Experimental investigations of high-temperature shell and multi-tube latent heat storage system

•Developed a high-temperature sodium nitrate based latent heat storage (LHS) system.•Tested thermal behaviour at different heat transfer fluid (air) flow conditions.•Thermal storage capacity of 19.5 MJ was achieved at a maximum temperature of 365 °C.•Energy, cost and power output comparison with typ...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 198; p. 117491
Main Authors Sodhi, Gurpreet Singh, Vigneshwaran, K., Muthukumar, P.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 05.11.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN1359-4311
1873-5606
DOI10.1016/j.applthermaleng.2021.117491

Cover

Abstract •Developed a high-temperature sodium nitrate based latent heat storage (LHS) system.•Tested thermal behaviour at different heat transfer fluid (air) flow conditions.•Thermal storage capacity of 19.5 MJ was achieved at a maximum temperature of 365 °C.•Energy, cost and power output comparison with typical sensible heat storage systems. High-temperature thermal energy storage (TES) systems improve the reliability and performance of solar-thermal utilization systems due to their ability to levelize the gap between the energy supply and demand. The present work focuses on conducting extensive experimental investigations to study the performance characteristics of a latent heat storage (LHS) system. A customized experimental facility was designed and developed with air as the heat transfer fluid operating at a maximum temperature of 400 °C. Sodium nitrate used as the phase change material (PCM) was filled in the shell side of a multi-tube heat exchanger and performance parameters such as charging/discharging time, energy stored/discharged, and output power were estimated by varying the flow rate and inlet temperature of air. The axial and radial temperature distributions reveal that the heat transfer occurs predominantly due to natural convection during the charging process, whereas, discharging takes place primarily due to conduction heat transfer in the axial direction. The energy storage of ~ 19.5 MJ was achieved with maximum PCM temperature reaching up to 365 °C. A comparison with cast steel and concrete based sensible heat storage (SHS) mediums operating at similar experimental conditions indicates that the LHS medium possesses high energy storage density and low storage cost, however, a combination of SHS and LHS mediums can meet the diverse load requirements in the end-user applications.
AbstractList High-temperature thermal energy storage (TES) systems improve the reliability and performance of solar-thermal utilization systems due to their ability to levelize the gap between the energy supply and demand. The present work focuses on conducting extensive experimental investigations to study the performance characteristics of a latent heat storage (LHS) system. A customized experimental facility was designed and developed with air as the heat transfer fluid operating at a maximum temperature of 400 °C. Sodium nitrate used as the phase change material (PCM) was filled in the shell side of a multi-tube heat exchanger and performance parameters such as charging/discharging time, energy stored/discharged, and output power were estimated by varying the flow rate and inlet temperature of air. The axial and radial temperature distributions reveal that the heat transfer occurs predominantly due to natural convection during the charging process, whereas, discharging takes place primarily due to conduction heat transfer in the axial direction. The energy storage of ~ 19.5 MJ was achieved with maximum PCM temperature reaching up to 365 °C. A comparison with cast steel and concrete based sensible heat storage (SHS) mediums operating at similar experimental conditions indicates that the LHS medium possesses high energy storage density and low storage cost, however, a combination of SHS and LHS mediums can meet the diverse load requirements in the end-user applications.
•Developed a high-temperature sodium nitrate based latent heat storage (LHS) system.•Tested thermal behaviour at different heat transfer fluid (air) flow conditions.•Thermal storage capacity of 19.5 MJ was achieved at a maximum temperature of 365 °C.•Energy, cost and power output comparison with typical sensible heat storage systems. High-temperature thermal energy storage (TES) systems improve the reliability and performance of solar-thermal utilization systems due to their ability to levelize the gap between the energy supply and demand. The present work focuses on conducting extensive experimental investigations to study the performance characteristics of a latent heat storage (LHS) system. A customized experimental facility was designed and developed with air as the heat transfer fluid operating at a maximum temperature of 400 °C. Sodium nitrate used as the phase change material (PCM) was filled in the shell side of a multi-tube heat exchanger and performance parameters such as charging/discharging time, energy stored/discharged, and output power were estimated by varying the flow rate and inlet temperature of air. The axial and radial temperature distributions reveal that the heat transfer occurs predominantly due to natural convection during the charging process, whereas, discharging takes place primarily due to conduction heat transfer in the axial direction. The energy storage of ~ 19.5 MJ was achieved with maximum PCM temperature reaching up to 365 °C. A comparison with cast steel and concrete based sensible heat storage (SHS) mediums operating at similar experimental conditions indicates that the LHS medium possesses high energy storage density and low storage cost, however, a combination of SHS and LHS mediums can meet the diverse load requirements in the end-user applications.
ArticleNumber 117491
Author Muthukumar, P.
Vigneshwaran, K.
Sodhi, Gurpreet Singh
Author_xml – sequence: 1
  givenname: Gurpreet Singh
  surname: Sodhi
  fullname: Sodhi, Gurpreet Singh
  organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
– sequence: 2
  givenname: K.
  surname: Vigneshwaran
  fullname: Vigneshwaran, K.
  organization: Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
– sequence: 3
  givenname: P.
  surname: Muthukumar
  fullname: Muthukumar, P.
  email: pmkumar@iitg.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
BookMark eNqNkE1LxDAQhoMouK7-h4Beu2aaNu2CFxW_QPCi55BNptss2bQmqei_N7pe9OQpA3nfZ5jniOz7wSMhZ8AWwECcbxZqHF3qMWyVQ79elKyEBUBTLWGPzKBteFELJvbzzOtlUXGAQ3IU44YxKNummhF58z5isFv0STlq_RvGZNcq2cFHOnS0t-u-SLjNIZWmgDT26BxV3tDt5JIt0rRC6lTKANqjSjSmIah1Dn7E3DsmB51yEU9-3jl5ub15vr4vHp_uHq4vHwvN6zYVApUuFYhlZUxXmpXihnVCGzA156JpjOrQVKYGrFbcVKJrObBG4wpr0Yq65XNyuuOOYXid8hFyM0zB55WyzN_1krcN5NTFLqXDEGPATo75dhU-JDD5pVRu5G-l8kup3CnN9as_dW3Tt6sUlHX_hdzuIJh1vFkMMmqLXqOxAXWSZrD_A30CZa-jyQ
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2022_118897
crossref_primary_10_1016_j_applthermaleng_2022_118698
crossref_primary_10_1016_j_est_2023_106959
crossref_primary_10_1016_j_jclepro_2023_139141
crossref_primary_10_1016_j_applthermaleng_2022_119526
crossref_primary_10_1016_j_jclepro_2024_142752
crossref_primary_10_1016_j_rser_2022_113139
crossref_primary_10_1016_j_est_2024_114225
crossref_primary_10_1016_j_est_2024_114335
crossref_primary_10_1016_j_renene_2024_121315
crossref_primary_10_3390_en16041882
crossref_primary_10_3390_ma17122804
crossref_primary_10_1016_j_applthermaleng_2024_122750
crossref_primary_10_1016_j_est_2023_110110
crossref_primary_10_1016_j_est_2023_110286
crossref_primary_10_2139_ssrn_4185480
crossref_primary_10_1016_j_est_2023_108695
crossref_primary_10_1016_j_apenergy_2025_125766
crossref_primary_10_1016_j_est_2023_108477
crossref_primary_10_1016_j_est_2023_108762
crossref_primary_10_1016_j_ijthermalsci_2024_109387
crossref_primary_10_1016_j_tsep_2022_101479
crossref_primary_10_1016_j_csite_2022_102258
crossref_primary_10_1016_j_ceramint_2023_03_040
Cites_doi 10.1016/j.apenergy.2012.11.044
10.1016/0017-9310(95)00402-5
10.1016/j.applthermaleng.2018.08.035
10.1016/j.apenergy.2012.11.051
10.1016/j.buildenv.2016.05.035
10.1016/j.solener.2013.03.025
10.1016/j.apenergy.2011.08.025
10.1016/j.ijheatmasstransfer.2010.05.028
10.1016/j.apenergy.2013.06.007
10.1016/j.rser.2009.10.015
10.1016/j.solmat.2010.09.032
10.1016/j.solener.2017.07.044
10.1016/j.rser.2009.07.036
10.1016/j.egypro.2019.01.737
10.1016/j.applthermaleng.2017.04.085
10.1016/j.apenergy.2019.114102
10.1016/j.apenergy.2018.03.156
10.1016/S0360-5442(03)00191-9
10.1016/j.apenergy.2016.12.079
10.1016/j.ijheatmasstransfer.2014.07.087
10.1016/j.solmat.2013.08.015
10.1016/j.egypro.2019.02.165
10.1016/j.energy.2019.116083
10.1016/j.enconman.2019.112121
10.1016/j.solener.2014.01.007
10.1016/j.ijheatmasstransfer.2012.06.004
10.1016/j.apenergy.2019.113322
10.1016/j.rser.2018.04.097
10.1016/j.ijheatmasstransfer.2017.11.024
10.1016/j.rser.2017.01.169
10.1016/j.solener.2018.06.101
10.1016/j.applthermaleng.2019.114684
10.1016/j.rser.2012.10.014
10.1016/j.enconman.2018.04.016
10.1016/j.ijheatmasstransfer.2019.03.111
10.1016/j.solmat.2015.12.043
10.1016/j.apenergy.2011.05.026
10.1016/j.apenergy.2019.113806
10.1016/j.renene.2019.03.037
10.1016/j.apenergy.2020.115665
10.1016/j.est.2019.04.008
10.1016/0894-1777(88)90043-X
10.1016/j.apenergy.2015.01.125
10.1016/j.enconman.2019.111905
10.1016/j.applthermaleng.2018.11.007
10.1016/j.egypro.2014.03.041
10.1016/j.enconman.2019.03.022
10.1016/j.rser.2012.01.020
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Nov 5, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 5, 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2021.117491
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2021_117491
S1359431121009236
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c358t-6eac2a1694ddf2dba3d0f6cd1d533677dafed4d51e4b3d46f83107cebe5686583
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Fri Jul 25 05:03:18 EDT 2025
Tue Jul 01 02:05:29 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Fri Feb 23 02:44:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Latent heat
Heat transfer fluid
Thermal energy storage
High temperature
Air
Phase Change Material
Multi tube
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-6eac2a1694ddf2dba3d0f6cd1d533677dafed4d51e4b3d46f83107cebe5686583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2583593871
PQPubID 2045278
ParticipantIDs proquest_journals_2583593871
crossref_primary_10_1016_j_applthermaleng_2021_117491
crossref_citationtrail_10_1016_j_applthermaleng_2021_117491
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-05
PublicationDateYYYYMMDD 2021-11-05
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ma, Yang, Yuan, Jin, He (b0140) 2017; 122
Elmozughi, Solomon, Oztekin, Neti (b0225) 2014; 78
Vigneshwaran, Sodhi, Muthukumar, Guha, Senthilmurugan (b0245) 2019; 251
Zauner, Hengstberger, Mörzinger, Hofmann, Walter (b0160) 2017; 189
Yuan, Li, Ma, Jin, Liu (b0145) 2018; 118
Lomonaco, Haillot, Pernot, Franquet, Bédécarrats (b0220) 2016; 149
Johnson, Hübner, Braun, Martin, Fiß, Hachmann, Schönberger, Eck (b0030) 2018; 144
Longeon, Soupart, Fourmigué, Bruch, Marty (b0235) 2013; 112
Yusuf Yazici, Avci, Aydin, Akgun (b0260) 2014; 101
Zhang, Li, Chen (b0035) 2020; 259
Iten, Liu, Shukla (b0165) 2016; 105
Lakshmi Narasimhan (b0050) 2019; 23
Tay, Belusko, Bruno (b0105) 2012; 90
Mastani, Seddegh, Wang, Haghighat (b0090) 2019; 140
Incropera, Dewitt, Bergman, Lavine (b0210) 2007
Anisur, Mahfuz, Kibria, Saidur, Metselaar, Mahlia (b0020) 2013; 18
Zhang, Ma, Xiao (b0135) 2016; 173
Avci, Yazici (b0255) 2013; 73
Sodhi, Vigneshwaran, Jaiswal, Muthukumar (b0095) 2018; 158
Agyenim, Hewitt, Eames, Smyth (b0080) 2010; 14
Shen, Wang, Chan (b0100) 2019; 160
Ibrahim, Al-sulaiman, Rahman, Yilbas, Sahin (b0130) 2017; 74
Zhao, Wu (b0040) 2011; 95
Palomba, Brancato, Frazzica (b0070) 2019; 200
Tian, Zhao (b0190) 2013; 104
Zhou, Zhao, Tian (b0115) 2012; 92
Tay, Bruno, Belusko (b0065) 2012; 55
Fadl, Eames (b0110) 2019; 188
Zipf, Neuhäuser, Willert, Nitz, Gschwander, Platzer (b0205) 2013; 109
Niyas, Ravi, Rao, Muthukumar (b0155) 2017; 155
I. Conference, T.E. Storage, The 11th International Conference on Thermal Energy Storage – Effstock 14-17 June 2009 in Stockholm, Sweden, (2009) 1–8.
Vigneshwaran, Sodhi, Muthukumar, Subbiah (b0250) 2019; 198
Y. Kato, Thermal Energy Storages in Vehicles for Fuel Efficiency, 2009.
Good, Zanganeh, Ambrosetti, Barbato, Pedretti, Steinfeld (b0195) 2014; 49
Mahdi, Lohrasbi, Nsofor (b0025) 2019; 137
Mahdi, Mahood, Campbell, Khadom (b0060) 2020; 175
Zhang (b0270) 1996; 39
Pacio, Wetzel (b0185) 2013; 93
Li, Jin, Ma, Yuan (b0150) 2018; 221
Kearney, Kelly, Herrmann, Cable, Pacheco, Mahoney, Price, Blake, Nava, Potrovitza (b0170) 2004; 29
Li, Li, Du, Jiang, Ding (b0085) 2019; 255
Sodhi, Jaiswal, Vigneshwaran, Muthukumar (b0055) 2019; 188
Vigneshwaran, Singh, Guha, Muthukumar, Subbiah (b0275) 2020; 278
Islam, Huda, Abdullah, Saidur (b0010) 2018; 91
Liu, Saman, Bruno (b0200) 2012; 16
Vignarooban, Xu, Arvay, Hsu, Kannan (b0180) 2015; 146
IRENA (b0005) 2019
Shmueli, Ziskind, Letan (b0230) 2010; 53
Kousksou, Bruel, Jamil, El Rhafiki, Zeraouli (b0015) 2014; 120
Moffat (b0240) 1988; 1
Gmbh (b0265) 2000
Crespo, Barreneche, Ibarra, Platzer (b0125) 2019; 192
Medrano, Gil, Martorell, Potau, Cabeza (b0175) 2010; 14
Huang, Zhu, Lin, Fang (b0045) 2019; 147
Ebadi, Tasnim, Aliabadi, Mahmud (b0075) 2018; 166
Zhang (10.1016/j.applthermaleng.2021.117491_b0035) 2020; 259
10.1016/j.applthermaleng.2021.117491_b0120
Medrano (10.1016/j.applthermaleng.2021.117491_b0175) 2010; 14
Yusuf Yazici (10.1016/j.applthermaleng.2021.117491_b0260) 2014; 101
Tian (10.1016/j.applthermaleng.2021.117491_b0190) 2013; 104
Zhang (10.1016/j.applthermaleng.2021.117491_b0270) 1996; 39
Pacio (10.1016/j.applthermaleng.2021.117491_b0185) 2013; 93
Incropera (10.1016/j.applthermaleng.2021.117491_b0210) 2007
Avci (10.1016/j.applthermaleng.2021.117491_b0255) 2013; 73
Kousksou (10.1016/j.applthermaleng.2021.117491_b0015) 2014; 120
Islam (10.1016/j.applthermaleng.2021.117491_b0010) 2018; 91
Zauner (10.1016/j.applthermaleng.2021.117491_b0160) 2017; 189
Lakshmi Narasimhan (10.1016/j.applthermaleng.2021.117491_b0050) 2019; 23
Crespo (10.1016/j.applthermaleng.2021.117491_b0125) 2019; 192
Shmueli (10.1016/j.applthermaleng.2021.117491_b0230) 2010; 53
Lomonaco (10.1016/j.applthermaleng.2021.117491_b0220) 2016; 149
Huang (10.1016/j.applthermaleng.2021.117491_b0045) 2019; 147
Mastani (10.1016/j.applthermaleng.2021.117491_b0090) 2019; 140
Zipf (10.1016/j.applthermaleng.2021.117491_b0205) 2013; 109
Liu (10.1016/j.applthermaleng.2021.117491_b0200) 2012; 16
Fadl (10.1016/j.applthermaleng.2021.117491_b0110) 2019; 188
Good (10.1016/j.applthermaleng.2021.117491_b0195) 2014; 49
Mahdi (10.1016/j.applthermaleng.2021.117491_b0060) 2020; 175
Iten (10.1016/j.applthermaleng.2021.117491_b0165) 2016; 105
Zhao (10.1016/j.applthermaleng.2021.117491_b0040) 2011; 95
10.1016/j.applthermaleng.2021.117491_b0215
Ibrahim (10.1016/j.applthermaleng.2021.117491_b0130) 2017; 74
Ma (10.1016/j.applthermaleng.2021.117491_b0140) 2017; 122
Li (10.1016/j.applthermaleng.2021.117491_b0150) 2018; 221
Vigneshwaran (10.1016/j.applthermaleng.2021.117491_b0250) 2019; 198
Vigneshwaran (10.1016/j.applthermaleng.2021.117491_b0275) 2020; 278
Yuan (10.1016/j.applthermaleng.2021.117491_b0145) 2018; 118
Tay (10.1016/j.applthermaleng.2021.117491_b0105) 2012; 90
Elmozughi (10.1016/j.applthermaleng.2021.117491_b0225) 2014; 78
Anisur (10.1016/j.applthermaleng.2021.117491_b0020) 2013; 18
Johnson (10.1016/j.applthermaleng.2021.117491_b0030) 2018; 144
Moffat (10.1016/j.applthermaleng.2021.117491_b0240) 1988; 1
Shen (10.1016/j.applthermaleng.2021.117491_b0100) 2019; 160
Vignarooban (10.1016/j.applthermaleng.2021.117491_b0180) 2015; 146
Li (10.1016/j.applthermaleng.2021.117491_b0085) 2019; 255
Vigneshwaran (10.1016/j.applthermaleng.2021.117491_b0245) 2019; 251
Sodhi (10.1016/j.applthermaleng.2021.117491_b0095) 2018; 158
Mahdi (10.1016/j.applthermaleng.2021.117491_b0025) 2019; 137
Ebadi (10.1016/j.applthermaleng.2021.117491_b0075) 2018; 166
Longeon (10.1016/j.applthermaleng.2021.117491_b0235) 2013; 112
Tay (10.1016/j.applthermaleng.2021.117491_b0065) 2012; 55
Zhang (10.1016/j.applthermaleng.2021.117491_b0135) 2016; 173
Gmbh (10.1016/j.applthermaleng.2021.117491_b0265) 2000
Palomba (10.1016/j.applthermaleng.2021.117491_b0070) 2019; 200
Zhou (10.1016/j.applthermaleng.2021.117491_b0115) 2012; 92
Niyas (10.1016/j.applthermaleng.2021.117491_b0155) 2017; 155
Kearney (10.1016/j.applthermaleng.2021.117491_b0170) 2004; 29
IRENA (10.1016/j.applthermaleng.2021.117491_b0005) 2019
Agyenim (10.1016/j.applthermaleng.2021.117491_b0080) 2010; 14
Sodhi (10.1016/j.applthermaleng.2021.117491_b0055) 2019; 188
References_xml – reference: Y. Kato, Thermal Energy Storages in Vehicles for Fuel Efficiency, 2009.
– start-page: 61
  year: 2000
  ident: b0265
  article-title: Survey of Thermal Storage for Parabolic Trough Power Plants, NREL/SR-550-27925
  publication-title: Nrel.
– volume: 90
  start-page: 288
  year: 2012
  end-page: 297
  ident: b0105
  article-title: Experimental investigation of tubes in a phase change thermal energy storage system
  publication-title: Appl. Energy.
– volume: 1
  start-page: 3
  year: 1988
  end-page: 17
  ident: b0240
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp. Therm. Fluid Sci.
– volume: 109
  start-page: 462
  year: 2013
  end-page: 469
  ident: b0205
  article-title: High temperature latent heat storage with a screw heat exchanger: Design of prototype
  publication-title: Appl. Energy.
– volume: 140
  start-page: 234
  year: 2019
  end-page: 244
  ident: b0090
  article-title: Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system
  publication-title: Renew. Energy.
– volume: 259
  year: 2020
  ident: b0035
  article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins
  publication-title: Appl. Energy.
– volume: 92
  start-page: 593
  year: 2012
  end-page: 605
  ident: b0115
  article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications
  publication-title: Appl. Energy.
– volume: 104
  start-page: 538
  year: 2013
  end-page: 553
  ident: b0190
  article-title: A review of solar collectors and thermal energy storage in solar thermal applications
  publication-title: Appl. Energy.
– volume: 78
  start-page: 1135
  year: 2014
  end-page: 1144
  ident: b0225
  article-title: Encapsulated phase change material for high temperature thermal energy storage - Heat transfer analysis
  publication-title: Int. J. Heat Mass Transf.
– volume: 16
  start-page: 2118
  year: 2012
  end-page: 2132
  ident: b0200
  article-title: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 251
  year: 2019
  ident: b0245
  article-title: Experimental and numerical investigations on high temperature cast steel based sensible heat storage system
  publication-title: Appl. Energy.
– volume: 137
  start-page: 630
  year: 2019
  end-page: 649
  ident: b0025
  article-title: Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review
  publication-title: Int. J. Heat Mass Transf.
– volume: 120
  start-page: 59
  year: 2014
  end-page: 80
  ident: b0015
  article-title: Energy storage: Applications and challenges
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 55
  start-page: 5931
  year: 2012
  end-page: 5940
  ident: b0065
  article-title: Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system
  publication-title: Int. J. Heat Mass Transf.
– volume: 93
  start-page: 11
  year: 2013
  end-page: 22
  ident: b0185
  article-title: Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems
  publication-title: Sol. Energy.
– volume: 255
  year: 2019
  ident: b0085
  article-title: A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications
  publication-title: Appl. Energy.
– volume: 122
  start-page: 579
  year: 2017
  end-page: 592
  ident: b0140
  article-title: Investigation on the thermal performance of a high-temperature latent heat storage system
  publication-title: Appl. Therm. Eng.
– year: 2007
  ident: b0210
  article-title: Fundamentals of Heat and Mass Transfer
– volume: 188
  year: 2019
  ident: b0110
  article-title: An experimental investigation of the heat transfer and energy storage characteristics of a compact latent heat thermal energy storage system for domestic hot water applications
  publication-title: Energy.
– volume: 49
  start-page: 381
  year: 2014
  end-page: 385
  ident: b0195
  article-title: Towards a Commercial Parabolic Trough CSP System Using Air as Heat Transfer Fluid
  publication-title: Energy Procedia.
– volume: 73
  start-page: 271
  year: 2013
  end-page: 277
  ident: b0255
  publication-title: Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit
– reference: I. Conference, T.E. Storage, The 11th International Conference on Thermal Energy Storage – Effstock 14-17 June 2009 in Stockholm, Sweden, (2009) 1–8.
– volume: 155
  start-page: 971
  year: 2017
  end-page: 984
  ident: b0155
  article-title: Performance investigation of a lab-scale latent heat storage prototype – Experimental results
  publication-title: Sol. Energy.
– volume: 175
  year: 2020
  ident: b0060
  article-title: Experimental study on the melting behavior of a phase change material in a conical coil latent heat thermal energy storage unit
  publication-title: Appl. Therm. Eng.
– volume: 200
  year: 2019
  ident: b0070
  article-title: Thermal performance of a latent thermal energy storage for exploitation of renewables and waste heat: An experimental investigation based on an asymmetric plate heat exchanger
  publication-title: Energy Convers. Manag.
– volume: 160
  start-page: 332
  year: 2019
  end-page: 339
  ident: b0100
  article-title: Experimental investigation of heat characteristics vertical multi-tube latent heat thermal energy storage system vertical multi-tube latent heat thermal energy storage system
  publication-title: Energy Procedia.
– volume: 95
  start-page: 636
  year: 2011
  end-page: 643
  ident: b0040
  article-title: Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 14
  start-page: 615
  year: 2010
  end-page: 628
  ident: b0080
  article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)
  publication-title: Renew. Sustain. Energy Rev.
– volume: 192
  start-page: 3
  year: 2019
  end-page: 34
  ident: b0125
  article-title: Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review
  publication-title: Sol. Energy.
– volume: 146
  start-page: 383
  year: 2015
  end-page: 396
  ident: b0180
  article-title: Heat transfer fluids for concentrating solar power systems – A review
  publication-title: Appl. Energy.
– volume: 278
  year: 2020
  ident: b0275
  article-title: Coupling strategy of multi-module high temperature solid sensible heat storage system for large scale application ☆
  publication-title: Appl. Energy.
– volume: 18
  start-page: 23
  year: 2013
  end-page: 30
  ident: b0020
  article-title: Curbing global warming with phase change materials for energy storage
  publication-title: Renew. Sustain. Energy Rev.
– volume: 29
  start-page: 861
  year: 2004
  end-page: 870
  ident: b0170
  article-title: Engineering aspects of a molten salt heat transfer fluid in a trough solar field
  publication-title: Energy.
– volume: 118
  start-page: 997
  year: 2018
  end-page: 1011
  ident: b0145
  article-title: Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system
  publication-title: Int. J. Heat Mass Transf.
– volume: 189
  start-page: 506
  year: 2017
  end-page: 519
  ident: b0160
  article-title: Experimental characterization and simulation of a hybrid sensible-latent heat storage
  publication-title: Appl. Energy.
– volume: 158
  start-page: 4677
  year: 2018
  end-page: 4683
  ident: b0095
  article-title: Assessment of heat transfer characteristics of a latent heat thermal energy storage system : multi tube design
  publication-title: Energy Procedia.
– year: 2019
  ident: b0005
  article-title: Global energy transformation: A roadmap to 2050
– volume: 91
  start-page: 987
  year: 2018
  end-page: 1018
  ident: b0010
  article-title: A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends
  publication-title: Renew. Sustain. Energy Rev.
– volume: 188
  start-page: 381
  year: 2019
  end-page: 397
  ident: b0055
  article-title: Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device
  publication-title: Energy Convers. Manag.
– volume: 221
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0150
  article-title: Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material
  publication-title: Appl. Energy.
– volume: 149
  start-page: 81
  year: 2016
  end-page: 87
  ident: b0220
  article-title: Sodium nitrate thermal behavior in latent heat thermal energy storage: A study of the impact of sodium nitrite on melting temperature and enthalpy
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 144
  start-page: 96
  year: 2018
  end-page: 105
  ident: b0030
  article-title: Assembly and attachment methods for extended aluminum fins onto steel tubes for high temperature latent heat storage units
  publication-title: Appl. Therm. Eng.
– volume: 53
  start-page: 4082
  year: 2010
  end-page: 4091
  ident: b0230
  article-title: Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments
  publication-title: Int. J. Heat Mass Transf.
– volume: 105
  start-page: 128
  year: 2016
  end-page: 139
  ident: b0165
  article-title: Experimental study on the thermal performance of air-PCM unit
  publication-title: Build. Environ.
– volume: 112
  start-page: 175
  year: 2013
  end-page: 184
  ident: b0235
  article-title: Experimental and numerical study of annular PCM storage in the presence of natural convection
  publication-title: Appl. Energy.
– volume: 39
  start-page: 3165
  year: 1996
  end-page: 3173
  ident: b0270
  article-title: a Faghri, Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube
  publication-title: Int. J. Heat Mass Transf.
– volume: 198
  year: 2019
  ident: b0250
  article-title: Concrete based high temperature thermal energy storage system: Experimental and numerical studies
  publication-title: Energy Convers. Manag.
– volume: 173
  start-page: 255
  year: 2016
  end-page: 271
  ident: b0135
  publication-title: Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system
– volume: 147
  start-page: 841
  year: 2019
  end-page: 855
  ident: b0045
  article-title: Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review
  publication-title: Appl. Therm. Eng.
– volume: 74
  start-page: 26
  year: 2017
  end-page: 50
  ident: b0130
  article-title: Heat transfer enhancement of phase change materials for thermal energy storage applications : A critical review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 166
  start-page: 241
  year: 2018
  end-page: 259
  ident: b0075
  article-title: Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification
  publication-title: Energy Convers. Manag.
– volume: 14
  start-page: 56
  year: 2010
  end-page: 72
  ident: b0175
  article-title: State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies
  publication-title: Renew. Sustain. Energy Rev.
– volume: 101
  start-page: 291
  year: 2014
  end-page: 298
  ident: b0260
  article-title: Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study
  publication-title: Sol. Energy.
– volume: 23
  start-page: 442
  year: 2019
  end-page: 455
  ident: b0050
  article-title: Assessment of latent heat thermal storage systems operating with multiple phase change materials
  publication-title: J. Energy Storage.
– volume: 109
  start-page: 462
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117491_b0205
  article-title: High temperature latent heat storage with a screw heat exchanger: Design of prototype
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2012.11.044
– volume: 39
  start-page: 3165
  year: 1996
  ident: 10.1016/j.applthermaleng.2021.117491_b0270
  article-title: a Faghri, Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(95)00402-5
– volume: 144
  start-page: 96
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117491_b0030
  article-title: Assembly and attachment methods for extended aluminum fins onto steel tubes for high temperature latent heat storage units
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.08.035
– volume: 104
  start-page: 538
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117491_b0190
  article-title: A review of solar collectors and thermal energy storage in solar thermal applications
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2012.11.051
– volume: 105
  start-page: 128
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117491_b0165
  article-title: Experimental study on the thermal performance of air-PCM unit
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.05.035
– volume: 93
  start-page: 11
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117491_b0185
  article-title: Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2013.03.025
– start-page: 61
  year: 2000
  ident: 10.1016/j.applthermaleng.2021.117491_b0265
  article-title: Survey of Thermal Storage for Parabolic Trough Power Plants, NREL/SR-550-27925
  publication-title: Nrel.
– volume: 92
  start-page: 593
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117491_b0115
  article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2011.08.025
– volume: 53
  start-page: 4082
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.117491_b0230
  article-title: Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.05.028
– year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0005
– volume: 112
  start-page: 175
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117491_b0235
  article-title: Experimental and numerical study of annular PCM storage in the presence of natural convection
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2013.06.007
– volume: 14
  start-page: 615
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.117491_b0080
  article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2009.10.015
– volume: 95
  start-page: 636
  year: 2011
  ident: 10.1016/j.applthermaleng.2021.117491_b0040
  article-title: Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite
  publication-title: Sol. Energy Mater. Sol. Cells.
  doi: 10.1016/j.solmat.2010.09.032
– volume: 155
  start-page: 971
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117491_b0155
  article-title: Performance investigation of a lab-scale latent heat storage prototype – Experimental results
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2017.07.044
– ident: 10.1016/j.applthermaleng.2021.117491_b0215
– volume: 14
  start-page: 56
  year: 2010
  ident: 10.1016/j.applthermaleng.2021.117491_b0175
  article-title: State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2009.07.036
– volume: 158
  start-page: 4677
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117491_b0095
  article-title: Assessment of heat transfer characteristics of a latent heat thermal energy storage system : multi tube design
  publication-title: Energy Procedia.
  doi: 10.1016/j.egypro.2019.01.737
– volume: 122
  start-page: 579
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117491_b0140
  article-title: Investigation on the thermal performance of a high-temperature latent heat storage system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.04.085
– volume: 259
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117491_b0035
  article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2019.114102
– ident: 10.1016/j.applthermaleng.2021.117491_b0120
– volume: 221
  start-page: 1
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117491_b0150
  article-title: Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2018.03.156
– volume: 29
  start-page: 861
  year: 2004
  ident: 10.1016/j.applthermaleng.2021.117491_b0170
  article-title: Engineering aspects of a molten salt heat transfer fluid in a trough solar field
  publication-title: Energy.
  doi: 10.1016/S0360-5442(03)00191-9
– volume: 189
  start-page: 506
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117491_b0160
  article-title: Experimental characterization and simulation of a hybrid sensible-latent heat storage
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2016.12.079
– volume: 78
  start-page: 1135
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117491_b0225
  article-title: Encapsulated phase change material for high temperature thermal energy storage - Heat transfer analysis
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.07.087
– volume: 120
  start-page: 59
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117491_b0015
  article-title: Energy storage: Applications and challenges
  publication-title: Sol. Energy Mater. Sol. Cells.
  doi: 10.1016/j.solmat.2013.08.015
– volume: 160
  start-page: 332
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0100
  article-title: Experimental investigation of heat characteristics vertical multi-tube latent heat thermal energy storage system vertical multi-tube latent heat thermal energy storage system
  publication-title: Energy Procedia.
  doi: 10.1016/j.egypro.2019.02.165
– volume: 188
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0110
  article-title: An experimental investigation of the heat transfer and energy storage characteristics of a compact latent heat thermal energy storage system for domestic hot water applications
  publication-title: Energy.
  doi: 10.1016/j.energy.2019.116083
– volume: 73
  start-page: 271
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117491_b0255
  publication-title: Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit
– volume: 173
  start-page: 255
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117491_b0135
  publication-title: Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system
– volume: 200
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0070
  article-title: Thermal performance of a latent thermal energy storage for exploitation of renewables and waste heat: An experimental investigation based on an asymmetric plate heat exchanger
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112121
– volume: 101
  start-page: 291
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117491_b0260
  article-title: Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2014.01.007
– volume: 55
  start-page: 5931
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117491_b0065
  article-title: Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.06.004
– volume: 251
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0245
  article-title: Experimental and numerical investigations on high temperature cast steel based sensible heat storage system
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2019.113322
– volume: 91
  start-page: 987
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117491_b0010
  article-title: A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.097
– volume: 118
  start-page: 997
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117491_b0145
  article-title: Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.11.024
– volume: 74
  start-page: 26
  year: 2017
  ident: 10.1016/j.applthermaleng.2021.117491_b0130
  article-title: Heat transfer enhancement of phase change materials for thermal energy storage applications : A critical review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.01.169
– volume: 192
  start-page: 3
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0125
  article-title: Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review
  publication-title: Sol. Energy.
  doi: 10.1016/j.solener.2018.06.101
– volume: 175
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117491_b0060
  article-title: Experimental study on the melting behavior of a phase change material in a conical coil latent heat thermal energy storage unit
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114684
– volume: 18
  start-page: 23
  year: 2013
  ident: 10.1016/j.applthermaleng.2021.117491_b0020
  article-title: Curbing global warming with phase change materials for energy storage
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.10.014
– volume: 166
  start-page: 241
  year: 2018
  ident: 10.1016/j.applthermaleng.2021.117491_b0075
  article-title: Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.04.016
– volume: 137
  start-page: 630
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0025
  article-title: Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.03.111
– volume: 149
  start-page: 81
  year: 2016
  ident: 10.1016/j.applthermaleng.2021.117491_b0220
  article-title: Sodium nitrate thermal behavior in latent heat thermal energy storage: A study of the impact of sodium nitrite on melting temperature and enthalpy
  publication-title: Sol. Energy Mater. Sol. Cells.
  doi: 10.1016/j.solmat.2015.12.043
– volume: 90
  start-page: 288
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117491_b0105
  article-title: Experimental investigation of tubes in a phase change thermal energy storage system
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2011.05.026
– volume: 255
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0085
  article-title: A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2019.113806
– volume: 140
  start-page: 234
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0090
  article-title: Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2019.03.037
– volume: 278
  year: 2020
  ident: 10.1016/j.applthermaleng.2021.117491_b0275
  article-title: Coupling strategy of multi-module high temperature solid sensible heat storage system for large scale application ☆
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2020.115665
– volume: 23
  start-page: 442
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0050
  article-title: Assessment of latent heat thermal storage systems operating with multiple phase change materials
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2019.04.008
– volume: 1
  start-page: 3
  year: 1988
  ident: 10.1016/j.applthermaleng.2021.117491_b0240
  article-title: Describing the uncertainties in experimental results
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(88)90043-X
– volume: 146
  start-page: 383
  year: 2015
  ident: 10.1016/j.applthermaleng.2021.117491_b0180
  article-title: Heat transfer fluids for concentrating solar power systems – A review
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2015.01.125
– volume: 198
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0250
  article-title: Concrete based high temperature thermal energy storage system: Experimental and numerical studies
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111905
– volume: 147
  start-page: 841
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0045
  article-title: Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.11.007
– volume: 49
  start-page: 381
  year: 2014
  ident: 10.1016/j.applthermaleng.2021.117491_b0195
  article-title: Towards a Commercial Parabolic Trough CSP System Using Air as Heat Transfer Fluid
  publication-title: Energy Procedia.
  doi: 10.1016/j.egypro.2014.03.041
– volume: 188
  start-page: 381
  year: 2019
  ident: 10.1016/j.applthermaleng.2021.117491_b0055
  article-title: Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.03.022
– year: 2007
  ident: 10.1016/j.applthermaleng.2021.117491_b0210
– volume: 16
  start-page: 2118
  year: 2012
  ident: 10.1016/j.applthermaleng.2021.117491_b0200
  article-title: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.01.020
SSID ssj0012874
Score 2.4931903
Snippet •Developed a high-temperature sodium nitrate based latent heat storage (LHS) system.•Tested thermal behaviour at different heat transfer fluid (air) flow...
High-temperature thermal energy storage (TES) systems improve the reliability and performance of solar-thermal utilization systems due to their ability to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117491
SubjectTerms Air
Charging
Conduction heating
Discharge
Energy storage
Enthalpy
Flow velocity
Free convection
Heat conductivity
Heat storage
Heat transfer
Heat transfer fluid
High temperature
Inlet temperature
Latent heat
Multi tube
Phase Change Material
Phase change materials
Sodium nitrates
Thermal energy
Thermal energy storage
Thermal utilization
Tube heat exchangers
Title Experimental investigations of high-temperature shell and multi-tube latent heat storage system
URI https://dx.doi.org/10.1016/j.applthermaleng.2021.117491
https://www.proquest.com/docview/2583593871
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS91AEB70CaKH0tZKtVb24HV9L8nuJosHeTyUp6VeWsHbssls4BXNkxqv_u3OJBt_QUEoOSWw-TGz-eYbdvYbgIMMta2CUbLOvZcKq0IWFnOZ-IKCAx1Y8gbnnxdmfqnOr_TVCsyGvTBcVhmxv8f0Dq3jlXG05vh2sRj_SjJtKfyxAtaEaIpZhbWUon0xgrXp2Y_5xdNiAku6d3mXtpIHrMPBc5kXrxMz1brx3LmEEsY04YVMZZN_Rao3mN0FotOP8CEySDHtX_ITrITmM2y-0BXcAnfyQrdfLJ6lNGiKiWUtWKNYsihVVFQWd1wOKnyDoiswlO19GcQ10dCmFYzWgmsoCXlEL_z8BS5PT37P5jJ2UpBVpotWGoLX1CfGKsQ6xdJnOKlNhQkS2zN5jr4OqFAnQZUZKlNz-7G8IgdrUxBHybZh1Cyb8BVEoARDVfXEF1YpNMqGtPQscW3J55XCHTgarOaqKDPO3S6u3VBP9se9trljm7ve5jugn0bf9nIb7xx3PDjIvZo-jiLDO--wN_jVxd_4zqX06dpmlFTu_vcDvsEGn3X7GPUejNq_9-E7EZq23IfVw4dkP07bR1fy-u8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-UwDLZYJJYDYhXMMJAD1_Be2yRtxGE0QqDHegEkblFap9JDj4KgXPntY3dhGQkJadRb27Sp7dqfFeczwF6C2hbBKFmm3kuFRSYzi6mMfEbBgQ7MeYPzxaUZ3ajTW307BYf9Xhguq-x8f-vTG2_dnRl00hw8jseDqyjRlsIfM2ANCaaYaZhV3OaAjHr_9a3OI2JC9ybr0lby7XOw917kxavEDLTuPfctoXQxjngZU9noqzj1j8duwtDxMix1-FH8aae4AlOhWoXFD6yCa-COPrD2i_E7kQYZmHgoBTMUS6ak6viUxTMXgwpfoWjKC2X9kgcxIRBa1YJ9teAKSvI7oqV9Xoeb46Prw5Hs-ijIItFZLQ0519hHxirEMsbcJzgsTYEREtYzaYq-DKhQR0HlCSpTcvOxtCD1apMRQkk2YKZ6qMImiEDphSrKoc-sUmiUDXHumeDaksYLhVtw0EvNFR3JOPe6mLi-muzOfZa5Y5m7VuZboN9GP7ZkG98c97tXkPtkPI7iwjefsN3r1XU_8bOL6dO1TSil_PHfL9iF-dH1xbk7P7k8-wkLfKXZ0ai3YaZ-egm_CNrU-U5jun8BaSH7sQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigations+of+high-temperature+shell+and+multi-tube+latent+heat+storage+system&rft.jtitle=Applied+thermal+engineering&rft.au=Sodhi%2C+Gurpreet+Singh&rft.au=Vigneshwaran%2C+K.&rft.au=Muthukumar%2C+P.&rft.date=2021-11-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=198&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117491&rft.externalDocID=S1359431121009236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon