One- versus multi-component regular variation and extremes of Markov trees
A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional...
Saved in:
| Published in | Advances in applied probability Vol. 52; no. 3; pp. 855 - 878 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge, UK
Cambridge University Press
01.09.2020
Applied Probability Trust |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0001-8678 1475-6064 1475-6064 |
| DOI | 10.1017/apr.2020.22 |
Cover
| Abstract | A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional distribution of the self-normalized random vector when the variable at the root of the tree tends to infinity converges weakly to a random vector of coupled random walks called a tail tree. If, in addition, the conditioning variable has a regularly varying tail, the Markov tree satisfies a form of one-component regular variation. Changing the location of the root, that is, changing the conditioning variable, yields a different tail tree. When the tails of the marginal distributions of the conditioning variables are balanced, these tail trees are connected by a formula that generalizes the time change formula for regularly varying stationary time series. The formula is most easily understood when the various one-component regular variation statements are tied up into a single multi-component statement. The theory of multi-component regular variation is worked out for general random vectors, not necessarily Markov trees, with an eye towards other models, graphical or otherwise. |
|---|---|
| AbstractList | A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional distribution of the self-normalized random vector when the variable at the root of the tree tends to infinity converges weakly to a random vector of coupled random walks called a tail tree. If, in addition, the conditioning variable has a regularly varying tail, the Markov tree satisfies a form of one-component regular variation. Changing the location of the root, that is, changing the conditioning variable, yields a different tail tree. When the tails of the marginal distributions of the conditioning variables are balanced, these tail trees are connected by a formula that generalizes the time change formula for regularly varying stationary time series. The formula is most easily understood when the various one-component regular variation statements are tied up into a single multi-component statement. The theory of multicomponent regular variation is worked out for general random vectors, not necessarily Markov trees, with an eye towards other models, graphical or otherwise. A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a list of conditional independence relations. Upon an assumption on the tails of the Markov kernels associated to these pairs, the conditional distribution of the self-normalized random vector when the variable at the root of the tree tends to infinity converges weakly to a random vector of coupled random walks called a tail tree. If, in addition, the conditioning variable has a regularly varying tail, the Markov tree satisfies a form of one-component regular variation. Changing the location of the root, that is, changing the conditioning variable, yields a different tail tree. When the tails of the marginal distributions of the conditioning variables are balanced, these tail trees are connected by a formula that generalizes the time change formula for regularly varying stationary time series. The formula is most easily understood when the various one-component regular variation statements are tied up into a single multi-component statement. The theory of multi-component regular variation is worked out for general random vectors, not necessarily Markov trees, with an eye towards other models, graphical or otherwise. |
| Author | Segers, Johan |
| Author_xml | – sequence: 1 givenname: Johan orcidid: 0000-0002-0444-689X surname: Segers fullname: Segers, Johan email: johan.segers@uclouvain.be organization: Université catholique de Louvain |
| BookMark | eNp9kMFP2zAUh60JJFrYaedJljhuKbYTx85xqhgMFXGBs_WSPlfpkjjYToH_HkMRkya2k2X7e59-7zcnB4MbkJAvnC044-oMRr8QTLCFEJ_IjBdKZiUriwMyY4zxTJdKH5F5CNt0zZVmM3J1M2BGd-jDFGg_dbHNGtePSTtE6nEzdeDpDnwLsXUDhWFN8TF67DFQZ-k1-N9uR9MDhhNyaKEL-PntPCZ3P89vl5fZ6ubi1_LHKmtyqWOmLNq6UU1RWQ1WIce1UDWvS6iF1CDEmmthsSitxNLmXMlKQlnllnNdYQ35Mfm-907DCE8P0HVm9G0P_slwZl56MKkH89KDESLhp3t89O5-whDN1k1-SAmNKAopFKuETBTfU413IXi0pmnj687RQ9v9w_ztr5n_5_i6p7chOv-OFrqUKUWR_rM3G_S1b9cb_BP0I98z1VCXMg |
| CitedBy_id | crossref_primary_10_1111_sjos_12698 crossref_primary_10_1093_jrsssb_qkae105 crossref_primary_10_1007_s13253_023_00596_5 crossref_primary_10_1093_jrsssb_qkad165 crossref_primary_10_1007_s10687_023_00467_9 crossref_primary_10_1016_j_spasta_2022_100677 crossref_primary_10_1146_annurev_statistics_040620_041554 crossref_primary_10_1080_01621459_2024_2371978 crossref_primary_10_1017_apr_2023_46 crossref_primary_10_1017_apr_2024_47 crossref_primary_10_1007_s10687_021_00407_5 crossref_primary_10_1016_j_spa_2024_104375 crossref_primary_10_1214_22_EJP788 crossref_primary_10_1111_rssb_12556 crossref_primary_10_1214_23_AOS2272 |
| Cites_doi | 10.1016/j.jmva.2017.12.003 10.1093/oso/9780198522195.001.0001 10.3150/10-BEJ271 10.1007/s10687-017-0303-7 10.1214/15-AOAS863 10.1007/s10687-017-0298-0 10.1017/CBO9780511802256 10.1016/0167-7152(89)90106-5 10.1561/2200000001 10.2298/PIM0694121H 10.3150/17-BEJ941 10.2307/3318638 10.1016/S0764-4442(00)00235-4 10.1080/00401706.2018.1462738 10.2307/3214789 10.3150/13-BEJ538 10.1111/j.2517-6161.1991.tb01830.x 10.4310/SII.2015.v8.n1.a2 10.1007/s10687-017-0287-3 10.1016/j.spa.2018.06.010 10.1214/aoap/1177005071 10.1007/978-0-387-75953-1 10.1017/CBO9780511721434 10.1093/biomet/84.2.249 10.1214/18-AAP1410 10.1007/s10687-014-0182-0 10.1016/j.ecosta.2018.02.003 10.1214/14-PS231 10.1214/105051606000000835 10.1017/jpr.2016.37 10.1007/978-3-642-12465-5_6 10.1016/j.spa.2008.05.004 10.1239/jap/1421763332 10.1007/s10687-018-0312-1 |
| ContentType | Journal Article |
| Copyright | Applied Probability Trust 2020 |
| Copyright_xml | – notice: Applied Probability Trust 2020 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V L7M L~C L~D M0C M0N M2O M7S MBDVC P5Z P62 PADUT PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U ADTOC UNPAY |
| DOI | 10.1017/apr.2020.22 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Research Library China Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1475-6064 |
| EndPage | 878 |
| ExternalDocumentID | oai:dial.uclouvain.be:boreal:214600 10_1017_apr_2020_22 48654524 |
| GroupedDBID | -~X 09C 09E 0R~ 23M 2AX 3V. 5GY 6J9 7WY 8FE 8FG 8FL 8G5 8VB AAAVZ AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAKYL AANRG AARAB AASVR AAUKB ABBHK ABEFU ABFAN ABGDZ ABJCF ABJNI ABMWE ABMYL ABQDR ABQTM ABROB ABTAH ABUWG ABXAU ABXSQ ABYWD ABZCX ACBMC ACCHT ACGFO ACGFS ACIWK ACMTB ACNCT ACQFJ ACTCJ ACTMH ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZWT ADACV ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADODI ADOVH ADOVT ADULT ADVJH AEBAK AEBPU AEGXH AEHGV AELKX AELLO AELPN AENCP AENEX AENGE AEUPB AEYYC AFFUJ AFKQG AFKRA AFLVW AFVYC AFXKK AGBYD AGJUD AGOOT AHQXX AHRGI AIAGR AIGNW AIHIV AIOIP AJAHB AJCYY AJPFC AJQAS AKBRZ AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARAPS ARZZG AS~ ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BDTQF BENPR BESQT BEZIV BGLVJ BHOJU BJBOZ BKOMP BLZWO BMAJL BPHCQ C-6 CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CJCSC CS3 D1I DOHLZ DQDLB DSRWC DWQXO EBS EBU ECEWR EFSUC EGQIC EJD F5P FEDTE FRNLG GIFXF GNUQQ GUQSH HCIFZ HGD HQ6 HVGLF H~9 IH6 IOEEP IOO JAA JAAYA JBMMH JBZCM JENOY JHFFW JHPGK JKQEH JLEZI JLXEF JMS JPL JQKCU JSODD JST K1G K60 K6V K6~ K7- KAFGG KB. KCGVB KFECR L6V LHUNA LW7 M0C M0N M2O M7S NIKVX NZEOI O9- P0- P2P P62 PADUT PDBOC PQBIZ PQQKQ PROAC PTHSS PUASD PYCCK QWB RAMDC RBU RCA RNS ROL RPE S6U SA0 SAAAG T9M TN5 U5U UT1 WFFJZ XFK YYP ZDLDU ZGI ZJOSE ZL0 ZMEZD ZY4 ZYDXJ ~02 ABVZP ABXHF ACDLN ADNIK AECCQ AFZFC AKMAY ALRMG AMVHM IPSME PHGZM PHGZT PQBZA AAWIL AAXMD AAYXX ABAWQ ABVKB ACDIW ACHJO AGLNM AIHAF CITATION PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c358t-7fefbc7c49f8af7e1ed27b1b6ab258a22d182fe46f5e6f317595a693f1189eba3 |
| IEDL.DBID | BENPR |
| ISSN | 0001-8678 1475-6064 |
| IngestDate | Sun Oct 26 03:41:38 EDT 2025 Sat Aug 23 13:25:10 EDT 2025 Thu Apr 24 22:55:24 EDT 2025 Wed Oct 01 03:17:07 EDT 2025 Thu Jul 03 21:54:03 EDT 2025 Wed Mar 13 05:54:24 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Hüsler–Reiss distribution Conditional independence max-linear model time change formula graphical model root change formula tail measure Markov tree tail tree Pickands dependence function multivariate Pareto distribution regular variation |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-7fefbc7c49f8af7e1ed27b1b6ab258a22d182fe46f5e6f317595a693f1189eba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0444-689X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2078.1/214600 |
| PQID | 2445270925 |
| PQPubID | 31672 |
| PageCount | 24 |
| ParticipantIDs | unpaywall_primary_10_1017_apr_2020_22 proquest_journals_2445270925 crossref_citationtrail_10_1017_apr_2020_22 crossref_primary_10_1017_apr_2020_22 jstor_primary_48654524 cambridge_journals_10_1017_apr_2020_22 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200900 20200901 2020-09-00 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 20200900 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Sheffield |
| PublicationTitle | Advances in applied probability |
| PublicationTitleAlternate | Adv. Appl. Probab |
| PublicationYear | 2020 |
| Publisher | Cambridge University Press Applied Probability Trust |
| Publisher_xml | – name: Cambridge University Press – name: Applied Probability Trust |
| References | 2007; 17 2017; 20 2018; 28 2018; 165 1997; 84 2000; 6 2018; 129 1989; 7 1991; 53 2000; 330 2011; 17 2008; 1 2015; 9 2009; 119 2015; 8 2018; 21 2014; 20 2018; 24 2018; 6 2006; 80 2019; 61 1992; 29 2014; 17 2014; 51 2014; 11 1994; 4 Resnick (S0001867820000221_ref29) 2006 S0001867820000221_ref9 S0001867820000221_ref8 S0001867820000221_ref7 S0001867820000221_ref6 S0001867820000221_ref30 S0001867820000221_ref12 S0001867820000221_ref34 S0001867820000221_ref33 S0001867820000221_ref11 S0001867820000221_ref10 S0001867820000221_ref32 S0001867820000221_ref31 S0001867820000221_ref38 S0001867820000221_ref16 S0001867820000221_ref15 S0001867820000221_ref37 S0001867820000221_ref4 S0001867820000221_ref36 S0001867820000221_ref14 S0001867820000221_ref3 S0001867820000221_ref35 S0001867820000221_ref2 Coles (S0001867820000221_ref5) 1991; 53 S0001867820000221_ref13 S0001867820000221_ref1 S0001867820000221_ref19 S0001867820000221_ref18 S0001867820000221_ref17 S0001867820000221_ref22 Lauritzen (S0001867820000221_ref23) 1996 S0001867820000221_ref21 S0001867820000221_ref20 S0001867820000221_ref27 S0001867820000221_ref26 S0001867820000221_ref25 S0001867820000221_ref24 S0001867820000221_ref28 |
| References_xml | – volume: 8 start-page: 9 year: 2015 end-page: 17 article-title: Functional regular variations, Pareto processes and peaks over threshold publication-title: Statist. Interface – volume: 51 start-page: 1133 year: 2014 end-page: 1153 article-title: Markov tail chains publication-title: J. Appl. Prob. – volume: 20 start-page: 539 year: 2017 end-page: 566 article-title: Polar decomposition of regularly varying time series in star-shaped metric spaces publication-title: Extremes – volume: 11 start-page: 270 year: 2014 end-page: 314 article-title: Regularly varying measures on metric spaces: Hidden regular variation and hidden jumps publication-title: Prob. Surveys – volume: 21 start-page: 205 year: 2018 end-page: 233 article-title: A continuous updating weighted least squares estimator of tail dependence in high dimensions publication-title: Extremes – volume: 61 start-page: 123 year: 2019 end-page: 135 article-title: Peaks over thresholds modeling with multivariate generalized Pareto distributions publication-title: Technometrics – volume: 9 start-page: 2023 year: 2015 end-page: 2050 article-title: Extremes on river networks publication-title: Ann. Appl. Statist. – volume: 24 start-page: 2693 year: 2018 end-page: 2720 article-title: Max-linear models on directed acyclic graphs publication-title: Bernoulli – volume: 17 start-page: 537 year: 2007 end-page: 571 article-title: Limit laws for random vectors with an extreme component publication-title: Ann. Appl. Prob. – volume: 21 start-page: 147 year: 2018 end-page: 176 article-title: Multivariate extreme value copulas with factor and tree dependence structures publication-title: Extremes – volume: 20 start-page: 1717 year: 2014 end-page: 1737 article-title: The generalized Pareto process; with a view towards application and simulation publication-title: Bernoulli – volume: 6 start-page: 149 year: 2018 end-page: 167 article-title: Tail dependence of recursive max-linear models with regularly varying noise variables publication-title: Econometrics Statist. – volume: 7 start-page: 283 year: 1989 end-page: 286 article-title: Maxima of normal random vectors: Between independence and complete dependence publication-title: Statist. Prob. Lett. – volume: 17 start-page: 226 year: 2011 end-page: 252 article-title: Conditioning on an extreme component: Model consistency with regular variation on cones publication-title: Bernoulli – volume: 28 start-page: 3884 year: 2018 end-page: 3921 article-title: Tail measure and spectral tail process of regularly varying time series publication-title: Ann. Appl. Prob. – volume: 6 start-page: 183 year: 2000 end-page: 190 article-title: A sufficiency property arising from the characterization of extremes of a Markov chain publication-title: Bernoulli – volume: 1 start-page: 1 year: 2008 end-page: 305 article-title: Graphical models, exponential families, and variational inference publication-title: Found. Trends Mach. Learn. – volume: 80 start-page: 121 year: 2006 end-page: 140 article-title: Regular variation for measures on metric spaces publication-title: Publ. Inst. Math. (Beograd) (N. S.) – volume: 4 start-page: 529 year: 1994 end-page: 548 article-title: Extremal behaviour of stationary Markov chains with applications publication-title: Ann. Appl. Prob. – volume: 21 start-page: 551 year: 2018 end-page: 579 article-title: The tail process revisited publication-title: Extremes – volume: 84 start-page: 249 year: 1997 end-page: 268 article-title: Markov chain models for threshold exceedances publication-title: Biometrika – volume: 129 start-page: 1993 year: 2018 end-page: 2009 publication-title: Stoch. Proc. Appl. – volume: 17 start-page: 263 year: 2014 end-page: 287 article-title: Transition kernels and the conditional extreme value model publication-title: Extremes – volume: 119 start-page: 1055 year: 2009 end-page: 1080 publication-title: Stoch. Proc. Appl. – volume: 53 start-page: 377 year: 1991 end-page: 392 article-title: Modelling extreme multivariate events publication-title: J. R. Statist. Soc. B [Statist. Methodology] – volume: 29 start-page: 37 year: 1992 end-page: 45 article-title: The extremal index for a Markov chain publication-title: J. Appl. Prob. – volume: 165 start-page: 117 year: 2018 end-page: 131 article-title: Multivariate generalized Pareto distributions: Parametrizations, representations, and properties publication-title: J. Multivariate Anal. – volume: 330 start-page: 593 year: 2000 end-page: 596 article-title: Structure de dépendance des lois de valeurs extrêmes bivariées publication-title: C. R. Acad. Sci. Paris – ident: S0001867820000221_ref31 doi: 10.1016/j.jmva.2017.12.003 – volume-title: Graphical Models year: 1996 ident: S0001867820000221_ref23 doi: 10.1093/oso/9780198522195.001.0001 – ident: S0001867820000221_ref10 – ident: S0001867820000221_ref6 doi: 10.3150/10-BEJ271 – ident: S0001867820000221_ref9 doi: 10.1007/s10687-017-0303-7 – ident: S0001867820000221_ref1 doi: 10.1214/15-AOAS863 – ident: S0001867820000221_ref24 doi: 10.1007/s10687-017-0298-0 – ident: S0001867820000221_ref37 doi: 10.1017/CBO9780511802256 – ident: S0001867820000221_ref19 doi: 10.1016/0167-7152(89)90106-5 – ident: S0001867820000221_ref38 doi: 10.1561/2200000001 – ident: S0001867820000221_ref18 doi: 10.2298/PIM0694121H – ident: S0001867820000221_ref13 doi: 10.3150/17-BEJ941 – ident: S0001867820000221_ref4 doi: 10.2307/3318638 – ident: S0001867820000221_ref12 doi: 10.1016/S0764-4442(00)00235-4 – ident: S0001867820000221_ref22 doi: 10.1080/00401706.2018.1462738 – ident: S0001867820000221_ref35 doi: 10.2307/3214789 – ident: S0001867820000221_ref33 – ident: S0001867820000221_ref11 doi: 10.3150/13-BEJ538 – volume: 53 start-page: 377 year: 1991 ident: S0001867820000221_ref5 article-title: Modelling extreme multivariate events publication-title: J. R. Statist. Soc. B [Statist. Methodology] doi: 10.1111/j.2517-6161.1991.tb01830.x – ident: S0001867820000221_ref8 doi: 10.4310/SII.2015.v8.n1.a2 – ident: S0001867820000221_ref34 doi: 10.1007/s10687-017-0287-3 – ident: S0001867820000221_ref20 doi: 10.1016/j.spa.2018.06.010 – ident: S0001867820000221_ref32 – ident: S0001867820000221_ref26 doi: 10.1214/aoap/1177005071 – ident: S0001867820000221_ref28 doi: 10.1007/978-0-387-75953-1 – ident: S0001867820000221_ref3 doi: 10.1017/CBO9780511721434 – ident: S0001867820000221_ref36 doi: 10.1093/biomet/84.2.249 – ident: S0001867820000221_ref7 doi: 10.1214/18-AAP1410 – ident: S0001867820000221_ref30 doi: 10.1007/s10687-014-0182-0 – ident: S0001867820000221_ref14 doi: 10.1016/j.ecosta.2018.02.003 – ident: S0001867820000221_ref25 doi: 10.1214/14-PS231 – ident: S0001867820000221_ref16 doi: 10.1214/105051606000000835 – ident: S0001867820000221_ref17 doi: 10.1017/jpr.2016.37 – ident: S0001867820000221_ref15 doi: 10.1007/978-3-642-12465-5_6 – ident: S0001867820000221_ref2 doi: 10.1016/j.spa.2008.05.004 – ident: S0001867820000221_ref21 doi: 10.1239/jap/1421763332 – volume-title: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling year: 2006 ident: S0001867820000221_ref29 – ident: S0001867820000221_ref27 doi: 10.1007/s10687-018-0312-1 |
| SSID | ssj0003780 |
| Score | 2.4062252 |
| Snippet | A Markov tree is a random vector indexed by the nodes of a tree whose distribution is determined by the distributions of pairs of neighbouring variables and a... |
| SourceID | unpaywall proquest crossref jstor cambridge |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 855 |
| SubjectTerms | Conditioning Markov analysis Original Article Original Articles Probability Random variables Random walk River networks Trees |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2h5VBxaIGCuhUgH6AHJG8Txx_xEUERQoL20JXoKbId-9JVdrXZBcGvZ5xkQ6EIcR_ZTp7teU7G7wEcRkMXbZG5laLUlCvhaF6mOc10qa3CFO4aseqra3kx5pc34mYNVoZ3L-QFGCawUfo9mk8neC5fl9h0MoD18fWvkz8tsU1p3u63KXZEkY7z7hZeFIY2syj5yZJR9MZ90k54loPaMsRnBPPDspqZ-zszmfyTa84_wdnqxk5bYvJ3tFzYkXv4X8DxrcfYhI8d1yQn7eTYgjVfbcPGVS_UWn-Gy5-VpySWZixr0hQX0lhkPq0wF5F541M_J7d4nm4AJNgZwd08flOsyTSQeNNnekvin-16B8bnP36fXtDOXoG6TOQLqoIP1inHdchNUD71JVM2tdJYJnLDGGLGgucyCC9D5BlaGKmzgGcS7a3JdmFQ4Xi-AOEyc4ElpVFWcMO1SctU504mqjRRjmYI3_qXX3SLpC7aAjNVIEpFRKlgbAjHK2QK14mUR6-MyevBh33wrNXmeD1st4G4j-G5jM7qfAh7K8yfBoV0RzCVaCaGcNTPg7fa__rOuD0YLOZLv48kZmEPukn8CA7h7Yg priority: 102 providerName: Unpaywall |
| Title | One- versus multi-component regular variation and extremes of Markov trees |
| URI | https://www.cambridge.org/core/product/identifier/S0001867820000221/type/journal_article https://www.jstor.org/stable/48654524 https://www.proquest.com/docview/2445270925 http://hdl.handle.net/2078.1/214600 |
| UnpaywallVersion | submittedVersion |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1475-6064 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0003780 issn: 1475-6064 databaseCode: AMVHM dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1475-6064 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003780 issn: 1475-6064 databaseCode: BENPR dateStart: 20160701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1475-6064 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0003780 issn: 1475-6064 databaseCode: 8FG dateStart: 20160701 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB616QE4IF4VgVL5UDggGbJee20fECqooarUUCEildPKz1O0CdmkiH-PZ1-hUtXTXkaWNeOdhz3zfQAnSOiibcrcvPCacikcVT5TNNdeW5lCuGvAqi9nxfmcX1yL6z2Y9bMw2FbZ-8TGUfulwzvyjykMCSYnmonPq98UWaPwdbWn0DAdtYL_1ECM7cMBQ2SsERx8OZtd_Rh8cy5VO5SSimiV_HQ3sYcg0maF8KBs8gF5dHc4C7fiVduyeCsZfbCtVubvH7NY_BeXpk_gcZdQktP2BDyFvVA9g0eXAxpr_RwuvleBEuy_2Nak6SCk2Em-rFLAIeuGjH5NblLR3FiJmMqT5LLx4rAmy0hwnGd5Q_D5un4B8-nZz6_ntONQoC4XakNlDNE66biOykQZsuCZtJktjGVCGcaSYVgMvIgiFBGTCS1MofOYCg8drMkPYVSl_bwEwovcRTbxRlrBDdcm85lWrphIbxBzZgzvBq2V3Z9Ql20XmSyTektUb8nYGN73Ki1dh0SOhBiLu4VPBuFVC8Bxt9hhY5tBhqsC6dP5GI56Y-02tTtMY3g7GPC-9V_dv8xreIiCbfPZEYw26214k7KVjT2GfTX9dtwdxPSdz65Of_0D2_XqBA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAeUF-oW2jrA_RQye3GsWP7gCpoQctjt1UFErfgxHYvq-xCdkH8OX5bPXltkRA37hPLmhn7m3FmvgHYwoEuOguRmxVWUy5FTpWNFI211ZkMEJ5XZNXDUTI440fn4nwJ7tpeGCyrbO_E6qK2kxzfyL8FGBJM9jUT36eXFKdG4d_VdoSGaUYr2J2KYqxp7Dh2tzchhSt3Dn8Ge28zdrB_-mNAmykDNI-FmlHpnc9ymXPtlfHSRc4ymUVZYjImlGEsbJ15xxMvXOIRbrUwiY59CM21y0wc1n0GKzzmOiR_K3v7o99_OiyIpaqbYELSrgIuNB2CSFptpkhHyvpfcW7vgtfhHj7WJZL3gt_VeTE1tzdmPP4PBw9ewloTwJLd2uNewZIrXsOLYcf-Wr6Bo1-FowTrPeYlqSoWKVauT4oAcOTK_cXKV3IdkvTKK4gpLAkQgQ-VJZl4gu1Dk2uCv8vLt3D2JNpch-Ui7OcdEJ7EuWd9a2QmuOHaRDbSKk_60hrkuOnB505raXPyyrSuWpNpUG-K6k0Z68GXVqVp3jCf4wCO8cPCW53wtCb8eFhsvbJNJ8NVguPaeQ82W2MtNrVw3h5sdwZ8bP33jy_zCVYHp8OT9ORwdLwBz_GjuvBtE5ZnV3P3IURKs-xj444ELp76BPwD8W4l8Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2h5VBxaIGCuhUgH6AHJG8Txx_xEUERQoL20JXoKbId-9JVdrXZBcGvZ5xkQ6EIcR_ZTp7teU7G7wEcRkMXbZG5laLUlCvhaF6mOc10qa3CFO4aseqra3kx5pc34mYNVoZ3L-QFGCawUfo9mk8neC5fl9h0MoD18fWvkz8tsU1p3u63KXZEkY7z7hZeFIY2syj5yZJR9MZ90k54loPaMsRnBPPDspqZ-zszmfyTa84_wdnqxk5bYvJ3tFzYkXv4X8DxrcfYhI8d1yQn7eTYgjVfbcPGVS_UWn-Gy5-VpySWZixr0hQX0lhkPq0wF5F541M_J7d4nm4AJNgZwd08flOsyTSQeNNnekvin-16B8bnP36fXtDOXoG6TOQLqoIP1inHdchNUD71JVM2tdJYJnLDGGLGgucyCC9D5BlaGKmzgGcS7a3JdmFQ4Xi-AOEyc4ElpVFWcMO1SctU504mqjRRjmYI3_qXX3SLpC7aAjNVIEpFRKlgbAjHK2QK14mUR6-MyevBh33wrNXmeD1st4G4j-G5jM7qfAh7K8yfBoV0RzCVaCaGcNTPg7fa__rOuD0YLOZLv48kZmEPukn8CA7h7Yg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ONE-VERSUS+MULTI-COMPONENT+REGULAR+VARIATION+AND+EXTREMES+OF+MARKOV+TREES&rft.jtitle=Advances+in+applied+probability&rft.au=SEGERS%2C+JOHAN&rft.date=2020-09-01&rft.pub=Applied+Probability+Trust&rft.issn=0001-8678&rft.eissn=1475-6064&rft.volume=52&rft.issue=3&rft.spage=855&rft.epage=878&rft_id=info:doi/10.1017%2Fapr.2020.22&rft.externalDocID=48654524 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8678&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8678&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8678&client=summon |