One- versus multi-component regular variation and extremes of Markov trees

A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional...

Full description

Saved in:
Bibliographic Details
Published inAdvances in applied probability Vol. 52; no. 3; pp. 855 - 878
Main Author Segers, Johan
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.09.2020
Applied Probability Trust
Subjects
Online AccessGet full text
ISSN0001-8678
1475-6064
1475-6064
DOI10.1017/apr.2020.22

Cover

Abstract A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional distribution of the self-normalized random vector when the variable at the root of the tree tends to infinity converges weakly to a random vector of coupled random walks called a tail tree. If, in addition, the conditioning variable has a regularly varying tail, the Markov tree satisfies a form of one-component regular variation. Changing the location of the root, that is, changing the conditioning variable, yields a different tail tree. When the tails of the marginal distributions of the conditioning variables are balanced, these tail trees are connected by a formula that generalizes the time change formula for regularly varying stationary time series. The formula is most easily understood when the various one-component regular variation statements are tied up into a single multi-component statement. The theory of multi-component regular variation is worked out for general random vectors, not necessarily Markov trees, with an eye towards other models, graphical or otherwise.
AbstractList A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional distribution of the self-normalized random vector when the variable at the root of the tree tends to infinity converges weakly to a random vector of coupled random walks called a tail tree. If, in addition, the conditioning variable has a regularly varying tail, the Markov tree satisfies a form of one-component regular variation. Changing the location of the root, that is, changing the conditioning variable, yields a different tail tree. When the tails of the marginal distributions of the conditioning variables are balanced, these tail trees are connected by a formula that generalizes the time change formula for regularly varying stationary time series. The formula is most easily understood when the various one-component regular variation statements are tied up into a single multi-component statement. The theory of multicomponent regular variation is worked out for general random vectors, not necessarily Markov trees, with an eye towards other models, graphical or otherwise.
A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional distribution of the self-normalized random vector when the variable at the root of the tree tends to infinity converges weakly to a random vector of coupled random walks called a tail tree. If, in addition, the conditioning variable has a regularly varying tail, the Markov tree satisfies a form of one-component regular variation. Changing the location of the root, that is, changing the conditioning variable, yields a different tail tree. When the tails of the marginal distributions of the conditioning variables are balanced, these tail trees are connected by a formula that generalizes the time change formula for regularly varying stationary time series. The formula is most easily understood when the various one-component regular variation statements are tied up into a single multi-component statement. The theory of multi-component regular variation is worked out for general random vectors, not necessarily Markov trees, with an eye towards other models, graphical or otherwise.
Author Segers, Johan
Author_xml – sequence: 1
  givenname: Johan
  orcidid: 0000-0002-0444-689X
  surname: Segers
  fullname: Segers, Johan
  email: johan.segers@uclouvain.be
  organization: Université catholique de Louvain
BookMark eNp9kMFP2zAUh60JJFrYaedJljhuKbYTx85xqhgMFXGBs_WSPlfpkjjYToH_HkMRkya2k2X7e59-7zcnB4MbkJAvnC044-oMRr8QTLCFEJ_IjBdKZiUriwMyY4zxTJdKH5F5CNt0zZVmM3J1M2BGd-jDFGg_dbHNGtePSTtE6nEzdeDpDnwLsXUDhWFN8TF67DFQZ-k1-N9uR9MDhhNyaKEL-PntPCZ3P89vl5fZ6ubi1_LHKmtyqWOmLNq6UU1RWQ1WIce1UDWvS6iF1CDEmmthsSitxNLmXMlKQlnllnNdYQ35Mfm-907DCE8P0HVm9G0P_slwZl56MKkH89KDESLhp3t89O5-whDN1k1-SAmNKAopFKuETBTfU413IXi0pmnj687RQ9v9w_ztr5n_5_i6p7chOv-OFrqUKUWR_rM3G_S1b9cb_BP0I98z1VCXMg
CitedBy_id crossref_primary_10_1111_sjos_12698
crossref_primary_10_1093_jrsssb_qkae105
crossref_primary_10_1007_s13253_023_00596_5
crossref_primary_10_1093_jrsssb_qkad165
crossref_primary_10_1007_s10687_023_00467_9
crossref_primary_10_1016_j_spasta_2022_100677
crossref_primary_10_1146_annurev_statistics_040620_041554
crossref_primary_10_1080_01621459_2024_2371978
crossref_primary_10_1017_apr_2023_46
crossref_primary_10_1017_apr_2024_47
crossref_primary_10_1007_s10687_021_00407_5
crossref_primary_10_1016_j_spa_2024_104375
crossref_primary_10_1214_22_EJP788
crossref_primary_10_1111_rssb_12556
crossref_primary_10_1214_23_AOS2272
Cites_doi 10.1016/j.jmva.2017.12.003
10.1093/oso/9780198522195.001.0001
10.3150/10-BEJ271
10.1007/s10687-017-0303-7
10.1214/15-AOAS863
10.1007/s10687-017-0298-0
10.1017/CBO9780511802256
10.1016/0167-7152(89)90106-5
10.1561/2200000001
10.2298/PIM0694121H
10.3150/17-BEJ941
10.2307/3318638
10.1016/S0764-4442(00)00235-4
10.1080/00401706.2018.1462738
10.2307/3214789
10.3150/13-BEJ538
10.1111/j.2517-6161.1991.tb01830.x
10.4310/SII.2015.v8.n1.a2
10.1007/s10687-017-0287-3
10.1016/j.spa.2018.06.010
10.1214/aoap/1177005071
10.1007/978-0-387-75953-1
10.1017/CBO9780511721434
10.1093/biomet/84.2.249
10.1214/18-AAP1410
10.1007/s10687-014-0182-0
10.1016/j.ecosta.2018.02.003
10.1214/14-PS231
10.1214/105051606000000835
10.1017/jpr.2016.37
10.1007/978-3-642-12465-5_6
10.1016/j.spa.2008.05.004
10.1239/jap/1421763332
10.1007/s10687-018-0312-1
ContentType Journal Article
Copyright Applied Probability Trust 2020
Copyright_xml – notice: Applied Probability Trust 2020
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
ADTOC
UNPAY
DOI 10.1017/apr.2020.22
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1475-6064
EndPage 878
ExternalDocumentID oai:dial.uclouvain.be:boreal:214600
10_1017_apr_2020_22
48654524
GroupedDBID -~X
09C
09E
0R~
23M
2AX
3V.
5GY
6J9
7WY
8FE
8FG
8FL
8G5
8VB
AAAVZ
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAKYL
AANRG
AARAB
AASVR
AAUKB
ABBHK
ABEFU
ABFAN
ABGDZ
ABJCF
ABJNI
ABMWE
ABMYL
ABQDR
ABQTM
ABROB
ABTAH
ABUWG
ABXAU
ABXSQ
ABYWD
ABZCX
ACBMC
ACCHT
ACGFO
ACGFS
ACIWK
ACMTB
ACNCT
ACQFJ
ACTCJ
ACTMH
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZWT
ADACV
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADODI
ADOVH
ADOVT
ADULT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AELKX
AELLO
AELPN
AENCP
AENEX
AENGE
AEUPB
AEYYC
AFFUJ
AFKQG
AFKRA
AFLVW
AFVYC
AFXKK
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIAGR
AIGNW
AIHIV
AIOIP
AJAHB
AJCYY
AJPFC
AJQAS
AKBRZ
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARAPS
ARZZG
AS~
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BDTQF
BENPR
BESQT
BEZIV
BGLVJ
BHOJU
BJBOZ
BKOMP
BLZWO
BMAJL
BPHCQ
C-6
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
CS3
D1I
DOHLZ
DQDLB
DSRWC
DWQXO
EBS
EBU
ECEWR
EFSUC
EGQIC
EJD
F5P
FEDTE
FRNLG
GIFXF
GNUQQ
GUQSH
HCIFZ
HGD
HQ6
HVGLF
H~9
IH6
IOEEP
IOO
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JHPGK
JKQEH
JLEZI
JLXEF
JMS
JPL
JQKCU
JSODD
JST
K1G
K60
K6V
K6~
K7-
KAFGG
KB.
KCGVB
KFECR
L6V
LHUNA
LW7
M0C
M0N
M2O
M7S
NIKVX
NZEOI
O9-
P0-
P2P
P62
PADUT
PDBOC
PQBIZ
PQQKQ
PROAC
PTHSS
PUASD
PYCCK
QWB
RAMDC
RBU
RCA
RNS
ROL
RPE
S6U
SA0
SAAAG
T9M
TN5
U5U
UT1
WFFJZ
XFK
YYP
ZDLDU
ZGI
ZJOSE
ZL0
ZMEZD
ZY4
ZYDXJ
~02
ABVZP
ABXHF
ACDLN
ADNIK
AECCQ
AFZFC
AKMAY
ALRMG
AMVHM
IPSME
PHGZM
PHGZT
PQBZA
AAWIL
AAXMD
AAYXX
ABAWQ
ABVKB
ACDIW
ACHJO
AGLNM
AIHAF
CITATION
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c358t-7fefbc7c49f8af7e1ed27b1b6ab258a22d182fe46f5e6f317595a693f1189eba3
IEDL.DBID BENPR
ISSN 0001-8678
1475-6064
IngestDate Sun Oct 26 03:41:38 EDT 2025
Sat Aug 23 13:25:10 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Wed Oct 01 03:17:07 EDT 2025
Thu Jul 03 21:54:03 EDT 2025
Wed Mar 13 05:54:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Hüsler–Reiss distribution
Conditional independence
max-linear model
time change formula
graphical model
root change formula
tail measure
Markov tree
tail tree
Pickands dependence function
multivariate Pareto distribution
regular variation
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-7fefbc7c49f8af7e1ed27b1b6ab258a22d182fe46f5e6f317595a693f1189eba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0444-689X
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2078.1/214600
PQID 2445270925
PQPubID 31672
PageCount 24
ParticipantIDs unpaywall_primary_10_1017_apr_2020_22
proquest_journals_2445270925
crossref_citationtrail_10_1017_apr_2020_22
crossref_primary_10_1017_apr_2020_22
jstor_primary_48654524
cambridge_journals_10_1017_apr_2020_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200900
20200901
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Sheffield
PublicationTitle Advances in applied probability
PublicationTitleAlternate Adv. Appl. Probab
PublicationYear 2020
Publisher Cambridge University Press
Applied Probability Trust
Publisher_xml – name: Cambridge University Press
– name: Applied Probability Trust
References 2007; 17
2017; 20
2018; 28
2018; 165
1997; 84
2000; 6
2018; 129
1989; 7
1991; 53
2000; 330
2011; 17
2008; 1
2015; 9
2009; 119
2015; 8
2018; 21
2014; 20
2018; 24
2018; 6
2006; 80
2019; 61
1992; 29
2014; 17
2014; 51
2014; 11
1994; 4
Resnick (S0001867820000221_ref29) 2006
S0001867820000221_ref9
S0001867820000221_ref8
S0001867820000221_ref7
S0001867820000221_ref6
S0001867820000221_ref30
S0001867820000221_ref12
S0001867820000221_ref34
S0001867820000221_ref33
S0001867820000221_ref11
S0001867820000221_ref10
S0001867820000221_ref32
S0001867820000221_ref31
S0001867820000221_ref38
S0001867820000221_ref16
S0001867820000221_ref15
S0001867820000221_ref37
S0001867820000221_ref4
S0001867820000221_ref36
S0001867820000221_ref14
S0001867820000221_ref3
S0001867820000221_ref35
S0001867820000221_ref2
Coles (S0001867820000221_ref5) 1991; 53
S0001867820000221_ref13
S0001867820000221_ref1
S0001867820000221_ref19
S0001867820000221_ref18
S0001867820000221_ref17
S0001867820000221_ref22
Lauritzen (S0001867820000221_ref23) 1996
S0001867820000221_ref21
S0001867820000221_ref20
S0001867820000221_ref27
S0001867820000221_ref26
S0001867820000221_ref25
S0001867820000221_ref24
S0001867820000221_ref28
References_xml – volume: 8
  start-page: 9
  year: 2015
  end-page: 17
  article-title: Functional regular variations, Pareto processes and peaks over threshold
  publication-title: Statist. Interface
– volume: 51
  start-page: 1133
  year: 2014
  end-page: 1153
  article-title: Markov tail chains
  publication-title: J. Appl. Prob.
– volume: 20
  start-page: 539
  year: 2017
  end-page: 566
  article-title: Polar decomposition of regularly varying time series in star-shaped metric spaces
  publication-title: Extremes
– volume: 11
  start-page: 270
  year: 2014
  end-page: 314
  article-title: Regularly varying measures on metric spaces: Hidden regular variation and hidden jumps
  publication-title: Prob. Surveys
– volume: 21
  start-page: 205
  year: 2018
  end-page: 233
  article-title: A continuous updating weighted least squares estimator of tail dependence in high dimensions
  publication-title: Extremes
– volume: 61
  start-page: 123
  year: 2019
  end-page: 135
  article-title: Peaks over thresholds modeling with multivariate generalized Pareto distributions
  publication-title: Technometrics
– volume: 9
  start-page: 2023
  year: 2015
  end-page: 2050
  article-title: Extremes on river networks
  publication-title: Ann. Appl. Statist.
– volume: 24
  start-page: 2693
  year: 2018
  end-page: 2720
  article-title: Max-linear models on directed acyclic graphs
  publication-title: Bernoulli
– volume: 17
  start-page: 537
  year: 2007
  end-page: 571
  article-title: Limit laws for random vectors with an extreme component
  publication-title: Ann. Appl. Prob.
– volume: 21
  start-page: 147
  year: 2018
  end-page: 176
  article-title: Multivariate extreme value copulas with factor and tree dependence structures
  publication-title: Extremes
– volume: 20
  start-page: 1717
  year: 2014
  end-page: 1737
  article-title: The generalized Pareto process; with a view towards application and simulation
  publication-title: Bernoulli
– volume: 6
  start-page: 149
  year: 2018
  end-page: 167
  article-title: Tail dependence of recursive max-linear models with regularly varying noise variables
  publication-title: Econometrics Statist.
– volume: 7
  start-page: 283
  year: 1989
  end-page: 286
  article-title: Maxima of normal random vectors: Between independence and complete dependence
  publication-title: Statist. Prob. Lett.
– volume: 17
  start-page: 226
  year: 2011
  end-page: 252
  article-title: Conditioning on an extreme component: Model consistency with regular variation on cones
  publication-title: Bernoulli
– volume: 28
  start-page: 3884
  year: 2018
  end-page: 3921
  article-title: Tail measure and spectral tail process of regularly varying time series
  publication-title: Ann. Appl. Prob.
– volume: 6
  start-page: 183
  year: 2000
  end-page: 190
  article-title: A sufficiency property arising from the characterization of extremes of a Markov chain
  publication-title: Bernoulli
– volume: 1
  start-page: 1
  year: 2008
  end-page: 305
  article-title: Graphical models, exponential families, and variational inference
  publication-title: Found. Trends Mach. Learn.
– volume: 80
  start-page: 121
  year: 2006
  end-page: 140
  article-title: Regular variation for measures on metric spaces
  publication-title: Publ. Inst. Math. (Beograd) (N. S.)
– volume: 4
  start-page: 529
  year: 1994
  end-page: 548
  article-title: Extremal behaviour of stationary Markov chains with applications
  publication-title: Ann. Appl. Prob.
– volume: 21
  start-page: 551
  year: 2018
  end-page: 579
  article-title: The tail process revisited
  publication-title: Extremes
– volume: 84
  start-page: 249
  year: 1997
  end-page: 268
  article-title: Markov chain models for threshold exceedances
  publication-title: Biometrika
– volume: 129
  start-page: 1993
  year: 2018
  end-page: 2009
  publication-title: Stoch. Proc. Appl.
– volume: 17
  start-page: 263
  year: 2014
  end-page: 287
  article-title: Transition kernels and the conditional extreme value model
  publication-title: Extremes
– volume: 119
  start-page: 1055
  year: 2009
  end-page: 1080
  publication-title: Stoch. Proc. Appl.
– volume: 53
  start-page: 377
  year: 1991
  end-page: 392
  article-title: Modelling extreme multivariate events
  publication-title: J. R. Statist. Soc. B [Statist. Methodology]
– volume: 29
  start-page: 37
  year: 1992
  end-page: 45
  article-title: The extremal index for a Markov chain
  publication-title: J. Appl. Prob.
– volume: 165
  start-page: 117
  year: 2018
  end-page: 131
  article-title: Multivariate generalized Pareto distributions: Parametrizations, representations, and properties
  publication-title: J. Multivariate Anal.
– volume: 330
  start-page: 593
  year: 2000
  end-page: 596
  article-title: Structure de dépendance des lois de valeurs extrêmes bivariées
  publication-title: C. R. Acad. Sci. Paris
– ident: S0001867820000221_ref31
  doi: 10.1016/j.jmva.2017.12.003
– volume-title: Graphical Models
  year: 1996
  ident: S0001867820000221_ref23
  doi: 10.1093/oso/9780198522195.001.0001
– ident: S0001867820000221_ref10
– ident: S0001867820000221_ref6
  doi: 10.3150/10-BEJ271
– ident: S0001867820000221_ref9
  doi: 10.1007/s10687-017-0303-7
– ident: S0001867820000221_ref1
  doi: 10.1214/15-AOAS863
– ident: S0001867820000221_ref24
  doi: 10.1007/s10687-017-0298-0
– ident: S0001867820000221_ref37
  doi: 10.1017/CBO9780511802256
– ident: S0001867820000221_ref19
  doi: 10.1016/0167-7152(89)90106-5
– ident: S0001867820000221_ref38
  doi: 10.1561/2200000001
– ident: S0001867820000221_ref18
  doi: 10.2298/PIM0694121H
– ident: S0001867820000221_ref13
  doi: 10.3150/17-BEJ941
– ident: S0001867820000221_ref4
  doi: 10.2307/3318638
– ident: S0001867820000221_ref12
  doi: 10.1016/S0764-4442(00)00235-4
– ident: S0001867820000221_ref22
  doi: 10.1080/00401706.2018.1462738
– ident: S0001867820000221_ref35
  doi: 10.2307/3214789
– ident: S0001867820000221_ref33
– ident: S0001867820000221_ref11
  doi: 10.3150/13-BEJ538
– volume: 53
  start-page: 377
  year: 1991
  ident: S0001867820000221_ref5
  article-title: Modelling extreme multivariate events
  publication-title: J. R. Statist. Soc. B [Statist. Methodology]
  doi: 10.1111/j.2517-6161.1991.tb01830.x
– ident: S0001867820000221_ref8
  doi: 10.4310/SII.2015.v8.n1.a2
– ident: S0001867820000221_ref34
  doi: 10.1007/s10687-017-0287-3
– ident: S0001867820000221_ref20
  doi: 10.1016/j.spa.2018.06.010
– ident: S0001867820000221_ref32
– ident: S0001867820000221_ref26
  doi: 10.1214/aoap/1177005071
– ident: S0001867820000221_ref28
  doi: 10.1007/978-0-387-75953-1
– ident: S0001867820000221_ref3
  doi: 10.1017/CBO9780511721434
– ident: S0001867820000221_ref36
  doi: 10.1093/biomet/84.2.249
– ident: S0001867820000221_ref7
  doi: 10.1214/18-AAP1410
– ident: S0001867820000221_ref30
  doi: 10.1007/s10687-014-0182-0
– ident: S0001867820000221_ref14
  doi: 10.1016/j.ecosta.2018.02.003
– ident: S0001867820000221_ref25
  doi: 10.1214/14-PS231
– ident: S0001867820000221_ref16
  doi: 10.1214/105051606000000835
– ident: S0001867820000221_ref17
  doi: 10.1017/jpr.2016.37
– ident: S0001867820000221_ref15
  doi: 10.1007/978-3-642-12465-5_6
– ident: S0001867820000221_ref2
  doi: 10.1016/j.spa.2008.05.004
– ident: S0001867820000221_ref21
  doi: 10.1239/jap/1421763332
– volume-title: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling
  year: 2006
  ident: S0001867820000221_ref29
– ident: S0001867820000221_ref27
  doi: 10.1007/s10687-018-0312-1
SSID ssj0003780
Score 2.4062252
Snippet A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a...
SourceID unpaywall
proquest
crossref
jstor
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 855
SubjectTerms Conditioning
Markov analysis
Original Article
Original Articles
Probability
Random variables
Random walk
River networks
Trees
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2h5VBxaIGCuhUgH6AHJG8Txx_xEUERQoL20JXoKbId-9JVdrXZBcGvZ5xkQ6EIcR_ZTp7teU7G7wEcRkMXbZG5laLUlCvhaF6mOc10qa3CFO4aseqra3kx5pc34mYNVoZ3L-QFGCawUfo9mk8neC5fl9h0MoD18fWvkz8tsU1p3u63KXZEkY7z7hZeFIY2syj5yZJR9MZ90k54loPaMsRnBPPDspqZ-zszmfyTa84_wdnqxk5bYvJ3tFzYkXv4X8DxrcfYhI8d1yQn7eTYgjVfbcPGVS_UWn-Gy5-VpySWZixr0hQX0lhkPq0wF5F541M_J7d4nm4AJNgZwd08flOsyTSQeNNnekvin-16B8bnP36fXtDOXoG6TOQLqoIP1inHdchNUD71JVM2tdJYJnLDGGLGgucyCC9D5BlaGKmzgGcS7a3JdmFQ4Xi-AOEyc4ElpVFWcMO1SctU504mqjRRjmYI3_qXX3SLpC7aAjNVIEpFRKlgbAjHK2QK14mUR6-MyevBh33wrNXmeD1st4G4j-G5jM7qfAh7K8yfBoV0RzCVaCaGcNTPg7fa__rOuD0YLOZLv48kZmEPukn8CA7h7Yg
  priority: 102
  providerName: Unpaywall
Title One- versus multi-component regular variation and extremes of Markov trees
URI https://www.cambridge.org/core/product/identifier/S0001867820000221/type/journal_article
https://www.jstor.org/stable/48654524
https://www.proquest.com/docview/2445270925
http://hdl.handle.net/2078.1/214600
UnpaywallVersion submittedVersion
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0003780
  issn: 1475-6064
  databaseCode: AMVHM
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-6064
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003780
  issn: 1475-6064
  databaseCode: BENPR
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-6064
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0003780
  issn: 1475-6064
  databaseCode: 8FG
  dateStart: 20160701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB616QE4IF4VgVL5UDggGbJee20fECqooarUUCEildPKz1O0CdmkiH-PZ1-hUtXTXkaWNeOdhz3zfQAnSOiibcrcvPCacikcVT5TNNdeW5lCuGvAqi9nxfmcX1yL6z2Y9bMw2FbZ-8TGUfulwzvyjykMCSYnmonPq98UWaPwdbWn0DAdtYL_1ECM7cMBQ2SsERx8OZtd_Rh8cy5VO5SSimiV_HQ3sYcg0maF8KBs8gF5dHc4C7fiVduyeCsZfbCtVubvH7NY_BeXpk_gcZdQktP2BDyFvVA9g0eXAxpr_RwuvleBEuy_2Nak6SCk2Em-rFLAIeuGjH5NblLR3FiJmMqT5LLx4rAmy0hwnGd5Q_D5un4B8-nZz6_ntONQoC4XakNlDNE66biOykQZsuCZtJktjGVCGcaSYVgMvIgiFBGTCS1MofOYCg8drMkPYVSl_bwEwovcRTbxRlrBDdcm85lWrphIbxBzZgzvBq2V3Z9Ql20XmSyTektUb8nYGN73Ki1dh0SOhBiLu4VPBuFVC8Bxt9hhY5tBhqsC6dP5GI56Y-02tTtMY3g7GPC-9V_dv8xreIiCbfPZEYw26214k7KVjT2GfTX9dtwdxPSdz65Of_0D2_XqBA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeUF-oW2jrA_RQye3GsWP7gCpoQctjt1UFErfgxHYvq-xCdkH8OX5bPXltkRA37hPLmhn7m3FmvgHYwoEuOguRmxVWUy5FTpWNFI211ZkMEJ5XZNXDUTI440fn4nwJ7tpeGCyrbO_E6qK2kxzfyL8FGBJM9jUT36eXFKdG4d_VdoSGaUYr2J2KYqxp7Dh2tzchhSt3Dn8Ge28zdrB_-mNAmykDNI-FmlHpnc9ymXPtlfHSRc4ymUVZYjImlGEsbJ15xxMvXOIRbrUwiY59CM21y0wc1n0GKzzmOiR_K3v7o99_OiyIpaqbYELSrgIuNB2CSFptpkhHyvpfcW7vgtfhHj7WJZL3gt_VeTE1tzdmPP4PBw9ewloTwJLd2uNewZIrXsOLYcf-Wr6Bo1-FowTrPeYlqSoWKVauT4oAcOTK_cXKV3IdkvTKK4gpLAkQgQ-VJZl4gu1Dk2uCv8vLt3D2JNpch-Ui7OcdEJ7EuWd9a2QmuOHaRDbSKk_60hrkuOnB505raXPyyrSuWpNpUG-K6k0Z68GXVqVp3jCf4wCO8cPCW53wtCb8eFhsvbJNJ8NVguPaeQ82W2MtNrVw3h5sdwZ8bP33jy_zCVYHp8OT9ORwdLwBz_GjuvBtE5ZnV3P3IURKs-xj444ELp76BPwD8W4l8Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2h5VBxaIGCuhUgH6AHJG8Txx_xEUERQoL20JXoKbId-9JVdrXZBcGvZ5xkQ6EIcR_ZTp7teU7G7wEcRkMXbZG5laLUlCvhaF6mOc10qa3CFO4aseqra3kx5pc34mYNVoZ3L-QFGCawUfo9mk8neC5fl9h0MoD18fWvkz8tsU1p3u63KXZEkY7z7hZeFIY2syj5yZJR9MZ90k54loPaMsRnBPPDspqZ-zszmfyTa84_wdnqxk5bYvJ3tFzYkXv4X8DxrcfYhI8d1yQn7eTYgjVfbcPGVS_UWn-Gy5-VpySWZixr0hQX0lhkPq0wF5F541M_J7d4nm4AJNgZwd08flOsyTSQeNNnekvin-16B8bnP36fXtDOXoG6TOQLqoIP1inHdchNUD71JVM2tdJYJnLDGGLGgucyCC9D5BlaGKmzgGcS7a3JdmFQ4Xi-AOEyc4ElpVFWcMO1SctU504mqjRRjmYI3_qXX3SLpC7aAjNVIEpFRKlgbAjHK2QK14mUR6-MyevBh33wrNXmeD1st4G4j-G5jM7qfAh7K8yfBoV0RzCVaCaGcNTPg7fa__rOuD0YLOZLv48kZmEPukn8CA7h7Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ONE-VERSUS+MULTI-COMPONENT+REGULAR+VARIATION+AND+EXTREMES+OF+MARKOV+TREES&rft.jtitle=Advances+in+applied+probability&rft.au=SEGERS%2C+JOHAN&rft.date=2020-09-01&rft.pub=Applied+Probability+Trust&rft.issn=0001-8678&rft.eissn=1475-6064&rft.volume=52&rft.issue=3&rft.spage=855&rft.epage=878&rft_id=info:doi/10.1017%2Fapr.2020.22&rft.externalDocID=48654524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8678&client=summon