exergy+destruction+minimization+principle&rft.jtitle=Applied+thermal+engineering&rft.au=Xie%2C+JH&rft.au=Cui%2C+HC&rft.au=Liu%2C+ZC&rft.au=Liu%2C+W&rft.date=2022-01-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=200&rft.spage=1&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117640&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon