Optimization design of helical micro fin tubes based on exergy destruction minimization principle
•Increased heat exchange area and the secondary flow are the primary sources of heat transfer enhancement.•The local exergy destruction rates are related to the equivalent heat transfer coefficient and the unit pressure drop.•Optimal design tends to have a larger number of starts and a lower micro f...
        Saved in:
      
    
          | Published in | Applied thermal engineering Vol. 200; p. 117640 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Elsevier Ltd
    
        05.01.2022
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1359-4311 1873-5606  | 
| DOI | 10.1016/j.applthermaleng.2021.117640 | 
Cover
| Abstract | •Increased heat exchange area and the secondary flow are the primary sources of heat transfer enhancement.•The local exergy destruction rates are related to the equivalent heat transfer coefficient and the unit pressure drop.•Optimal design tends to have a larger number of starts and a lower micro fin height.•The exergy destruction minimization principle is proved to be still applicable in the case of the periodic model and fully developed turbulence.
The helical micro fin tubes (HFT) are commonly used in various double pipe heat exchangers because of the excellent processing and anti-fouling performance. It is of great significance to further improve the overall efficiency of the HFT so as to diminish energy consumption. In this work, the heat transfer and flow characteristics of the HFT are studied by numerical simulation. The results show that the heat transfer enhancement factors of the HFT are the secondary flow generated near the wall and the increase of the heat exchange area. In addition, the effects of the geometrical parameters on thermal–hydraulic performance are studied at Re = 36,636. It is found that the micro fin height (e), the helical angle (φ), and the number of starts (Ns) have a significant impact on the overall performance, and there is a strong mutual coupling between them. According to the parametric analysis, the HFT with a low micro fin height and a large number of starts is considered to be a better geometrical type. Finally, in order to select (or design) the HFT quickly under the specific working conditions, based on the exergy destruction minimization principle, the geometrical parameters are optimized by using the artificial neural network and genetic algorithm. An optimal solution (e = 0.23 mm, φ = 36.1°, and Ns = 66) is selected from the Pareto front by the TOPSIS method. The results indicate that the optimal solution has a sensible balance between the exergy destruction caused by heat transfer and fluid flow. Besides, it has a better thermal–hydraulic performance as well (PEC = 1.73). This work fills the gap of heat transfer and the geometrical optimization study of HFT based on the second law of thermodynamics and provides strong evidence that the exergy destruction minimization principle is still applicable in the case of the periodic model and fully developed turbulence. We hope that it will be contributed to the structural design of the HFT. | 
    
|---|---|
| AbstractList | The helical micro fin tubes (HFT) are commonly used in various double pipe heat exchangers because of the excellent processing and anti-fouling performance. It is of great significance to further improve the overall efficiency of the HFT so as to diminish energy consumption. In this work, the heat transfer and flow characteristics of the HFT are studied by numerical simulation. The results show that the heat transfer enhancement factors of the HFT are the secondary flow generated near the wall and the increase of the heat exchange area. In addition, the effects of the geometrical parameters on thermal–hydraulic performance are studied at Re = 36,636. It is found that the micro fin height (e), the helical angle (φ), and the number of starts (Ns) have a significant impact on the overall performance, and there is a strong mutual coupling between them. According to the parametric analysis, the HFT with a low micro fin height and a large number of starts is considered to be a better geometrical type. Finally, in order to select (or design) the HFT quickly under the specific working conditions, based on the exergy destruction minimization principle, the geometrical parameters are optimized by using the artificial neural network and genetic algorithm. An optimal solution (e = 0.23 mm, φ = 36.1°, and Ns = 66) is selected from the Pareto front by the TOPSIS method. The results indicate that the optimal solution has a sensible balance between the exergy destruction caused by heat transfer and fluid flow. Besides, it has a better thermal–hydraulic performance as well (PEC = 1.73). This work fills the gap of heat transfer and the geometrical optimization study of HFT based on the second law of thermodynamics and provides strong evidence that the exergy destruction minimization principle is still applicable in the case of the periodic model and fully developed turbulence. We hope that it will be contributed to the structural design of the HFT. •Increased heat exchange area and the secondary flow are the primary sources of heat transfer enhancement.•The local exergy destruction rates are related to the equivalent heat transfer coefficient and the unit pressure drop.•Optimal design tends to have a larger number of starts and a lower micro fin height.•The exergy destruction minimization principle is proved to be still applicable in the case of the periodic model and fully developed turbulence. The helical micro fin tubes (HFT) are commonly used in various double pipe heat exchangers because of the excellent processing and anti-fouling performance. It is of great significance to further improve the overall efficiency of the HFT so as to diminish energy consumption. In this work, the heat transfer and flow characteristics of the HFT are studied by numerical simulation. The results show that the heat transfer enhancement factors of the HFT are the secondary flow generated near the wall and the increase of the heat exchange area. In addition, the effects of the geometrical parameters on thermal–hydraulic performance are studied at Re = 36,636. It is found that the micro fin height (e), the helical angle (φ), and the number of starts (Ns) have a significant impact on the overall performance, and there is a strong mutual coupling between them. According to the parametric analysis, the HFT with a low micro fin height and a large number of starts is considered to be a better geometrical type. Finally, in order to select (or design) the HFT quickly under the specific working conditions, based on the exergy destruction minimization principle, the geometrical parameters are optimized by using the artificial neural network and genetic algorithm. An optimal solution (e = 0.23 mm, φ = 36.1°, and Ns = 66) is selected from the Pareto front by the TOPSIS method. The results indicate that the optimal solution has a sensible balance between the exergy destruction caused by heat transfer and fluid flow. Besides, it has a better thermal–hydraulic performance as well (PEC = 1.73). This work fills the gap of heat transfer and the geometrical optimization study of HFT based on the second law of thermodynamics and provides strong evidence that the exergy destruction minimization principle is still applicable in the case of the periodic model and fully developed turbulence. We hope that it will be contributed to the structural design of the HFT.  | 
    
| ArticleNumber | 117640 | 
    
| Author | Liu, W. Xie, J.H. Liu, Z.C. Cui, H.C.  | 
    
| Author_xml | – sequence: 1 givenname: J.H. surname: Xie fullname: Xie, J.H. – sequence: 2 givenname: H.C. surname: Cui fullname: Cui, H.C. – sequence: 3 givenname: Z.C. surname: Liu fullname: Liu, Z.C. – sequence: 4 givenname: W. surname: Liu fullname: Liu, W. email: w_liu@hust.edu.cn  | 
    
| BookMark | eNqNkMtOwzAQRS1UJKDwD5Fgm-JXnERiAxUvqVI3sLYce1JcJU6wXQR8PS5FQrDqyrO493jmnKCJGxwgdEHwjGAiLtczNY5dfAHfqw7cakYxJTNCSsHxATomVcnyQmAxSTMr6pwzQo7QSQhrjAmtSn6M1HKMtrefKtrBZQaCXblsaLMX6KxWXdZb7YestS6LmwZC1qgAJktReAe_-tg2ot_o73Zv3S9q9NZpO3Zwig5b1QU4-3mn6Pnu9mn-kC-W94_z60WuWVHFvNKCa6WBGV4XpmUFM6UoCSW1YQ2HivCKUdrUNXCjOTTCiJJqzhtMTFW2jE3R-Y47-uF1k9aS62HjXfpSUkGKKsngNKWudql0VggeWpkW7ZX_kATLrVS5ln-lyq1UuZOa6jf_6trG74OjV7bbF3K3g0DS8WbBy6AtOA3GetBRmsHuB_oCN96jOw | 
    
| CitedBy_id | crossref_primary_10_1016_j_csite_2022_102391 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124541 crossref_primary_10_3390_pr11072192 crossref_primary_10_1080_10407782_2022_2156947 crossref_primary_10_1016_j_applthermaleng_2025_125418 crossref_primary_10_1360_SST_2021_0578 crossref_primary_10_1360_SST_2023_0055 crossref_primary_10_1016_j_ijthermalsci_2022_107895 crossref_primary_10_1109_TCE_2024_3416513 crossref_primary_10_3390_pr10020249 crossref_primary_10_1080_14685248_2022_2134571 crossref_primary_10_1007_s43153_022_00238_2 crossref_primary_10_1016_j_csite_2023_103852 crossref_primary_10_1051_e3sconf_202346501019 crossref_primary_10_1016_j_rineng_2022_100471 crossref_primary_10_1016_j_csite_2023_103689  | 
    
| Cites_doi | 10.1016/j.icheatmasstransfer.2012.12.001 10.1016/j.ijthermalsci.2018.04.009 10.1016/j.ijheatmasstransfer.2013.09.062 10.1115/1.1409267 10.1051/epjconf/201818002096 10.1016/j.ijheatmasstransfer.2021.121002 10.1016/j.icheatmasstransfer.2010.11.014 10.1016/j.ijheatmasstransfer.2018.01.048 10.1115/1.3450666 10.1080/01457632.2015.1052665 10.1080/10407790600646792 10.1177/0957650913515669 10.1016/j.ijthermalsci.2017.12.028 10.1007/978-3-642-48318-9_3 10.1016/j.ijheatmasstransfer.2015.04.008 10.1057/jors.1987.44 10.1016/j.ijheatmasstransfer.2018.01.106 10.1063/1.362674 10.1016/j.applthermaleng.2014.09.076 10.1016/0017-9310(69)90012-X 10.1080/10255842.2010.518565 10.1080/10407780802289335 10.1016/j.ijheatmasstransfer.2006.11.034 10.1016/j.ijheatmasstransfer.2018.09.003 10.1016/0305-0548(93)90109-V 10.1016/j.applthermaleng.2015.11.033 10.1109/4235.996017 10.1016/j.ijthermalsci.2019.106185 10.1016/j.ijheatmasstransfer.2011.08.028 10.1016/j.applthermaleng.2015.08.066 10.1115/1.521444 10.1016/j.energy.2020.119059 10.1088/0022-3727/40/11/044 10.1016/j.expthermflusci.2007.09.006 10.1016/j.ijheatmasstransfer.2018.12.078 10.1016/j.cep.2021.108304 10.1016/j.applthermaleng.2018.09.009 10.1016/j.applthermaleng.2017.03.025  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 5, 2022  | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 5, 2022  | 
    
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7  | 
    
| DOI | 10.1016/j.applthermaleng.2021.117640 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-5606 | 
    
| ExternalDocumentID | 10_1016_j_applthermaleng_2021_117640 S1359431121010668  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB HZ~ R2- SEW ~HD 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 KR7 SSH  | 
    
| ID | FETCH-LOGICAL-c358t-8c64cace3d495df353d7671219d3b4e8148322b99e4dc4eb6d672c44b01d87f33 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1359-4311 | 
    
| IngestDate | Fri Jul 25 04:14:39 EDT 2025 Wed Oct 29 21:07:48 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Mon Mar 17 07:49:10 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Helical micro fin tubes Exergy destruction minimization principle Artificial neural network Genetic algorithm Geometrical parameters optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c358t-8c64cace3d495df353d7671219d3b4e8148322b99e4dc4eb6d672c44b01d87f33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2615887342 | 
    
| PQPubID | 2045278 | 
    
| ParticipantIDs | proquest_journals_2615887342 crossref_primary_10_1016_j_applthermaleng_2021_117640 crossref_citationtrail_10_1016_j_applthermaleng_2021_117640 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117640  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-01-05 | 
    
| PublicationDateYYYYMMDD | 2022-01-05 | 
    
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-05 day: 05  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Applied thermal engineering | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Pethkool, Eiamsa-ard, Kwankaomeng, Promvonge (b0025) 2011; 38 Navickaitė, Cattani, Bahl, Engelbrecht (b0010) 2019; 128 Shuai, Zheng, Liang, Wang, Hu, Jie (b0015) 2018; 122 Celik, Ghia, Roache, Freitas (b0185) 2008; 130 Wijayanta, Yaningsih, Aziz, Miyazaki, Koyama (b0030) 2018; 145 Hwang, Yoon (b0200) 1981 Safikhani, Eiamsa-ard (b0080) 2016; 95 Guo, Zhu, Liang (b0110) 2007; 50 Hwang, Lai, Liu (b0210) 1993; 20 M. Sosnowski, J. Krzywanski, K. Grabowska, R. Gnatowska, Polyhedral meshing in numerical analysis of conjugate heat transfer, in: P. Dancova (Ed.) Efm17 - Experimental Fluid Mechanics 2017, E D P Sciences, Cedex A, 2018. Ji, Zhang, He, Tao (b0055) 2012; 55 Cavazzuti, Corticelli (b0135) 2008; 54 Webb, Narayanamurthy, Thors (b0045) 2000; 122 Li, Fu, Li, Li, Thors (b0065) 2016; 37 Mekki, Langer, Lynch (b0095) 2021; 170 Deb, Pratap, Agarwal, Meyarivan (b0195) 2002; 6 S.M. Salim, S.C. Cheah, Wall y(+) Strategy for Dealing with Wall-bounded Turbulent Flows, in: O. Castillo, C. Douglas, D.D. Feng, J.A. Lee (Eds.) Imecs 2009: International Multi-Conference of Engineers and Computer Scientists, Vols I and Ii, Int Assoc Engineers-Iaeng, Hong Kong, 2009, pp. 2165-2170. Wang, Liu, Liu (b0120) 2015; 88 Nobile, Pinto, Rizzetto (b0140) 2006; 50 Inc (b0160) 2019; 2019 Xiaoyue, Liu, Jensen, Michael, K., Geometry Effects on Turbulent Flow and Heat Transfer in Internally Finned Tubes, Journal of Heat Transfer, 123 (2001) 1035-1044. Jasinski (b0130) 2011 Mann, Eckels (b0075) 2019; 132 Spiegel, Redel, Zhang, Struffert, Hornegger, Grossman, Doerfler, Karmonik (b0170) 2011; 14 Soleimani, Campbel, Eckels (b0145) 2020; 149 Wolfshtein (b0165) 1969; 12 Eiamsa-ard, Changcharoen, Beigzadeh, Eiamsa-ard, Wongcharee, Chuwattanakul (b0035) 2021; 160 Aroonrat, Jumpholkul, Leelaprachakul, Dalkilic, Mahian, Wongwises (b0020) 2013; 42 Ji, Jacobi, He, Tao (b0040) 2015; 88 Córcoles-Tendero, Belmonte, Molina, Almendros-Ibáñez (b0005) 2018; 126 Zdaniuk, Chamra, Mago (b0050) 2008; 32 Zarea, Kashkooli, Soltani, Rezaeian (b0085) 2018; 129 Hernadi, Kristof (b0060) 2014; 228 Bejan (b0100) 1996; 79 Liu, Liu, Wang, Zheng, Liu (b0115) 2018; 122 Ranut, Janiga, Nobile, Thévenin (b0150) 2014; 68 Abdollahi, Shams (b0190) 2015; 91 Yoon (b0205) 1987; 38 Ocłoń, Łopata, Stelmach, Li, Zhang, Mzad, Tao (b0090) 2021; 215 S. Patankar, C. Liu, E. Sparrow, Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area, 99 (1977) 180-186. Zhou, Chen, Sun (b0105) 2007; 40 Dastmalchi, Sheikhzadeh, Arefmanesh (b0070) 2017; 119 Ocłoń (10.1016/j.applthermaleng.2021.117640_b0090) 2021; 215 Soleimani (10.1016/j.applthermaleng.2021.117640_b0145) 2020; 149 Liu (10.1016/j.applthermaleng.2021.117640_b0115) 2018; 122 Córcoles-Tendero (10.1016/j.applthermaleng.2021.117640_b0005) 2018; 126 Navickaitė (10.1016/j.applthermaleng.2021.117640_b0010) 2019; 128 Zarea (10.1016/j.applthermaleng.2021.117640_b0085) 2018; 129 Shuai (10.1016/j.applthermaleng.2021.117640_b0015) 2018; 122 Ji (10.1016/j.applthermaleng.2021.117640_b0040) 2015; 88 Ji (10.1016/j.applthermaleng.2021.117640_b0055) 2012; 55 Wang (10.1016/j.applthermaleng.2021.117640_b0120) 2015; 88 Aroonrat (10.1016/j.applthermaleng.2021.117640_b0020) 2013; 42 Mann (10.1016/j.applthermaleng.2021.117640_b0075) 2019; 132 Spiegel (10.1016/j.applthermaleng.2021.117640_b0170) 2011; 14 Webb (10.1016/j.applthermaleng.2021.117640_b0045) 2000; 122 Wijayanta (10.1016/j.applthermaleng.2021.117640_b0030) 2018; 145 Cavazzuti (10.1016/j.applthermaleng.2021.117640_b0135) 2008; 54 Hernadi (10.1016/j.applthermaleng.2021.117640_b0060) 2014; 228 Pethkool (10.1016/j.applthermaleng.2021.117640_b0025) 2011; 38 10.1016/j.applthermaleng.2021.117640_b0175 Safikhani (10.1016/j.applthermaleng.2021.117640_b0080) 2016; 95 Inc (10.1016/j.applthermaleng.2021.117640_b0160) 2019; 2019 10.1016/j.applthermaleng.2021.117640_b0155 Li (10.1016/j.applthermaleng.2021.117640_b0065) 2016; 37 Yoon (10.1016/j.applthermaleng.2021.117640_b0205) 1987; 38 Hwang (10.1016/j.applthermaleng.2021.117640_b0210) 1993; 20 Wolfshtein (10.1016/j.applthermaleng.2021.117640_b0165) 1969; 12 Abdollahi (10.1016/j.applthermaleng.2021.117640_b0190) 2015; 91 10.1016/j.applthermaleng.2021.117640_b0180 Nobile (10.1016/j.applthermaleng.2021.117640_b0140) 2006; 50 Ranut (10.1016/j.applthermaleng.2021.117640_b0150) 2014; 68 Celik (10.1016/j.applthermaleng.2021.117640_b0185) 2008; 130 Hwang (10.1016/j.applthermaleng.2021.117640_b0200) 1981 Eiamsa-ard (10.1016/j.applthermaleng.2021.117640_b0035) 2021; 160 Jasinski (10.1016/j.applthermaleng.2021.117640_b0130) 2011 Deb (10.1016/j.applthermaleng.2021.117640_b0195) 2002; 6 Dastmalchi (10.1016/j.applthermaleng.2021.117640_b0070) 2017; 119 Mekki (10.1016/j.applthermaleng.2021.117640_b0095) 2021; 170 Zdaniuk (10.1016/j.applthermaleng.2021.117640_b0050) 2008; 32 Bejan (10.1016/j.applthermaleng.2021.117640_b0100) 1996; 79 Guo (10.1016/j.applthermaleng.2021.117640_b0110) 2007; 50 10.1016/j.applthermaleng.2021.117640_b0125 Zhou (10.1016/j.applthermaleng.2021.117640_b0105) 2007; 40  | 
    
| References_xml | – volume: 55 start-page: 1375 year: 2012 end-page: 1384 ident: b0055 article-title: Prediction of fully developed turbulent heat transfer of internal helically ribbed tubes - An extension of Gnielinski equation publication-title: Int J Heat Mass Tran – reference: S. Patankar, C. Liu, E. Sparrow, Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area, 99 (1977) 180-186. – volume: 12 start-page: 301 year: 1969 end-page: 318 ident: b0165 article-title: The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient publication-title: Int J Heat Mass Tran – volume: 149 year: 2020 ident: b0145 article-title: Performance analysis of different transverse and axial micro-fins in a turbulent-flow channel publication-title: Int J Therm Sci – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0195 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 889 year: 1993 end-page: 899 ident: b0210 article-title: A new approach for multiple objective decision making publication-title: Comput. Oper. Res. – reference: M. Sosnowski, J. Krzywanski, K. Grabowska, R. Gnatowska, Polyhedral meshing in numerical analysis of conjugate heat transfer, in: P. Dancova (Ed.) Efm17 - Experimental Fluid Mechanics 2017, E D P Sciences, Cedex A, 2018. – volume: 129 start-page: 552 year: 2018 end-page: 564 ident: b0085 article-title: A novel single and multi-objective optimization approach based on Bees Algorithm Hybrid with Particle Swarm Optimization (BAHPSO): Application to thermal-economic design of plate fin heat exchangers publication-title: Int J Therm Sci – volume: 2019 start-page: R3 year: 2019 ident: b0160 article-title: ANSYS Fluent Theory Guide publication-title: Release – volume: 128 start-page: 363 year: 2019 end-page: 377 ident: b0010 article-title: Elliptical double corrugated tubes for enhanced heat transfer publication-title: Int J Heat Mass Tran – start-page: 47 year: 2011 end-page: 54 ident: b0130 article-title: Numerical optimization of flow-heat ducts with helical micro-fins, using Entropy Generation Minimization (EGM) method publication-title: in: IASME/WSEAS international conference on fluid mechanics & aerodynamics – volume: 68 start-page: 585 year: 2014 end-page: 598 ident: b0150 article-title: Multi-objective shape optimization of a tube bundle in cross-flow publication-title: Int J Heat Mass Tran – volume: 38 start-page: 277 year: 1987 end-page: 286 ident: b0205 article-title: A Reconciliation Among Discrete Compromise Solutions publication-title: Journal of the Operational Research Society – volume: 145 start-page: 27 year: 2018 end-page: 37 ident: b0030 article-title: Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger publication-title: Appl. Therm. Eng. – volume: 122 start-page: 602 year: 2018 end-page: 613 ident: b0015 article-title: Numerical investigation on heat transfer performance and flow characteristics in enhanced tube with dimples and protrusions publication-title: Int J Heat Mass Tran – volume: 42 start-page: 62 year: 2013 end-page: 68 ident: b0020 article-title: Heat transfer and single-phase flow in internally grooved tubes publication-title: Int Commun Heat Mass – volume: 170 year: 2021 ident: b0095 article-title: Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications publication-title: Int J Heat Mass Tran – volume: 122 start-page: 134 year: 2000 end-page: 142 ident: b0045 article-title: Heat transfer and friction characteristics of internal helical-rib roughness publication-title: Journal of Heat Transfer-Transactions of the Asme – volume: 54 start-page: 603 year: 2008 end-page: 624 ident: b0135 article-title: Optimization of heat exchanger enhanced surfaces through multiobjective genetic algorithms publication-title: Numerical Heat Transfer, Part A: Applications – volume: 91 start-page: 1116 year: 2015 end-page: 1126 ident: b0190 article-title: Optimization of heat transfer enhancement of nanofluid in a channel with winglet vortex generator publication-title: Appl. Therm. Eng. – volume: 79 start-page: 1191 year: 1996 end-page: 1218 ident: b0100 article-title: Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes publication-title: J. Appl. Phys. – volume: 88 start-page: 384 year: 2015 end-page: 390 ident: b0120 article-title: The application of exergy destruction minimization in convective heat transfer optimization publication-title: Appl. Therm. Eng. – reference: Xiaoyue, Liu, Jensen, Michael, K., Geometry Effects on Turbulent Flow and Heat Transfer in Internally Finned Tubes, Journal of Heat Transfer, 123 (2001) 1035-1044. – volume: 50 start-page: 2545 year: 2007 end-page: 2556 ident: b0110 article-title: Entransy—A physical quantity describing heat transfer ability publication-title: Int J Heat Mass Tran – volume: 126 start-page: 125 year: 2018 end-page: 136 ident: b0005 article-title: Numerical simulation of the heat transfer process in a corrugated tube publication-title: Int J Therm Sci – volume: 215 year: 2021 ident: b0090 article-title: Design optimization of a high-temperature fin-and-tube heat exchanger manifold – A case study publication-title: Energy – volume: 88 start-page: 735 year: 2015 end-page: 754 ident: b0040 article-title: Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow publication-title: Int J Heat Mass Tran – volume: 38 start-page: 340 year: 2011 end-page: 347 ident: b0025 article-title: Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube publication-title: Int Commun Heat Mass – reference: S.M. Salim, S.C. Cheah, Wall y(+) Strategy for Dealing with Wall-bounded Turbulent Flows, in: O. Castillo, C. Douglas, D.D. Feng, J.A. Lee (Eds.) Imecs 2009: International Multi-Conference of Engineers and Computer Scientists, Vols I and Ii, Int Assoc Engineers-Iaeng, Hong Kong, 2009, pp. 2165-2170. – volume: 160 year: 2021 ident: b0035 article-title: Influence of co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification publication-title: Chemical Engineering and Processing - Process Intensification – volume: 119 start-page: 1 year: 2017 end-page: 9 ident: b0070 article-title: Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm publication-title: Appl. Therm. Eng. – volume: 132 start-page: 1250 year: 2019 end-page: 1261 ident: b0075 article-title: Multi-objective heat transfer optimization of 2D helical micro-fins using NSGA-II publication-title: Int. J. Heat Mass Transf. – volume: 95 start-page: 275 year: 2016 end-page: 280 ident: b0080 article-title: Pareto based multi-objective optimization of turbulent heat transfer flow in helically corrugated tubes publication-title: Appl. Therm. Eng. – volume: 122 start-page: 11 year: 2018 end-page: 21 ident: b0115 article-title: Exergy destruction minimization: A principle to convective heat transfer enhancement publication-title: Int J Heat Mass Tran – volume: 40 start-page: 3545 year: 2007 end-page: 3550 ident: b0105 article-title: Constructal entropy generation minimization for heat and mass transfer in a solid–gas reactor based on triangular element publication-title: J. Phys. D Appl. Phys. – volume: 50 start-page: 425 year: 2006 end-page: 453 ident: b0140 article-title: Geometric parameterization and multiobjective shape optimization of convective periodic channels publication-title: Numerical Heat Transfer, Part B: Fundamentals – volume: 130 start-page: 4 year: 2008 ident: b0185 article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications publication-title: J. Fluids Eng.-Trans. ASME – volume: 37 start-page: 279 year: 2016 end-page: 289 ident: b0065 article-title: Numerical-Theoretical Analysis of Heat Transfer, Pressure Drop, and Fouling in Internal Helically Ribbed Tubes of Different Geometries publication-title: Heat Transfer Eng – year: 1981 ident: b0200 article-title: Methods for Multiple Attribute Decision Making publication-title: Multiple Attribute Decision Making – volume: 14 start-page: 9 year: 2011 end-page: 22 ident: b0170 article-title: Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation publication-title: Comput Methods Biomech Biomed Engin – volume: 32 start-page: 761 year: 2008 end-page: 775 ident: b0050 article-title: Experimental determination of heat transfer and friction in helically-finned tubes publication-title: Exp. Therm Fluid Sci. – volume: 228 start-page: 317 year: 2014 end-page: 327 ident: b0060 article-title: Prediction of pressure drop and heat transfer coefficient in helically grooved heat exchanger tubes using large eddy simulation publication-title: Proc. Inst. Mech. Eng. Part A-J. Power Energy – volume: 42 start-page: 62 year: 2013 ident: 10.1016/j.applthermaleng.2021.117640_b0020 article-title: Heat transfer and single-phase flow in internally grooved tubes publication-title: Int Commun Heat Mass doi: 10.1016/j.icheatmasstransfer.2012.12.001 – volume: 129 start-page: 552 year: 2018 ident: 10.1016/j.applthermaleng.2021.117640_b0085 article-title: A novel single and multi-objective optimization approach based on Bees Algorithm Hybrid with Particle Swarm Optimization (BAHPSO): Application to thermal-economic design of plate fin heat exchangers publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2018.04.009 – volume: 68 start-page: 585 year: 2014 ident: 10.1016/j.applthermaleng.2021.117640_b0150 article-title: Multi-objective shape optimization of a tube bundle in cross-flow publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2013.09.062 – ident: 10.1016/j.applthermaleng.2021.117640_b0125 doi: 10.1115/1.1409267 – ident: 10.1016/j.applthermaleng.2021.117640_b0180 – ident: 10.1016/j.applthermaleng.2021.117640_b0175 doi: 10.1051/epjconf/201818002096 – volume: 170 year: 2021 ident: 10.1016/j.applthermaleng.2021.117640_b0095 article-title: Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2021.121002 – start-page: 47 year: 2011 ident: 10.1016/j.applthermaleng.2021.117640_b0130 article-title: Numerical optimization of flow-heat ducts with helical micro-fins, using Entropy Generation Minimization (EGM) method – volume: 38 start-page: 340 year: 2011 ident: 10.1016/j.applthermaleng.2021.117640_b0025 article-title: Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube publication-title: Int Commun Heat Mass doi: 10.1016/j.icheatmasstransfer.2010.11.014 – volume: 122 start-page: 11 year: 2018 ident: 10.1016/j.applthermaleng.2021.117640_b0115 article-title: Exergy destruction minimization: A principle to convective heat transfer enhancement publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.01.048 – ident: 10.1016/j.applthermaleng.2021.117640_b0155 doi: 10.1115/1.3450666 – volume: 37 start-page: 279 year: 2016 ident: 10.1016/j.applthermaleng.2021.117640_b0065 article-title: Numerical-Theoretical Analysis of Heat Transfer, Pressure Drop, and Fouling in Internal Helically Ribbed Tubes of Different Geometries publication-title: Heat Transfer Eng doi: 10.1080/01457632.2015.1052665 – volume: 130 start-page: 4 year: 2008 ident: 10.1016/j.applthermaleng.2021.117640_b0185 article-title: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications publication-title: J. Fluids Eng.-Trans. ASME – volume: 50 start-page: 425 year: 2006 ident: 10.1016/j.applthermaleng.2021.117640_b0140 article-title: Geometric parameterization and multiobjective shape optimization of convective periodic channels publication-title: Numerical Heat Transfer, Part B: Fundamentals doi: 10.1080/10407790600646792 – volume: 228 start-page: 317 year: 2014 ident: 10.1016/j.applthermaleng.2021.117640_b0060 article-title: Prediction of pressure drop and heat transfer coefficient in helically grooved heat exchanger tubes using large eddy simulation publication-title: Proc. Inst. Mech. Eng. Part A-J. Power Energy doi: 10.1177/0957650913515669 – volume: 126 start-page: 125 year: 2018 ident: 10.1016/j.applthermaleng.2021.117640_b0005 article-title: Numerical simulation of the heat transfer process in a corrugated tube publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2017.12.028 – volume: 2019 start-page: R3 year: 2019 ident: 10.1016/j.applthermaleng.2021.117640_b0160 article-title: ANSYS Fluent Theory Guide publication-title: Release – year: 1981 ident: 10.1016/j.applthermaleng.2021.117640_b0200 article-title: Methods for Multiple Attribute Decision Making publication-title: Multiple Attribute Decision Making doi: 10.1007/978-3-642-48318-9_3 – volume: 88 start-page: 735 year: 2015 ident: 10.1016/j.applthermaleng.2021.117640_b0040 article-title: Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2015.04.008 – volume: 38 start-page: 277 year: 1987 ident: 10.1016/j.applthermaleng.2021.117640_b0205 article-title: A Reconciliation Among Discrete Compromise Solutions publication-title: Journal of the Operational Research Society doi: 10.1057/jors.1987.44 – volume: 122 start-page: 602 year: 2018 ident: 10.1016/j.applthermaleng.2021.117640_b0015 article-title: Numerical investigation on heat transfer performance and flow characteristics in enhanced tube with dimples and protrusions publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.01.106 – volume: 79 start-page: 1191 year: 1996 ident: 10.1016/j.applthermaleng.2021.117640_b0100 article-title: Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes publication-title: J. Appl. Phys. doi: 10.1063/1.362674 – volume: 88 start-page: 384 year: 2015 ident: 10.1016/j.applthermaleng.2021.117640_b0120 article-title: The application of exergy destruction minimization in convective heat transfer optimization publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.09.076 – volume: 12 start-page: 301 issue: 3 year: 1969 ident: 10.1016/j.applthermaleng.2021.117640_b0165 article-title: The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient publication-title: Int J Heat Mass Tran doi: 10.1016/0017-9310(69)90012-X – volume: 14 start-page: 9 year: 2011 ident: 10.1016/j.applthermaleng.2021.117640_b0170 article-title: Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2010.518565 – volume: 54 start-page: 603 issue: 6 year: 2008 ident: 10.1016/j.applthermaleng.2021.117640_b0135 article-title: Optimization of heat exchanger enhanced surfaces through multiobjective genetic algorithms publication-title: Numerical Heat Transfer, Part A: Applications doi: 10.1080/10407780802289335 – volume: 50 start-page: 2545 year: 2007 ident: 10.1016/j.applthermaleng.2021.117640_b0110 article-title: Entransy—A physical quantity describing heat transfer ability publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2006.11.034 – volume: 128 start-page: 363 year: 2019 ident: 10.1016/j.applthermaleng.2021.117640_b0010 article-title: Elliptical double corrugated tubes for enhanced heat transfer publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2018.09.003 – volume: 20 start-page: 889 year: 1993 ident: 10.1016/j.applthermaleng.2021.117640_b0210 article-title: A new approach for multiple objective decision making publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(93)90109-V – volume: 95 start-page: 275 year: 2016 ident: 10.1016/j.applthermaleng.2021.117640_b0080 article-title: Pareto based multi-objective optimization of turbulent heat transfer flow in helically corrugated tubes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.11.033 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.applthermaleng.2021.117640_b0195 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 149 year: 2020 ident: 10.1016/j.applthermaleng.2021.117640_b0145 article-title: Performance analysis of different transverse and axial micro-fins in a turbulent-flow channel publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2019.106185 – volume: 55 start-page: 1375 year: 2012 ident: 10.1016/j.applthermaleng.2021.117640_b0055 article-title: Prediction of fully developed turbulent heat transfer of internal helically ribbed tubes - An extension of Gnielinski equation publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2011.08.028 – volume: 91 start-page: 1116 year: 2015 ident: 10.1016/j.applthermaleng.2021.117640_b0190 article-title: Optimization of heat transfer enhancement of nanofluid in a channel with winglet vortex generator publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.08.066 – volume: 122 start-page: 134 year: 2000 ident: 10.1016/j.applthermaleng.2021.117640_b0045 article-title: Heat transfer and friction characteristics of internal helical-rib roughness publication-title: Journal of Heat Transfer-Transactions of the Asme doi: 10.1115/1.521444 – volume: 215 year: 2021 ident: 10.1016/j.applthermaleng.2021.117640_b0090 article-title: Design optimization of a high-temperature fin-and-tube heat exchanger manifold – A case study publication-title: Energy doi: 10.1016/j.energy.2020.119059 – volume: 40 start-page: 3545 year: 2007 ident: 10.1016/j.applthermaleng.2021.117640_b0105 article-title: Constructal entropy generation minimization for heat and mass transfer in a solid–gas reactor based on triangular element publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/40/11/044 – volume: 32 start-page: 761 year: 2008 ident: 10.1016/j.applthermaleng.2021.117640_b0050 article-title: Experimental determination of heat transfer and friction in helically-finned tubes publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2007.09.006 – volume: 132 start-page: 1250 year: 2019 ident: 10.1016/j.applthermaleng.2021.117640_b0075 article-title: Multi-objective heat transfer optimization of 2D helical micro-fins using NSGA-II publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.12.078 – volume: 160 year: 2021 ident: 10.1016/j.applthermaleng.2021.117640_b0035 article-title: Influence of co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification publication-title: Chemical Engineering and Processing - Process Intensification doi: 10.1016/j.cep.2021.108304 – volume: 145 start-page: 27 year: 2018 ident: 10.1016/j.applthermaleng.2021.117640_b0030 article-title: Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.09.009 – volume: 119 start-page: 1 year: 2017 ident: 10.1016/j.applthermaleng.2021.117640_b0070 article-title: Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.025  | 
    
| SSID | ssj0012874 | 
    
| Score | 2.429289 | 
    
| Snippet | •Increased heat exchange area and the secondary flow are the primary sources of heat transfer enhancement.•The local exergy destruction rates are related to... The helical micro fin tubes (HFT) are commonly used in various double pipe heat exchangers because of the excellent processing and anti-fouling performance. It...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 117640 | 
    
| SubjectTerms | Artificial neural network Artificial neural networks Design optimization Destruction Energy consumption Exergy Exergy destruction minimization principle Flow characteristics Fluid dynamics Fluid flow Genetic algorithm Genetic algorithms Geometrical parameters optimization Heat exchange Heat exchangers Heat transfer Helical micro fin tubes Hydraulics Mathematical models Mutual coupling Optimization Parameters Parametric analysis Pipes Secondary flow Structural design Thermodynamics Tubes  | 
    
| Title | Optimization design of helical micro fin tubes based on exergy destruction minimization principle | 
    
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2021.117640 https://www.proquest.com/docview/2615887342  | 
    
| Volume | 200 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AKRWK dateStart: 19960101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lguhBfGK1lhx6XdvdvHbxIKVYqkI9aKG3sHlppS9oPXjxt5vZR7XiQfC6bLLLJJmZbzLzDUJNpShxEbVBYhMXUCZckAJwNURb5YR3YtOM7XPA-0N6N2KjCuqWtTCQVlno_lynZ9q6eNIqpNlajMetx5CwxJs_YMDyuIZDwS-lAroYXH6s0zxC4HPPQBdLAnh7GzW_crzgkhj8rGkKbUs8WoxCuMXkEAr53Uz9UNiZFerto73CfcSd_A8PUMXODtHuN1LBI5Q-eC0wLcorsckyNPDc4RcL8bkJnkIKHnbjGV69KbvEYMcM9q9C96XndxhRcspiIB5ZT7Uo4_LHaNi7eer2g6KRQqAJi1dBrDnVqbbEeDhkHGHECC684BJDFLWxh0T-XKsksdRoahU3XESaUtUOTSwcISeoOpvP7CnCbe4E1Yry1B_ktlAJaWulbUjTKNY2djV0VcpN6oJlHJpdTGSZTvYqN6UuQeoyl3oNsfXoRc628cdx1-USyY3dI71h-OMM9XJlZXGKl9KjS-aVMKHR2b8_cI52IqicgOgNq6OqX0l74f2ZlWpkG7aBtjq39_3BJ0hA-dE | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSCwHxCp2fOAa2sRbIg4IIVCBAgdA4mbFGxR1k1oOXPh2PGlSKOKAxDXyEo3tmXnj8RuAQ60Z9QlzUeYyHzEufZQjcLXUOO1lcGLzgu3zVjQe2dUTf5qCs-otDKZVlrp_pNMLbV1-qZXSrPVbrdp9THkWzB8yYAVcI9JpmGU8kYjAjj7GeR4xEroXqItnETafg8OvJC-8JUZHq5Nj3ZIAF5MYrzEFxkJ-t1M_NHZhhi6WYan0H8np6BdXYMp1V2HxG6vgGuR3QQ10yveVxBYpGqTnyYvDAF2bdDAHj_hWlwzftBsQNGSWhKZYfun5HXtUpLIEmUfGQ_WrwPw6PF6cP5w1orKSQmQoT4dRagQzuXHUBjxkPeXUSiGD5DJLNXNpwEThYOssc8wa5rSwQiaGMV2PbSo9pRsw0-113SaQuvCSGc1EHk5yXeqM1o02LmZ5khqX-i04ruSmTEkzjtUu2qrKJ3tVk1JXKHU1kvoW8HHv_ohu44_9TqolUhPbRwXL8McRdquVVeUxHqgAL3nQwpQl2_-e4ADmGw83TdW8vL3egYUEn1FgKIfvwkxYVbcXnJuh3i827ycHWftm | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+design+of+helical+micro+fin+tubes+based+on+exergy+destruction+minimization+principle&rft.jtitle=Applied+thermal+engineering&rft.au=Xie%2C+JH&rft.au=Cui%2C+HC&rft.au=Liu%2C+ZC&rft.au=Liu%2C+W&rft.date=2022-01-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=200&rft.spage=1&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117640&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |