Experimental investigations of high-temperature shell and multi-tube latent heat storage system
•Developed a high-temperature sodium nitrate based latent heat storage (LHS) system.•Tested thermal behaviour at different heat transfer fluid (air) flow conditions.•Thermal storage capacity of 19.5 MJ was achieved at a maximum temperature of 365 °C.•Energy, cost and power output comparison with typ...
Saved in:
Published in | Applied thermal engineering Vol. 198; p. 117491 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
05.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1359-4311 1873-5606 |
DOI | 10.1016/j.applthermaleng.2021.117491 |
Cover
Abstract | •Developed a high-temperature sodium nitrate based latent heat storage (LHS) system.•Tested thermal behaviour at different heat transfer fluid (air) flow conditions.•Thermal storage capacity of 19.5 MJ was achieved at a maximum temperature of 365 °C.•Energy, cost and power output comparison with typical sensible heat storage systems.
High-temperature thermal energy storage (TES) systems improve the reliability and performance of solar-thermal utilization systems due to their ability to levelize the gap between the energy supply and demand. The present work focuses on conducting extensive experimental investigations to study the performance characteristics of a latent heat storage (LHS) system. A customized experimental facility was designed and developed with air as the heat transfer fluid operating at a maximum temperature of 400 °C. Sodium nitrate used as the phase change material (PCM) was filled in the shell side of a multi-tube heat exchanger and performance parameters such as charging/discharging time, energy stored/discharged, and output power were estimated by varying the flow rate and inlet temperature of air. The axial and radial temperature distributions reveal that the heat transfer occurs predominantly due to natural convection during the charging process, whereas, discharging takes place primarily due to conduction heat transfer in the axial direction. The energy storage of ~ 19.5 MJ was achieved with maximum PCM temperature reaching up to 365 °C. A comparison with cast steel and concrete based sensible heat storage (SHS) mediums operating at similar experimental conditions indicates that the LHS medium possesses high energy storage density and low storage cost, however, a combination of SHS and LHS mediums can meet the diverse load requirements in the end-user applications. |
---|---|
AbstractList | High-temperature thermal energy storage (TES) systems improve the reliability and performance of solar-thermal utilization systems due to their ability to levelize the gap between the energy supply and demand. The present work focuses on conducting extensive experimental investigations to study the performance characteristics of a latent heat storage (LHS) system. A customized experimental facility was designed and developed with air as the heat transfer fluid operating at a maximum temperature of 400 °C. Sodium nitrate used as the phase change material (PCM) was filled in the shell side of a multi-tube heat exchanger and performance parameters such as charging/discharging time, energy stored/discharged, and output power were estimated by varying the flow rate and inlet temperature of air. The axial and radial temperature distributions reveal that the heat transfer occurs predominantly due to natural convection during the charging process, whereas, discharging takes place primarily due to conduction heat transfer in the axial direction. The energy storage of ~ 19.5 MJ was achieved with maximum PCM temperature reaching up to 365 °C. A comparison with cast steel and concrete based sensible heat storage (SHS) mediums operating at similar experimental conditions indicates that the LHS medium possesses high energy storage density and low storage cost, however, a combination of SHS and LHS mediums can meet the diverse load requirements in the end-user applications. •Developed a high-temperature sodium nitrate based latent heat storage (LHS) system.•Tested thermal behaviour at different heat transfer fluid (air) flow conditions.•Thermal storage capacity of 19.5 MJ was achieved at a maximum temperature of 365 °C.•Energy, cost and power output comparison with typical sensible heat storage systems. High-temperature thermal energy storage (TES) systems improve the reliability and performance of solar-thermal utilization systems due to their ability to levelize the gap between the energy supply and demand. The present work focuses on conducting extensive experimental investigations to study the performance characteristics of a latent heat storage (LHS) system. A customized experimental facility was designed and developed with air as the heat transfer fluid operating at a maximum temperature of 400 °C. Sodium nitrate used as the phase change material (PCM) was filled in the shell side of a multi-tube heat exchanger and performance parameters such as charging/discharging time, energy stored/discharged, and output power were estimated by varying the flow rate and inlet temperature of air. The axial and radial temperature distributions reveal that the heat transfer occurs predominantly due to natural convection during the charging process, whereas, discharging takes place primarily due to conduction heat transfer in the axial direction. The energy storage of ~ 19.5 MJ was achieved with maximum PCM temperature reaching up to 365 °C. A comparison with cast steel and concrete based sensible heat storage (SHS) mediums operating at similar experimental conditions indicates that the LHS medium possesses high energy storage density and low storage cost, however, a combination of SHS and LHS mediums can meet the diverse load requirements in the end-user applications. |
ArticleNumber | 117491 |
Author | Muthukumar, P. Vigneshwaran, K. Sodhi, Gurpreet Singh |
Author_xml | – sequence: 1 givenname: Gurpreet Singh surname: Sodhi fullname: Sodhi, Gurpreet Singh organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India – sequence: 2 givenname: K. surname: Vigneshwaran fullname: Vigneshwaran, K. organization: Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India – sequence: 3 givenname: P. surname: Muthukumar fullname: Muthukumar, P. email: pmkumar@iitg.ac.in organization: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India |
BookMark | eNqNkE1LxDAQhoMouK7-h4Beu2aaNu2CFxW_QPCi55BNptss2bQmqei_N7pe9OQpA3nfZ5jniOz7wSMhZ8AWwECcbxZqHF3qMWyVQ79elKyEBUBTLWGPzKBteFELJvbzzOtlUXGAQ3IU44YxKNummhF58z5isFv0STlq_RvGZNcq2cFHOnS0t-u-SLjNIZWmgDT26BxV3tDt5JIt0rRC6lTKANqjSjSmIah1Dn7E3DsmB51yEU9-3jl5ub15vr4vHp_uHq4vHwvN6zYVApUuFYhlZUxXmpXihnVCGzA156JpjOrQVKYGrFbcVKJrObBG4wpr0Yq65XNyuuOOYXid8hFyM0zB55WyzN_1krcN5NTFLqXDEGPATo75dhU-JDD5pVRu5G-l8kup3CnN9as_dW3Tt6sUlHX_hdzuIJh1vFkMMmqLXqOxAXWSZrD_A30CZa-jyQ |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2022_118897 crossref_primary_10_1016_j_applthermaleng_2022_118698 crossref_primary_10_1016_j_est_2023_106959 crossref_primary_10_1016_j_jclepro_2023_139141 crossref_primary_10_1016_j_applthermaleng_2022_119526 crossref_primary_10_1016_j_jclepro_2024_142752 crossref_primary_10_1016_j_rser_2022_113139 crossref_primary_10_1016_j_est_2024_114225 crossref_primary_10_1016_j_est_2024_114335 crossref_primary_10_1016_j_renene_2024_121315 crossref_primary_10_3390_en16041882 crossref_primary_10_3390_ma17122804 crossref_primary_10_1016_j_applthermaleng_2024_122750 crossref_primary_10_1016_j_est_2023_110110 crossref_primary_10_1016_j_est_2023_110286 crossref_primary_10_2139_ssrn_4185480 crossref_primary_10_1016_j_est_2023_108695 crossref_primary_10_1016_j_apenergy_2025_125766 crossref_primary_10_1016_j_est_2023_108477 crossref_primary_10_1016_j_est_2023_108762 crossref_primary_10_1016_j_ijthermalsci_2024_109387 crossref_primary_10_1016_j_tsep_2022_101479 crossref_primary_10_1016_j_csite_2022_102258 crossref_primary_10_1016_j_ceramint_2023_03_040 |
Cites_doi | 10.1016/j.apenergy.2012.11.044 10.1016/0017-9310(95)00402-5 10.1016/j.applthermaleng.2018.08.035 10.1016/j.apenergy.2012.11.051 10.1016/j.buildenv.2016.05.035 10.1016/j.solener.2013.03.025 10.1016/j.apenergy.2011.08.025 10.1016/j.ijheatmasstransfer.2010.05.028 10.1016/j.apenergy.2013.06.007 10.1016/j.rser.2009.10.015 10.1016/j.solmat.2010.09.032 10.1016/j.solener.2017.07.044 10.1016/j.rser.2009.07.036 10.1016/j.egypro.2019.01.737 10.1016/j.applthermaleng.2017.04.085 10.1016/j.apenergy.2019.114102 10.1016/j.apenergy.2018.03.156 10.1016/S0360-5442(03)00191-9 10.1016/j.apenergy.2016.12.079 10.1016/j.ijheatmasstransfer.2014.07.087 10.1016/j.solmat.2013.08.015 10.1016/j.egypro.2019.02.165 10.1016/j.energy.2019.116083 10.1016/j.enconman.2019.112121 10.1016/j.solener.2014.01.007 10.1016/j.ijheatmasstransfer.2012.06.004 10.1016/j.apenergy.2019.113322 10.1016/j.rser.2018.04.097 10.1016/j.ijheatmasstransfer.2017.11.024 10.1016/j.rser.2017.01.169 10.1016/j.solener.2018.06.101 10.1016/j.applthermaleng.2019.114684 10.1016/j.rser.2012.10.014 10.1016/j.enconman.2018.04.016 10.1016/j.ijheatmasstransfer.2019.03.111 10.1016/j.solmat.2015.12.043 10.1016/j.apenergy.2011.05.026 10.1016/j.apenergy.2019.113806 10.1016/j.renene.2019.03.037 10.1016/j.apenergy.2020.115665 10.1016/j.est.2019.04.008 10.1016/0894-1777(88)90043-X 10.1016/j.apenergy.2015.01.125 10.1016/j.enconman.2019.111905 10.1016/j.applthermaleng.2018.11.007 10.1016/j.egypro.2014.03.041 10.1016/j.enconman.2019.03.022 10.1016/j.rser.2012.01.020 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Nov 5, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Nov 5, 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2021.117491 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5606 |
ExternalDocumentID | 10_1016_j_applthermaleng_2021_117491 S1359431121009236 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c358t-6eac2a1694ddf2dba3d0f6cd1d533677dafed4d51e4b3d46f83107cebe5686583 |
IEDL.DBID | AIKHN |
ISSN | 1359-4311 |
IngestDate | Fri Jul 25 05:03:18 EDT 2025 Tue Jul 01 02:05:29 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Fri Feb 23 02:44:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Latent heat Heat transfer fluid Thermal energy storage High temperature Air Phase Change Material Multi tube |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-6eac2a1694ddf2dba3d0f6cd1d533677dafed4d51e4b3d46f83107cebe5686583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2583593871 |
PQPubID | 2045278 |
ParticipantIDs | proquest_journals_2583593871 crossref_primary_10_1016_j_applthermaleng_2021_117491 crossref_citationtrail_10_1016_j_applthermaleng_2021_117491 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2021_117491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-05 |
PublicationDateYYYYMMDD | 2021-11-05 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ma, Yang, Yuan, Jin, He (b0140) 2017; 122 Elmozughi, Solomon, Oztekin, Neti (b0225) 2014; 78 Vigneshwaran, Sodhi, Muthukumar, Guha, Senthilmurugan (b0245) 2019; 251 Zauner, Hengstberger, Mörzinger, Hofmann, Walter (b0160) 2017; 189 Yuan, Li, Ma, Jin, Liu (b0145) 2018; 118 Lomonaco, Haillot, Pernot, Franquet, Bédécarrats (b0220) 2016; 149 Johnson, Hübner, Braun, Martin, Fiß, Hachmann, Schönberger, Eck (b0030) 2018; 144 Longeon, Soupart, Fourmigué, Bruch, Marty (b0235) 2013; 112 Yusuf Yazici, Avci, Aydin, Akgun (b0260) 2014; 101 Zhang, Li, Chen (b0035) 2020; 259 Iten, Liu, Shukla (b0165) 2016; 105 Lakshmi Narasimhan (b0050) 2019; 23 Tay, Belusko, Bruno (b0105) 2012; 90 Mastani, Seddegh, Wang, Haghighat (b0090) 2019; 140 Incropera, Dewitt, Bergman, Lavine (b0210) 2007 Anisur, Mahfuz, Kibria, Saidur, Metselaar, Mahlia (b0020) 2013; 18 Zhang, Ma, Xiao (b0135) 2016; 173 Avci, Yazici (b0255) 2013; 73 Sodhi, Vigneshwaran, Jaiswal, Muthukumar (b0095) 2018; 158 Agyenim, Hewitt, Eames, Smyth (b0080) 2010; 14 Shen, Wang, Chan (b0100) 2019; 160 Ibrahim, Al-sulaiman, Rahman, Yilbas, Sahin (b0130) 2017; 74 Zhao, Wu (b0040) 2011; 95 Palomba, Brancato, Frazzica (b0070) 2019; 200 Tian, Zhao (b0190) 2013; 104 Zhou, Zhao, Tian (b0115) 2012; 92 Tay, Bruno, Belusko (b0065) 2012; 55 Fadl, Eames (b0110) 2019; 188 Zipf, Neuhäuser, Willert, Nitz, Gschwander, Platzer (b0205) 2013; 109 Niyas, Ravi, Rao, Muthukumar (b0155) 2017; 155 I. Conference, T.E. Storage, The 11th International Conference on Thermal Energy Storage – Effstock 14-17 June 2009 in Stockholm, Sweden, (2009) 1–8. Vigneshwaran, Sodhi, Muthukumar, Subbiah (b0250) 2019; 198 Y. Kato, Thermal Energy Storages in Vehicles for Fuel Efficiency, 2009. Good, Zanganeh, Ambrosetti, Barbato, Pedretti, Steinfeld (b0195) 2014; 49 Mahdi, Lohrasbi, Nsofor (b0025) 2019; 137 Mahdi, Mahood, Campbell, Khadom (b0060) 2020; 175 Zhang (b0270) 1996; 39 Pacio, Wetzel (b0185) 2013; 93 Li, Jin, Ma, Yuan (b0150) 2018; 221 Kearney, Kelly, Herrmann, Cable, Pacheco, Mahoney, Price, Blake, Nava, Potrovitza (b0170) 2004; 29 Li, Li, Du, Jiang, Ding (b0085) 2019; 255 Sodhi, Jaiswal, Vigneshwaran, Muthukumar (b0055) 2019; 188 Vigneshwaran, Singh, Guha, Muthukumar, Subbiah (b0275) 2020; 278 Islam, Huda, Abdullah, Saidur (b0010) 2018; 91 Liu, Saman, Bruno (b0200) 2012; 16 Vignarooban, Xu, Arvay, Hsu, Kannan (b0180) 2015; 146 IRENA (b0005) 2019 Shmueli, Ziskind, Letan (b0230) 2010; 53 Kousksou, Bruel, Jamil, El Rhafiki, Zeraouli (b0015) 2014; 120 Moffat (b0240) 1988; 1 Gmbh (b0265) 2000 Crespo, Barreneche, Ibarra, Platzer (b0125) 2019; 192 Medrano, Gil, Martorell, Potau, Cabeza (b0175) 2010; 14 Huang, Zhu, Lin, Fang (b0045) 2019; 147 Ebadi, Tasnim, Aliabadi, Mahmud (b0075) 2018; 166 Zhang (10.1016/j.applthermaleng.2021.117491_b0035) 2020; 259 10.1016/j.applthermaleng.2021.117491_b0120 Medrano (10.1016/j.applthermaleng.2021.117491_b0175) 2010; 14 Yusuf Yazici (10.1016/j.applthermaleng.2021.117491_b0260) 2014; 101 Tian (10.1016/j.applthermaleng.2021.117491_b0190) 2013; 104 Zhang (10.1016/j.applthermaleng.2021.117491_b0270) 1996; 39 Pacio (10.1016/j.applthermaleng.2021.117491_b0185) 2013; 93 Incropera (10.1016/j.applthermaleng.2021.117491_b0210) 2007 Avci (10.1016/j.applthermaleng.2021.117491_b0255) 2013; 73 Kousksou (10.1016/j.applthermaleng.2021.117491_b0015) 2014; 120 Islam (10.1016/j.applthermaleng.2021.117491_b0010) 2018; 91 Zauner (10.1016/j.applthermaleng.2021.117491_b0160) 2017; 189 Lakshmi Narasimhan (10.1016/j.applthermaleng.2021.117491_b0050) 2019; 23 Crespo (10.1016/j.applthermaleng.2021.117491_b0125) 2019; 192 Shmueli (10.1016/j.applthermaleng.2021.117491_b0230) 2010; 53 Lomonaco (10.1016/j.applthermaleng.2021.117491_b0220) 2016; 149 Huang (10.1016/j.applthermaleng.2021.117491_b0045) 2019; 147 Mastani (10.1016/j.applthermaleng.2021.117491_b0090) 2019; 140 Zipf (10.1016/j.applthermaleng.2021.117491_b0205) 2013; 109 Liu (10.1016/j.applthermaleng.2021.117491_b0200) 2012; 16 Fadl (10.1016/j.applthermaleng.2021.117491_b0110) 2019; 188 Good (10.1016/j.applthermaleng.2021.117491_b0195) 2014; 49 Mahdi (10.1016/j.applthermaleng.2021.117491_b0060) 2020; 175 Iten (10.1016/j.applthermaleng.2021.117491_b0165) 2016; 105 Zhao (10.1016/j.applthermaleng.2021.117491_b0040) 2011; 95 10.1016/j.applthermaleng.2021.117491_b0215 Ibrahim (10.1016/j.applthermaleng.2021.117491_b0130) 2017; 74 Ma (10.1016/j.applthermaleng.2021.117491_b0140) 2017; 122 Li (10.1016/j.applthermaleng.2021.117491_b0150) 2018; 221 Vigneshwaran (10.1016/j.applthermaleng.2021.117491_b0250) 2019; 198 Vigneshwaran (10.1016/j.applthermaleng.2021.117491_b0275) 2020; 278 Yuan (10.1016/j.applthermaleng.2021.117491_b0145) 2018; 118 Tay (10.1016/j.applthermaleng.2021.117491_b0105) 2012; 90 Elmozughi (10.1016/j.applthermaleng.2021.117491_b0225) 2014; 78 Anisur (10.1016/j.applthermaleng.2021.117491_b0020) 2013; 18 Johnson (10.1016/j.applthermaleng.2021.117491_b0030) 2018; 144 Moffat (10.1016/j.applthermaleng.2021.117491_b0240) 1988; 1 Shen (10.1016/j.applthermaleng.2021.117491_b0100) 2019; 160 Vignarooban (10.1016/j.applthermaleng.2021.117491_b0180) 2015; 146 Li (10.1016/j.applthermaleng.2021.117491_b0085) 2019; 255 Vigneshwaran (10.1016/j.applthermaleng.2021.117491_b0245) 2019; 251 Sodhi (10.1016/j.applthermaleng.2021.117491_b0095) 2018; 158 Mahdi (10.1016/j.applthermaleng.2021.117491_b0025) 2019; 137 Ebadi (10.1016/j.applthermaleng.2021.117491_b0075) 2018; 166 Longeon (10.1016/j.applthermaleng.2021.117491_b0235) 2013; 112 Tay (10.1016/j.applthermaleng.2021.117491_b0065) 2012; 55 Zhang (10.1016/j.applthermaleng.2021.117491_b0135) 2016; 173 Gmbh (10.1016/j.applthermaleng.2021.117491_b0265) 2000 Palomba (10.1016/j.applthermaleng.2021.117491_b0070) 2019; 200 Zhou (10.1016/j.applthermaleng.2021.117491_b0115) 2012; 92 Niyas (10.1016/j.applthermaleng.2021.117491_b0155) 2017; 155 Kearney (10.1016/j.applthermaleng.2021.117491_b0170) 2004; 29 IRENA (10.1016/j.applthermaleng.2021.117491_b0005) 2019 Agyenim (10.1016/j.applthermaleng.2021.117491_b0080) 2010; 14 Sodhi (10.1016/j.applthermaleng.2021.117491_b0055) 2019; 188 |
References_xml | – reference: Y. Kato, Thermal Energy Storages in Vehicles for Fuel Efficiency, 2009. – start-page: 61 year: 2000 ident: b0265 article-title: Survey of Thermal Storage for Parabolic Trough Power Plants, NREL/SR-550-27925 publication-title: Nrel. – volume: 90 start-page: 288 year: 2012 end-page: 297 ident: b0105 article-title: Experimental investigation of tubes in a phase change thermal energy storage system publication-title: Appl. Energy. – volume: 1 start-page: 3 year: 1988 end-page: 17 ident: b0240 article-title: Describing the uncertainties in experimental results publication-title: Exp. Therm. Fluid Sci. – volume: 109 start-page: 462 year: 2013 end-page: 469 ident: b0205 article-title: High temperature latent heat storage with a screw heat exchanger: Design of prototype publication-title: Appl. Energy. – volume: 140 start-page: 234 year: 2019 end-page: 244 ident: b0090 article-title: Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system publication-title: Renew. Energy. – volume: 259 year: 2020 ident: b0035 article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins publication-title: Appl. Energy. – volume: 92 start-page: 593 year: 2012 end-page: 605 ident: b0115 article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications publication-title: Appl. Energy. – volume: 104 start-page: 538 year: 2013 end-page: 553 ident: b0190 article-title: A review of solar collectors and thermal energy storage in solar thermal applications publication-title: Appl. Energy. – volume: 78 start-page: 1135 year: 2014 end-page: 1144 ident: b0225 article-title: Encapsulated phase change material for high temperature thermal energy storage - Heat transfer analysis publication-title: Int. J. Heat Mass Transf. – volume: 16 start-page: 2118 year: 2012 end-page: 2132 ident: b0200 article-title: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems publication-title: Renew. Sustain. Energy Rev. – volume: 251 year: 2019 ident: b0245 article-title: Experimental and numerical investigations on high temperature cast steel based sensible heat storage system publication-title: Appl. Energy. – volume: 137 start-page: 630 year: 2019 end-page: 649 ident: b0025 article-title: Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review publication-title: Int. J. Heat Mass Transf. – volume: 120 start-page: 59 year: 2014 end-page: 80 ident: b0015 article-title: Energy storage: Applications and challenges publication-title: Sol. Energy Mater. Sol. Cells. – volume: 55 start-page: 5931 year: 2012 end-page: 5940 ident: b0065 article-title: Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system publication-title: Int. J. Heat Mass Transf. – volume: 93 start-page: 11 year: 2013 end-page: 22 ident: b0185 article-title: Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems publication-title: Sol. Energy. – volume: 255 year: 2019 ident: b0085 article-title: A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications publication-title: Appl. Energy. – volume: 122 start-page: 579 year: 2017 end-page: 592 ident: b0140 article-title: Investigation on the thermal performance of a high-temperature latent heat storage system publication-title: Appl. Therm. Eng. – year: 2007 ident: b0210 article-title: Fundamentals of Heat and Mass Transfer – volume: 188 year: 2019 ident: b0110 article-title: An experimental investigation of the heat transfer and energy storage characteristics of a compact latent heat thermal energy storage system for domestic hot water applications publication-title: Energy. – volume: 49 start-page: 381 year: 2014 end-page: 385 ident: b0195 article-title: Towards a Commercial Parabolic Trough CSP System Using Air as Heat Transfer Fluid publication-title: Energy Procedia. – volume: 73 start-page: 271 year: 2013 end-page: 277 ident: b0255 publication-title: Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit – reference: I. Conference, T.E. Storage, The 11th International Conference on Thermal Energy Storage – Effstock 14-17 June 2009 in Stockholm, Sweden, (2009) 1–8. – volume: 155 start-page: 971 year: 2017 end-page: 984 ident: b0155 article-title: Performance investigation of a lab-scale latent heat storage prototype – Experimental results publication-title: Sol. Energy. – volume: 175 year: 2020 ident: b0060 article-title: Experimental study on the melting behavior of a phase change material in a conical coil latent heat thermal energy storage unit publication-title: Appl. Therm. Eng. – volume: 200 year: 2019 ident: b0070 article-title: Thermal performance of a latent thermal energy storage for exploitation of renewables and waste heat: An experimental investigation based on an asymmetric plate heat exchanger publication-title: Energy Convers. Manag. – volume: 160 start-page: 332 year: 2019 end-page: 339 ident: b0100 article-title: Experimental investigation of heat characteristics vertical multi-tube latent heat thermal energy storage system vertical multi-tube latent heat thermal energy storage system publication-title: Energy Procedia. – volume: 95 start-page: 636 year: 2011 end-page: 643 ident: b0040 article-title: Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite publication-title: Sol. Energy Mater. Sol. Cells. – volume: 14 start-page: 615 year: 2010 end-page: 628 ident: b0080 article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) publication-title: Renew. Sustain. Energy Rev. – volume: 192 start-page: 3 year: 2019 end-page: 34 ident: b0125 article-title: Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review publication-title: Sol. Energy. – volume: 146 start-page: 383 year: 2015 end-page: 396 ident: b0180 article-title: Heat transfer fluids for concentrating solar power systems – A review publication-title: Appl. Energy. – volume: 278 year: 2020 ident: b0275 article-title: Coupling strategy of multi-module high temperature solid sensible heat storage system for large scale application ☆ publication-title: Appl. Energy. – volume: 18 start-page: 23 year: 2013 end-page: 30 ident: b0020 article-title: Curbing global warming with phase change materials for energy storage publication-title: Renew. Sustain. Energy Rev. – volume: 29 start-page: 861 year: 2004 end-page: 870 ident: b0170 article-title: Engineering aspects of a molten salt heat transfer fluid in a trough solar field publication-title: Energy. – volume: 118 start-page: 997 year: 2018 end-page: 1011 ident: b0145 article-title: Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system publication-title: Int. J. Heat Mass Transf. – volume: 189 start-page: 506 year: 2017 end-page: 519 ident: b0160 article-title: Experimental characterization and simulation of a hybrid sensible-latent heat storage publication-title: Appl. Energy. – volume: 158 start-page: 4677 year: 2018 end-page: 4683 ident: b0095 article-title: Assessment of heat transfer characteristics of a latent heat thermal energy storage system : multi tube design publication-title: Energy Procedia. – year: 2019 ident: b0005 article-title: Global energy transformation: A roadmap to 2050 – volume: 91 start-page: 987 year: 2018 end-page: 1018 ident: b0010 article-title: A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends publication-title: Renew. Sustain. Energy Rev. – volume: 188 start-page: 381 year: 2019 end-page: 397 ident: b0055 article-title: Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device publication-title: Energy Convers. Manag. – volume: 221 start-page: 1 year: 2018 end-page: 15 ident: b0150 article-title: Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material publication-title: Appl. Energy. – volume: 149 start-page: 81 year: 2016 end-page: 87 ident: b0220 article-title: Sodium nitrate thermal behavior in latent heat thermal energy storage: A study of the impact of sodium nitrite on melting temperature and enthalpy publication-title: Sol. Energy Mater. Sol. Cells. – volume: 144 start-page: 96 year: 2018 end-page: 105 ident: b0030 article-title: Assembly and attachment methods for extended aluminum fins onto steel tubes for high temperature latent heat storage units publication-title: Appl. Therm. Eng. – volume: 53 start-page: 4082 year: 2010 end-page: 4091 ident: b0230 article-title: Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments publication-title: Int. J. Heat Mass Transf. – volume: 105 start-page: 128 year: 2016 end-page: 139 ident: b0165 article-title: Experimental study on the thermal performance of air-PCM unit publication-title: Build. Environ. – volume: 112 start-page: 175 year: 2013 end-page: 184 ident: b0235 article-title: Experimental and numerical study of annular PCM storage in the presence of natural convection publication-title: Appl. Energy. – volume: 39 start-page: 3165 year: 1996 end-page: 3173 ident: b0270 article-title: a Faghri, Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube publication-title: Int. J. Heat Mass Transf. – volume: 198 year: 2019 ident: b0250 article-title: Concrete based high temperature thermal energy storage system: Experimental and numerical studies publication-title: Energy Convers. Manag. – volume: 173 start-page: 255 year: 2016 end-page: 271 ident: b0135 publication-title: Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system – volume: 147 start-page: 841 year: 2019 end-page: 855 ident: b0045 article-title: Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review publication-title: Appl. Therm. Eng. – volume: 74 start-page: 26 year: 2017 end-page: 50 ident: b0130 article-title: Heat transfer enhancement of phase change materials for thermal energy storage applications : A critical review publication-title: Renew. Sustain. Energy Rev. – volume: 166 start-page: 241 year: 2018 end-page: 259 ident: b0075 article-title: Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification publication-title: Energy Convers. Manag. – volume: 14 start-page: 56 year: 2010 end-page: 72 ident: b0175 article-title: State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies publication-title: Renew. Sustain. Energy Rev. – volume: 101 start-page: 291 year: 2014 end-page: 298 ident: b0260 article-title: Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study publication-title: Sol. Energy. – volume: 23 start-page: 442 year: 2019 end-page: 455 ident: b0050 article-title: Assessment of latent heat thermal storage systems operating with multiple phase change materials publication-title: J. Energy Storage. – volume: 109 start-page: 462 year: 2013 ident: 10.1016/j.applthermaleng.2021.117491_b0205 article-title: High temperature latent heat storage with a screw heat exchanger: Design of prototype publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2012.11.044 – volume: 39 start-page: 3165 year: 1996 ident: 10.1016/j.applthermaleng.2021.117491_b0270 article-title: a Faghri, Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(95)00402-5 – volume: 144 start-page: 96 year: 2018 ident: 10.1016/j.applthermaleng.2021.117491_b0030 article-title: Assembly and attachment methods for extended aluminum fins onto steel tubes for high temperature latent heat storage units publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.08.035 – volume: 104 start-page: 538 year: 2013 ident: 10.1016/j.applthermaleng.2021.117491_b0190 article-title: A review of solar collectors and thermal energy storage in solar thermal applications publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2012.11.051 – volume: 105 start-page: 128 year: 2016 ident: 10.1016/j.applthermaleng.2021.117491_b0165 article-title: Experimental study on the thermal performance of air-PCM unit publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.05.035 – volume: 93 start-page: 11 year: 2013 ident: 10.1016/j.applthermaleng.2021.117491_b0185 article-title: Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems publication-title: Sol. Energy. doi: 10.1016/j.solener.2013.03.025 – start-page: 61 year: 2000 ident: 10.1016/j.applthermaleng.2021.117491_b0265 article-title: Survey of Thermal Storage for Parabolic Trough Power Plants, NREL/SR-550-27925 publication-title: Nrel. – volume: 92 start-page: 593 year: 2012 ident: 10.1016/j.applthermaleng.2021.117491_b0115 article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2011.08.025 – volume: 53 start-page: 4082 year: 2010 ident: 10.1016/j.applthermaleng.2021.117491_b0230 article-title: Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.05.028 – year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0005 – volume: 112 start-page: 175 year: 2013 ident: 10.1016/j.applthermaleng.2021.117491_b0235 article-title: Experimental and numerical study of annular PCM storage in the presence of natural convection publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2013.06.007 – volume: 14 start-page: 615 year: 2010 ident: 10.1016/j.applthermaleng.2021.117491_b0080 article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.10.015 – volume: 95 start-page: 636 year: 2011 ident: 10.1016/j.applthermaleng.2021.117491_b0040 article-title: Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2010.09.032 – volume: 155 start-page: 971 year: 2017 ident: 10.1016/j.applthermaleng.2021.117491_b0155 article-title: Performance investigation of a lab-scale latent heat storage prototype – Experimental results publication-title: Sol. Energy. doi: 10.1016/j.solener.2017.07.044 – ident: 10.1016/j.applthermaleng.2021.117491_b0215 – volume: 14 start-page: 56 year: 2010 ident: 10.1016/j.applthermaleng.2021.117491_b0175 article-title: State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.07.036 – volume: 158 start-page: 4677 year: 2018 ident: 10.1016/j.applthermaleng.2021.117491_b0095 article-title: Assessment of heat transfer characteristics of a latent heat thermal energy storage system : multi tube design publication-title: Energy Procedia. doi: 10.1016/j.egypro.2019.01.737 – volume: 122 start-page: 579 year: 2017 ident: 10.1016/j.applthermaleng.2021.117491_b0140 article-title: Investigation on the thermal performance of a high-temperature latent heat storage system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.04.085 – volume: 259 year: 2020 ident: 10.1016/j.applthermaleng.2021.117491_b0035 article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2019.114102 – ident: 10.1016/j.applthermaleng.2021.117491_b0120 – volume: 221 start-page: 1 year: 2018 ident: 10.1016/j.applthermaleng.2021.117491_b0150 article-title: Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2018.03.156 – volume: 29 start-page: 861 year: 2004 ident: 10.1016/j.applthermaleng.2021.117491_b0170 article-title: Engineering aspects of a molten salt heat transfer fluid in a trough solar field publication-title: Energy. doi: 10.1016/S0360-5442(03)00191-9 – volume: 189 start-page: 506 year: 2017 ident: 10.1016/j.applthermaleng.2021.117491_b0160 article-title: Experimental characterization and simulation of a hybrid sensible-latent heat storage publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2016.12.079 – volume: 78 start-page: 1135 year: 2014 ident: 10.1016/j.applthermaleng.2021.117491_b0225 article-title: Encapsulated phase change material for high temperature thermal energy storage - Heat transfer analysis publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.07.087 – volume: 120 start-page: 59 year: 2014 ident: 10.1016/j.applthermaleng.2021.117491_b0015 article-title: Energy storage: Applications and challenges publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2013.08.015 – volume: 160 start-page: 332 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0100 article-title: Experimental investigation of heat characteristics vertical multi-tube latent heat thermal energy storage system vertical multi-tube latent heat thermal energy storage system publication-title: Energy Procedia. doi: 10.1016/j.egypro.2019.02.165 – volume: 188 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0110 article-title: An experimental investigation of the heat transfer and energy storage characteristics of a compact latent heat thermal energy storage system for domestic hot water applications publication-title: Energy. doi: 10.1016/j.energy.2019.116083 – volume: 73 start-page: 271 year: 2013 ident: 10.1016/j.applthermaleng.2021.117491_b0255 publication-title: Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit – volume: 173 start-page: 255 year: 2016 ident: 10.1016/j.applthermaleng.2021.117491_b0135 publication-title: Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system – volume: 200 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0070 article-title: Thermal performance of a latent thermal energy storage for exploitation of renewables and waste heat: An experimental investigation based on an asymmetric plate heat exchanger publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112121 – volume: 101 start-page: 291 year: 2014 ident: 10.1016/j.applthermaleng.2021.117491_b0260 article-title: Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study publication-title: Sol. Energy. doi: 10.1016/j.solener.2014.01.007 – volume: 55 start-page: 5931 year: 2012 ident: 10.1016/j.applthermaleng.2021.117491_b0065 article-title: Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.06.004 – volume: 251 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0245 article-title: Experimental and numerical investigations on high temperature cast steel based sensible heat storage system publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2019.113322 – volume: 91 start-page: 987 year: 2018 ident: 10.1016/j.applthermaleng.2021.117491_b0010 article-title: A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.097 – volume: 118 start-page: 997 year: 2018 ident: 10.1016/j.applthermaleng.2021.117491_b0145 article-title: Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.11.024 – volume: 74 start-page: 26 year: 2017 ident: 10.1016/j.applthermaleng.2021.117491_b0130 article-title: Heat transfer enhancement of phase change materials for thermal energy storage applications : A critical review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.169 – volume: 192 start-page: 3 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0125 article-title: Latent thermal energy storage for solar process heat applications at medium-high temperatures – A review publication-title: Sol. Energy. doi: 10.1016/j.solener.2018.06.101 – volume: 175 year: 2020 ident: 10.1016/j.applthermaleng.2021.117491_b0060 article-title: Experimental study on the melting behavior of a phase change material in a conical coil latent heat thermal energy storage unit publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114684 – volume: 18 start-page: 23 year: 2013 ident: 10.1016/j.applthermaleng.2021.117491_b0020 article-title: Curbing global warming with phase change materials for energy storage publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.10.014 – volume: 166 start-page: 241 year: 2018 ident: 10.1016/j.applthermaleng.2021.117491_b0075 article-title: Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.04.016 – volume: 137 start-page: 630 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0025 article-title: Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.03.111 – volume: 149 start-page: 81 year: 2016 ident: 10.1016/j.applthermaleng.2021.117491_b0220 article-title: Sodium nitrate thermal behavior in latent heat thermal energy storage: A study of the impact of sodium nitrite on melting temperature and enthalpy publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2015.12.043 – volume: 90 start-page: 288 year: 2012 ident: 10.1016/j.applthermaleng.2021.117491_b0105 article-title: Experimental investigation of tubes in a phase change thermal energy storage system publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2011.05.026 – volume: 255 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0085 article-title: A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2019.113806 – volume: 140 start-page: 234 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0090 article-title: Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system publication-title: Renew. Energy. doi: 10.1016/j.renene.2019.03.037 – volume: 278 year: 2020 ident: 10.1016/j.applthermaleng.2021.117491_b0275 article-title: Coupling strategy of multi-module high temperature solid sensible heat storage system for large scale application ☆ publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2020.115665 – volume: 23 start-page: 442 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0050 article-title: Assessment of latent heat thermal storage systems operating with multiple phase change materials publication-title: J. Energy Storage. doi: 10.1016/j.est.2019.04.008 – volume: 1 start-page: 3 year: 1988 ident: 10.1016/j.applthermaleng.2021.117491_b0240 article-title: Describing the uncertainties in experimental results publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(88)90043-X – volume: 146 start-page: 383 year: 2015 ident: 10.1016/j.applthermaleng.2021.117491_b0180 article-title: Heat transfer fluids for concentrating solar power systems – A review publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2015.01.125 – volume: 198 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0250 article-title: Concrete based high temperature thermal energy storage system: Experimental and numerical studies publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111905 – volume: 147 start-page: 841 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0045 article-title: Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.11.007 – volume: 49 start-page: 381 year: 2014 ident: 10.1016/j.applthermaleng.2021.117491_b0195 article-title: Towards a Commercial Parabolic Trough CSP System Using Air as Heat Transfer Fluid publication-title: Energy Procedia. doi: 10.1016/j.egypro.2014.03.041 – volume: 188 start-page: 381 year: 2019 ident: 10.1016/j.applthermaleng.2021.117491_b0055 article-title: Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.03.022 – year: 2007 ident: 10.1016/j.applthermaleng.2021.117491_b0210 – volume: 16 start-page: 2118 year: 2012 ident: 10.1016/j.applthermaleng.2021.117491_b0200 article-title: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.01.020 |
SSID | ssj0012874 |
Score | 2.4931903 |
Snippet | •Developed a high-temperature sodium nitrate based latent heat storage (LHS) system.•Tested thermal behaviour at different heat transfer fluid (air) flow... High-temperature thermal energy storage (TES) systems improve the reliability and performance of solar-thermal utilization systems due to their ability to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117491 |
SubjectTerms | Air Charging Conduction heating Discharge Energy storage Enthalpy Flow velocity Free convection Heat conductivity Heat storage Heat transfer Heat transfer fluid High temperature Inlet temperature Latent heat Multi tube Phase Change Material Phase change materials Sodium nitrates Thermal energy Thermal energy storage Thermal utilization Tube heat exchangers |
Title | Experimental investigations of high-temperature shell and multi-tube latent heat storage system |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2021.117491 https://www.proquest.com/docview/2583593871 |
Volume | 198 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS91AEB70CaKH0tZKtVb24HV9L8nuJosHeTyUp6VeWsHbssls4BXNkxqv_u3OJBt_QUEoOSWw-TGz-eYbdvYbgIMMta2CUbLOvZcKq0IWFnOZ-IKCAx1Y8gbnnxdmfqnOr_TVCsyGvTBcVhmxv8f0Dq3jlXG05vh2sRj_SjJtKfyxAtaEaIpZhbWUon0xgrXp2Y_5xdNiAku6d3mXtpIHrMPBc5kXrxMz1brx3LmEEsY04YVMZZN_Rao3mN0FotOP8CEySDHtX_ITrITmM2y-0BXcAnfyQrdfLJ6lNGiKiWUtWKNYsihVVFQWd1wOKnyDoiswlO19GcQ10dCmFYzWgmsoCXlEL_z8BS5PT37P5jJ2UpBVpotWGoLX1CfGKsQ6xdJnOKlNhQkS2zN5jr4OqFAnQZUZKlNz-7G8IgdrUxBHybZh1Cyb8BVEoARDVfXEF1YpNMqGtPQscW3J55XCHTgarOaqKDPO3S6u3VBP9se9trljm7ve5jugn0bf9nIb7xx3PDjIvZo-jiLDO--wN_jVxd_4zqX06dpmlFTu_vcDvsEGn3X7GPUejNq_9-E7EZq23IfVw4dkP07bR1fy-u8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-UwDLZYJJYDYhXMMJAD1_Be2yRtxGE0QqDHegEkblFap9JDj4KgXPntY3dhGQkJadRb27Sp7dqfFeczwF6C2hbBKFmm3kuFRSYzi6mMfEbBgQ7MeYPzxaUZ3ajTW307BYf9Xhguq-x8f-vTG2_dnRl00hw8jseDqyjRlsIfM2ANCaaYaZhV3OaAjHr_9a3OI2JC9ybr0lby7XOw917kxavEDLTuPfctoXQxjngZU9noqzj1j8duwtDxMix1-FH8aae4AlOhWoXFD6yCa-COPrD2i_E7kQYZmHgoBTMUS6ak6viUxTMXgwpfoWjKC2X9kgcxIRBa1YJ9teAKSvI7oqV9Xoeb46Prw5Hs-ijIItFZLQ0519hHxirEMsbcJzgsTYEREtYzaYq-DKhQR0HlCSpTcvOxtCD1apMRQkk2YKZ6qMImiEDphSrKoc-sUmiUDXHumeDaksYLhVtw0EvNFR3JOPe6mLi-muzOfZa5Y5m7VuZboN9GP7ZkG98c97tXkPtkPI7iwjefsN3r1XU_8bOL6dO1TSil_PHfL9iF-dH1xbk7P7k8-wkLfKXZ0ai3YaZ-egm_CNrU-U5jun8BaSH7sQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigations+of+high-temperature+shell+and+multi-tube+latent+heat+storage+system&rft.jtitle=Applied+thermal+engineering&rft.au=Sodhi%2C+Gurpreet+Singh&rft.au=Vigneshwaran%2C+K.&rft.au=Muthukumar%2C+P.&rft.date=2021-11-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=198&rft_id=info:doi/10.1016%2Fj.applthermaleng.2021.117491&rft.externalDocID=S1359431121009236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |