SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting

Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cy...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 4; no. 6; pp. 960 - 977
Main Authors Hong, Wei-Chiang, Dong, Yucheng, Lai, Chien-Yuan, Chen, Li-Yueh, Wei, Shih-Yung
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2011
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en4060960

Cover

Abstract Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cyclic electric load forecasting have not been widely explored. The purpose of this paper is to present a SVR model which combines the seasonal adjustment mechanism and a chaotic immune algorithm (namely SSVRCIA) to forecast monthly electric loads. Based on the operation procedure of the immune algorithm (IA), if the population diversity of an initial population cannot be maintained under selective pressure, then IA could only seek for the solutions in the narrow space and the solution is far from the global optimum (premature convergence). The proposed chaotic immune algorithm (CIA) based on the chaos optimization algorithm and IA, which diversifies the initial definition domain in stochastic optimization procedures, is used to overcome the premature local optimum issue in determining three parameters of a SVR model. A numerical example from an existing reference is used to elucidate the forecasting performance of the proposed SSVRCIA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the ARIMA and TF-ε-SVR-SA models, and therefore the SSVRCIA model is a promising alternative for electric load forecasting.
AbstractList Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cyclic electric load forecasting have not been widely explored. The purpose of this paper is to present a SVR model which combines the seasonal adjustment mechanism and a chaotic immune algorithm (namely SSVRCIA) to forecast monthly electric loads. Based on the operation procedure of the immune algorithm (IA), if the population diversity of an initial population cannot be maintained under selective pressure, then IA could only seek for the solutions in the narrow space and the solution is far from the global optimum (premature convergence). The proposed chaotic immune algorithm (CIA) based on the chaos optimization algorithm and IA, which diversifies the initial definition domain in stochastic optimization procedures, is used to overcome the premature local optimum issue in determining three parameters of a SVR model. A numerical example from an existing reference is used to elucidate the forecasting performance of the proposed SSVRCIA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the ARIMA and TF-[straight epsilon]-SVR-SA models, and therefore the SSVRCIA model is a promising alternative for electric load forecasting.
Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cyclic electric load forecasting have not been widely explored. The purpose of this paper is to present a SVR model which combines the seasonal adjustment mechanism and a chaotic immune algorithm (namely SSVRCIA) to forecast monthly electric loads. Based on the operation procedure of the immune algorithm (IA), if the population diversity of an initial population cannot be maintained under selective pressure, then IA could only seek for the solutions in the narrow space and the solution is far from the global optimum (premature convergence). The proposed chaotic immune algorithm (CIA) based on the chaos optimization algorithm and IA, which diversifies the initial definition domain in stochastic optimization procedures, is used to overcome the premature local optimum issue in determining three parameters of a SVR model. A numerical example from an existing reference is used to elucidate the forecasting performance of the proposed SSVRCIA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the ARIMA and TF-ε-SVR-SA models, and therefore the SSVRCIA model is a promising alternative for electric load forecasting.
Author Wei, Shih-Yung
Hong, Wei-Chiang
Lai, Chien-Yuan
Dong, Yucheng
Chen, Li-Yueh
Author_xml – sequence: 1
  givenname: Wei-Chiang
  orcidid: 0000-0002-3001-2921
  surname: Hong
  fullname: Hong, Wei-Chiang
– sequence: 2
  givenname: Yucheng
  surname: Dong
  fullname: Dong, Yucheng
– sequence: 3
  givenname: Chien-Yuan
  surname: Lai
  fullname: Lai, Chien-Yuan
– sequence: 4
  givenname: Li-Yueh
  surname: Chen
  fullname: Chen, Li-Yueh
– sequence: 5
  givenname: Shih-Yung
  surname: Wei
  fullname: Wei, Shih-Yung
BookMark eNp1kE1LAzEQhoMoqNWD_yDgSaGadHY3m6NUq4WK4Nc1zGazbcpuUpMtpf_erZUionOZYeadh5n3mOw77wwhZ5xdAUh2bVzCMiYztkeOuJRZnzMB-z_qQ3Ia45x1AcAB4Ig8vrw_05VtZ_RhXQRb0uEMfWs1HTfN0hl6U0996MYNrXygLwajd1jTiceS3poGXUlHPhiNsbVuekIOKqyjOf3OPfI2unsdPvQnT_fj4c2kryHN236mUUIFkPI8lVCgrHTGDBd51t2ku6EpdaoTxgwkmsliUJUVcJYnkMiCCwk9Mt5yS49ztQi2wbBWHq36avgwVRi6L2qjirzAgRCJEZAnQqeoRVmmCa9yJjfUjnW5ZS3dAtcrrOsdkDO18VXtfO3E51vxIviPpYmtmvtl6ByJiqcgWA4DuVFdb1U6-BiDqZS2LbbWuzagrf_kXvza-P-GT5v6k48
CitedBy_id crossref_primary_10_1016_j_energy_2016_09_065
crossref_primary_10_1007_s42452_020_03778_9
crossref_primary_10_1016_j_asoc_2020_106738
crossref_primary_10_3390_en12061093
crossref_primary_10_1016_j_enconman_2020_113123
crossref_primary_10_3390_en12030393
crossref_primary_10_1109_ACCESS_2021_3053317
crossref_primary_10_1007_s11042_020_09397_1
crossref_primary_10_3390_sym12081292
crossref_primary_10_1007_s11042_020_09733_5
crossref_primary_10_3390_en9060426
crossref_primary_10_3233_JIFS_211093
crossref_primary_10_3390_forecast2020009
crossref_primary_10_1063_5_0021564
crossref_primary_10_1016_j_knosys_2021_107297
crossref_primary_10_3390_en4101495
crossref_primary_10_1007_s11071_019_05252_7
crossref_primary_10_1155_2020_4181045
crossref_primary_10_1007_s11042_020_10448_w
crossref_primary_10_1155_2012_720849
crossref_primary_10_1016_j_renene_2019_08_126
crossref_primary_10_4236_cs_2016_710283
crossref_primary_10_1049_gtd2_12798
crossref_primary_10_3390_en9110873
crossref_primary_10_1049_iet_gtd_2019_0797
crossref_primary_10_1007_s11042_020_09331_5
crossref_primary_10_1007_s12667_016_0203_y
crossref_primary_10_1016_j_compeleceng_2025_110174
crossref_primary_10_1016_j_engappai_2019_06_017
crossref_primary_10_1155_2020_4251517
crossref_primary_10_1016_j_ins_2022_03_060
crossref_primary_10_3390_en13092307
crossref_primary_10_1007_s00521_012_1323_5
crossref_primary_10_1016_j_apm_2013_05_016
crossref_primary_10_1007_s11042_020_09471_8
crossref_primary_10_1155_2020_6901084
crossref_primary_10_1109_TITS_2018_2876871
crossref_primary_10_1016_j_asoc_2018_04_051
crossref_primary_10_3390_en11040712
crossref_primary_10_1155_2020_1209547
crossref_primary_10_1049_iet_gtd_2016_0340
crossref_primary_10_1155_2013_292575
crossref_primary_10_1007_s11042_022_12244_0
crossref_primary_10_1186_s40854_021_00266_w
crossref_primary_10_1007_s11042_020_09268_9
crossref_primary_10_3390_joitmc6020029
crossref_primary_10_1007_s11042_020_09538_6
crossref_primary_10_1016_j_knosys_2023_110476
crossref_primary_10_1016_j_procs_2020_08_044
crossref_primary_10_1016_j_neucom_2015_09_089
crossref_primary_10_1109_SURV_2014_032014_00094
Cites_doi 10.2307/2981420
10.1016/S0169-2070(99)00045-X
10.1016/j.chaos.2004.11.095
10.1016/j.chaos.2006.04.057
10.1016/j.asoc.2010.06.003
10.1007/s11269-006-9026-2
10.1016/S0893-6080(99)00032-5
10.1007/978-1-4757-2440-0
10.1016/S0142-0615(96)00048-8
10.1016/j.chaos.2005.04.110
10.1016/S0305-0483(01)00026-3
10.1016/S0196-8904(02)00225-X
10.1007/s00170-004-2340-z
10.1016/j.enconman.2005.02.004
10.1109/ICICIC.2009.287
10.1109/59.76686
10.1109/59.76685
10.1016/0378-7796(95)00980-9
10.1016/j.renene.2003.11.009
10.1016/j.enpol.2009.06.046
10.1016/j.enconman.2008.08.031
10.1016/j.ijepes.2009.03.020
10.1016/j.chaos.2007.10.032
10.1109/TPWRS.2005.860944
10.1016/j.apm.2008.07.010
10.1016/0378-7796(95)00977-1
10.1016/j.eswa.2007.09.031
10.1016/j.annals.2005.01.002
10.1016/j.advengsoft.2007.01.024
10.1016/j.epsr.2005.01.006
10.1016/j.chaos.2005.08.126
10.1109/T-PAS.1975.31945
10.1109/59.41700
10.1016/j.enpol.2010.05.033
10.1080/019697298125678
10.1016/S0957-4174(97)00048-1
10.1109/TPAS.1971.293123
10.1016/j.omega.2004.07.024
10.1109/TPWRS.2003.820695
10.1109/59.260833
10.1016/j.cor.2004.03.016
10.1016/j.enconman.2008.01.035
10.1016/j.chaos.2006.05.070
10.1109/59.99410
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1016/S0140-9883(03)00034-3
10.1108/02644400310465317
10.1016/j.jeconom.2005.01.003
10.1109/59.192889
10.1023/A:1026620313483
10.1016/j.jss.2005.02.025
ContentType Journal Article
Copyright Copyright MDPI AG 2011
Copyright_xml – notice: Copyright MDPI AG 2011
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/en4060960
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
EndPage 977
ExternalDocumentID oai_doaj_org_article_b8ba2774e73847c5ac7dd541f809df31
10.3390/en4060960
3337817801
10_3390_en4060960
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
C1A
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IPNFZ
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
2XV
ADTOC
IAO
ITC
UNPAY
ID FETCH-LOGICAL-c358t-6ca93f33518593ba9fc60e1786333cca9edc5c400e34c09b2fdf31084349b1793
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Tue Oct 14 19:08:28 EDT 2025
Sun Oct 26 04:13:54 EDT 2025
Mon Jun 30 04:38:49 EDT 2025
Thu Oct 16 04:29:03 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-6ca93f33518593ba9fc60e1786333cca9edc5c400e34c09b2fdf31084349b1793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3001-2921
OpenAccessLink https://doaj.org/article/b8ba2774e73847c5ac7dd541f809df31
PQID 1537083290
PQPubID 2032402
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_b8ba2774e73847c5ac7dd541f809df31
unpaywall_primary_10_3390_en4060960
proquest_journals_1537083290
crossref_citationtrail_10_3390_en4060960
crossref_primary_10_3390_en4060960
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2011
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tavazoei (ref_60) 2007; 187
Li (ref_59) 2006; 28
Xiao (ref_51) 2009; 36
ref_54
Pai (ref_26) 2005; 33
ref_52
Morimoto (ref_2) 2004; 26
Pai (ref_30) 2006; 79
Hong (ref_33) 2007; 21
Moghram (ref_10) 1989; 4
Chiu (ref_15) 1997; 13
Hsu (ref_21) 2003; 44
Pan (ref_55) 2008; 35
Papalexopoulos (ref_12) 1990; 5
Dagum (ref_48) 1978; 27
Amari (ref_53) 1999; 12
Pai (ref_27) 2006; 17
Zuo (ref_56) 2006; 30
Tay (ref_23) 2001; 29
Hong (ref_36) 2009; 31
Wang (ref_50) 2009; 37
Deo (ref_63) 2006; 131
Hung (ref_25) 2009; 38
Mori (ref_42) 1993; 113-C
ref_22
Mohandes (ref_35) 2004; 29
ref_62
Wang (ref_44) 2001; 20
Liu (ref_57) 2005; 25
Azadeh (ref_64) 2008; 49
Li (ref_45) 1998; 29
Hong (ref_31) 2006; 28
Wang (ref_34) 2003; 20
Darbellay (ref_19) 2000; 16
Prakash (ref_43) 2008; 39
Asbury (ref_11) 1975; 94
Pai (ref_29) 2005; 32
Lorenz (ref_47) 1963; 20
Hong (ref_37) 2009; 50
Ohya (ref_46) 1998; 37
Pai (ref_40) 2005; 74
Rahman (ref_14) 1998; 3
Novak (ref_18) 1995; 35
Soliman (ref_13) 1997; 19
Kenny (ref_49) 1982; 145
Hong (ref_28) 2011; 11
Yang (ref_58) 2007; 34
Fan (ref_1) 2006; 21
(ref_20) 2004; 19
Christianse (ref_6) 1971; 90
Hong (ref_38) 2009; 33
Rahman (ref_16) 1993; 8
Park (ref_7) 1991; 6
Chen (ref_4) 1995; 34
Hong (ref_41) 2010; 38
ref_3
Pai (ref_39) 2005; 46
Coelho (ref_61) 2009; 40
Huang (ref_24) 2005; 32
ref_9
Park (ref_17) 1991; 6
ref_8
ref_5
Hong (ref_32) 2008; 200
References_xml – volume: 145
  start-page: 1
  year: 1982
  ident: ref_49
  article-title: Local trend estimation and seasonal adjustment of economic and social time series
  publication-title: J. R. Stat. Soc. Series A
  doi: 10.2307/2981420
– ident: ref_9
– volume: 16
  start-page: 71
  year: 2000
  ident: ref_19
  article-title: Forecasting the short-term demand for electricity—do neural networks stand a better chance?
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(99)00045-X
– volume: 27
  start-page: 203
  year: 1978
  ident: ref_48
  article-title: Modelling, forecasting and seasonally adjusting economic time series with the X-11 ARIMA method
  publication-title: J. R. Stat. Soc. Series D
– volume: 25
  start-page: 1261
  year: 2005
  ident: ref_57
  article-title: Improved particle swam optimization combined with chaos
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.11.095
– volume: 34
  start-page: 1366
  year: 2007
  ident: ref_58
  article-title: On the efficiency of chaos optimization algorithms for global optimization
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.04.057
– ident: ref_5
– volume: 11
  start-page: 1881
  year: 2011
  ident: ref_28
  article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.003
– volume: 21
  start-page: 495
  year: 2007
  ident: ref_33
  article-title: Potential assessment of the support vector regression technique in rainfall forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-006-9026-2
– volume: 12
  start-page: 783
  year: 1999
  ident: ref_53
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(99)00032-5
– volume: 113-C
  start-page: 872
  year: 1993
  ident: ref_42
  article-title: Immune algorithm with searching diversity and its application to resource allocation problem
  publication-title: Trans. Inst. Electr. Eng. Jpn.
– ident: ref_52
  doi: 10.1007/978-1-4757-2440-0
– volume: 19
  start-page: 209
  year: 1997
  ident: ref_13
  article-title: Application of least absolute value parameter estimation based on linear programming to short-term load forecasting
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/S0142-0615(96)00048-8
– volume: 28
  start-page: 1204
  year: 2006
  ident: ref_59
  article-title: Parameters identification of chaotic systems via chaotic ant swarm
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.04.110
– volume: 17
  start-page: 19
  year: 2006
  ident: ref_27
  article-title: A hybrid support vector machine regression for exchange rate prediction
  publication-title: Int. J. Inf. Manag. Sci.
– volume: 29
  start-page: 309
  year: 2001
  ident: ref_23
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: Omega
  doi: 10.1016/S0305-0483(01)00026-3
– volume: 44
  start-page: 1941
  year: 2003
  ident: ref_21
  article-title: Regional load forecasting in Taiwan—application of artificial neural networks
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(02)00225-X
– volume: 28
  start-page: 154
  year: 2006
  ident: ref_31
  article-title: Predicting engine reliability by support vector machines
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2340-z
– volume: 20
  start-page: 1
  year: 2001
  ident: ref_44
  article-title: Survey on chaotic optimization methods
  publication-title: Comput. Technol. Autom.
– volume: 46
  start-page: 2669
  year: 2005
  ident: ref_39
  article-title: Support vector machines with simulated annealing algorithms in electricity load forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2005.02.004
– ident: ref_62
  doi: 10.1109/ICICIC.2009.287
– volume: 6
  start-page: 450
  year: 1991
  ident: ref_7
  article-title: Composite modeling for adaptive short-term load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.76686
– ident: ref_8
– volume: 6
  start-page: 442
  year: 1991
  ident: ref_17
  article-title: Electric load forecasting using an artificial neural network
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.76685
– volume: 35
  start-page: 11
  year: 1995
  ident: ref_18
  article-title: Superfast autoconfiguring artificial neural networks and their application to power systems
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/0378-7796(95)00980-9
– volume: 29
  start-page: 939
  year: 2004
  ident: ref_35
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2003.11.009
– volume: 37
  start-page: 4901
  year: 2009
  ident: ref_50
  article-title: A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.06.046
– volume: 200
  start-page: 41
  year: 2008
  ident: ref_32
  article-title: Rainfall forecasting by technological machine learning models
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 105
  year: 2009
  ident: ref_37
  article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.08.031
– volume: 31
  start-page: 409
  year: 2009
  ident: ref_36
  article-title: Hybrid evolutionary algorithms in a SVR-based electric load forecasting model
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2009.03.020
– volume: 40
  start-page: 2376
  year: 2009
  ident: ref_61
  article-title: Chaotic artificial immune approach applied to economic dispatch of electric energy using thermal units
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2007.10.032
– volume: 187
  start-page: 1076
  year: 2007
  ident: ref_60
  article-title: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms
  publication-title: Appl. Math. Comput.
– volume: 21
  start-page: 392
  year: 2006
  ident: ref_1
  article-title: Short-term load forecasting based on an adaptive hybrid method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.860944
– volume: 33
  start-page: 2444
  year: 2009
  ident: ref_38
  article-title: Electric load forecasting by support vector model
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2008.07.010
– volume: 34
  start-page: 187
  year: 1995
  ident: ref_4
  article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/0378-7796(95)00977-1
– volume: 36
  start-page: 273
  year: 2009
  ident: ref_51
  article-title: BP neural network with rough set for short term load forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.09.031
– ident: ref_3
– volume: 32
  start-page: 1138
  year: 2005
  ident: ref_29
  article-title: An improved neural network model in forecasting arrivals
  publication-title: Ann. Tourism Res.
  doi: 10.1016/j.annals.2005.01.002
– volume: 39
  start-page: 219
  year: 2008
  ident: ref_43
  article-title: Modified immune algorithm for job selection and operation allocation problem in flexible manufacturing system
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2007.01.024
– volume: 74
  start-page: 417
  year: 2005
  ident: ref_40
  article-title: Forecasting regional electric load based on recurrent support vector machines with genetic algorithms
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2005.01.006
– volume: 30
  start-page: 94
  year: 2006
  ident: ref_56
  article-title: A chaos search immune algorithm with its application to neuro-fuzzy controller design
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.08.126
– volume: 94
  start-page: 1111
  year: 1975
  ident: ref_11
  article-title: Weather load model for electric demand energy forecasting
  publication-title: IEEE Trans. Power Apparatus Syst.
  doi: 10.1109/T-PAS.1975.31945
– volume: 4
  start-page: 1484
  year: 1989
  ident: ref_10
  article-title: Analysis and evaluation of five short-term load forecasting techniques
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.41700
– volume: 38
  start-page: 5830
  year: 2010
  ident: ref_41
  article-title: Application of chaotic ant swarm optimization in electric load forecasting
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2010.05.033
– volume: 29
  start-page: 409
  year: 1998
  ident: ref_45
  article-title: Optimizing complex functions by chaos search
  publication-title: Cybern. Syst.
  doi: 10.1080/019697298125678
– volume: 13
  start-page: 299
  year: 1997
  ident: ref_15
  article-title: Combining a Neural Network with a rule-based expert system approach for short-term power load forecasting in Taiwan
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(97)00048-1
– volume: 90
  start-page: 900
  year: 1971
  ident: ref_6
  article-title: Short term load forecasting using general exponential smoothing
  publication-title: IEEE Trans. Power Apparatus Syst.
  doi: 10.1109/TPAS.1971.293123
– volume: 33
  start-page: 497
  year: 2005
  ident: ref_26
  article-title: A hybrid ARIMA and support vector machines model in stock price forecasting
  publication-title: Omega
  doi: 10.1016/j.omega.2004.07.024
– volume: 19
  start-page: 164
  year: 2004
  ident: ref_20
  article-title: Short-term hourly load forecasting using abductive networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2003.820695
– volume: 8
  start-page: 508
  year: 1993
  ident: ref_16
  article-title: A generalized knowledge-based short-term load- forecasting technique
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.260833
– volume: 32
  start-page: 2513
  year: 2005
  ident: ref_24
  article-title: Forecasting stock market movement direction with support vector machine
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2004.03.016
– ident: ref_54
– volume: 49
  start-page: 2272
  year: 2008
  ident: ref_64
  article-title: Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.01.035
– volume: 35
  start-page: 888
  year: 2008
  ident: ref_55
  article-title: Chaotic annealing with hypothesis test for function optimization in noisy environments
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.05.070
– volume: 38
  start-page: 863
  year: 2009
  ident: ref_25
  article-title: Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting
  publication-title: Control Cybern.
– volume: 5
  start-page: 1535
  year: 1990
  ident: ref_12
  article-title: A regression-based approach to short-term system load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.99410
– volume: 20
  start-page: 130
  year: 1963
  ident: ref_47
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 26
  start-page: 77
  year: 2004
  ident: ref_2
  article-title: The impact of electricity supply on economic growth in Sri Lanka
  publication-title: Energy Econ.
  doi: 10.1016/S0140-9883(03)00034-3
– ident: ref_22
– volume: 20
  start-page: 192
  year: 2003
  ident: ref_34
  article-title: Three improved neural network models for air quality forecasting
  publication-title: Eng. Comput.
  doi: 10.1108/02644400310465317
– volume: 131
  start-page: 29
  year: 2006
  ident: ref_63
  article-title: Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment
  publication-title: J. Econometrics
  doi: 10.1016/j.jeconom.2005.01.003
– volume: 3
  start-page: 392
  year: 1998
  ident: ref_14
  article-title: An expert system based algorithm for short-term load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.192889
– volume: 37
  start-page: 495
  year: 1998
  ident: ref_46
  article-title: Complexities and their applications to characterization of chaos
  publication-title: Int. J. Theor. Phys.
  doi: 10.1023/A:1026620313483
– volume: 79
  start-page: 747
  year: 2006
  ident: ref_30
  article-title: Software reliability forecasting by support vector machines with simulated annealing algorithms
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2005.02.025
SSID ssj0000331333
Score 2.178513
Snippet Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 960
SubjectTerms Accuracy
Algorithms
Back propagation
chaotic immune algorithm (CIA)
electric load forecasting
Electricity
Energy industry
Forecasting
Humidity
Neural networks
Parameter estimation
Regression analysis
seasonal adjustment
support vector regression (SVR)
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLbocmh7QPSlboFq1PbQS0SSmTzmUFVAQduqrCooFbdoHh44LMkWFlX8-9rZJAUJeosiK4rH4_izM_4M8KH0sUoSVJEpAkYqZHQVZBFpy_EqLVKP3Jx8OM0nJ-rbaXa6AtO-F4aPVfbfxPZD7RvHNfJt8syC4EKq48_z3xFPjeK_q_0IDdONVvCfWoqxR7CaMjPWCFZ396c_joaqSywlJWVySTEkKd_fxppCGuP4O4Gp5e-_AzofX9dzc_PHzGa34s_BOqx1wFHsLC39DFawfg5Pb9EJvoDD419HggurYnLDjVhi79w0JC6-chMIip3ZGWm0OL8QhFTFMZoWhovvjfHiC16Y2gue1OnMFZ-FfgknB_s_9yZRNy4hcjIrF1HujJZBStI_09IaHVweY1KUOWlMhtLoXebIZ1EqF2ubBh8I3JVKKm3ZT1_BqG5qfA3CEsgpbOyToC1lNKhJLkfpVGZJ2OMYPvZrVbmOS5xHWswqyil4WathWcfwbhCdLwk07hPa5QUfBJjzur3RXJ5VnQtVtrQmJbSKhaSQ6jLjCu8zlYQy1qzJGDZ7c1WdI15V_7bNGN4PJnz4Td78_yEb8GRZVOYyzCaMFpfXuEWoZGHfdlvtLwvw4AY
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEN_o8aA8-G04AbNRH3wp_djdtvtETpCcRogRz-BTsx-zaDzay31A4K9ntl0uQDAxvjXtNO1mZjq_mc7-hpB3pU14mgKPVOEg4k7gkWNFJLWPV1mRWfCbk_cP8uGIfz4SR6E3ZxbaKjEV_91-pNsOWcxPWMzjPEasHU-s2z4NhaQUg4soZcny-2QlF3i5R1ZGB18HP9s_yeHWjk2IYWofQ43Ry0P2GzGopeq_gS8fLOqJOj9T4_G1ULP3uJunOmsZCn2HyZ-txVxvmYtb_I3_vYon5FEAoXTQWc1Tcg_qZ2T1GjXhc7J_-OMb9UVaOjz3m7rozi_VoDj95DeUAB2Mj5spXj6hiHrpIagW0tMvjbJ0F05Ubamf-mnUzPdVvyCjvY_fd4ZRGL0QGSbKeZQbJZljTKSeD00r6UyeQFqUOWMMlS7BGmHQ_4Fxk0idOesQKJaccam9z78kvbqpYY1QjYCp0IlNndSYHYFEuRyY4UKjsIU-eX-ljMoEXnI_HmNcYX7i9VYt9dYnb5aik46M4y6hD16jSwHPn92eaKbHVXDHSpdaZYh8oWAYno1QprBW8NSVifQr6ZONK3uoglPPKgwOBSLWTOIz3i5t5O9v8uqfpNbJw65O7Ss7G6Q3ny5gE4HOXL8O5nwJAeH2Tg
  priority: 102
  providerName: Unpaywall
Title SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting
URI https://www.proquest.com/docview/1537083290
https://www.mdpi.com/1996-1073/4/6/960/pdf?version=1426589836
https://doaj.org/article/b8ba2774e73847c5ac7dd541f809df31
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5ROFAOiAJVwyNaFQ5cLGzv-rHH8AgBlQhBU6Unax-z5RAcRIJQ_j0ztomCVNRLL5a1Gsnrmd2db1Yz3zB2mLtQRhHIQGceAukTfPMiC5QhfxVnsQMqTr7up72BvBomw4VWX5QTVtMD14o7NrnRMWIUyAQepDbRNnMukZHPQ-V8VUEdh7laCKaqM1gIDL6q7HrKssUYR9S0QgJj_GMo0Y0Rdn_njCrO_ndAc_W5fNSzFz0aLfic7gZbb8Ai79ST_MKWoNxkawsUglvs-u7XLafLVN6bUfEVP73XYxTnl1T4Abwz-jPG-P_-gSM65XegK-jNf4y142fwoEvHqTun1RPKf95mg-75z9Ne0LRICKxI8mmQWq2EFyKJiLfMaOVtGkKU5Sn-PRpHgbOJxX0KQtpQmdiTzsJcCqkM7c2vbLkcl_CNcYPAJjOhi7wyGMWAQrkUhJWJQWEHLXb0pqvCNvzh1MZiVGAcQWot5mptse9z0ceaNONvQiek8LkA8VxXA2j9orF-8S_rt9jem7mKZvNNCjzEM0SWscJvHMxN-PFMdv7HTHbZ5_q6mS5o9tjy9OkZ9hGvTE2bfcq7F222cnLev7ltVwsVnxfDCMcG_ZvO71eNguk8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLYoHGgPiL7ULRRGfUi9RCSZvOaAKp7aLburikfFLcwTDkuyZReh_XP9bbWzSQCp7Y1bEjmjjO0Zf3bGNsDnzPhRENjIk6mzXuRivHI89YQiexWmobGUnDwYJt2z6Pt5fL4Av5tcGDpW2eyJ1UZtSk0x8i1cmSnChVD438a_POoaRX9XmxYasm6tYLarEmN1YseRnd2hCzfZ7u2jvL-E4eHB6V7Xq7sMeJrH2dRLtBTccY6vxYIrKZxOfBukWcI5x_kJa3SsUdUtj7QvVOiMQ0yURTwSitQbx30GS3SLzt_S7sHwx3Eb5fE5RyeQz0sacS78LVugCSW_4ZEhrPoFPAK5y7fFWM7u5Gj0wN4drsJKDVTZzlyzXsKCLV7BiwflC1_D4OTnMaNALuvOKPGL7V3JEslZj5JOLNsZXSIHp1fXDJExO7Gygv2sX0rD9u21LAyjzqBaTujs9Rs4exLGvYXFoizsO2AKQVWqfBM4odCDsgLpEst1FCskNrYDXxte5bquXU4tNEY5-jDE1rxlawc-tqTjecGOvxHtEsNbAqqxXT0oby7zesnmKlMyRHRsU44mXMdSp8bEUeAyX9BMOrDeiCuvF_4kv1fTDnxqRfjvL3n__0E2Ybl7Oujn_d7waA2ezwPaFAJah8Xpza39gIhoqjZqtWNw8dSa_gfTnBwf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5IJ5iSwGLh8QlahIncXxAqHRZdulDiFLUW_CzPWyTpbtVtX-NX8dMXrQScOstikaWM_7s-WbimQF4ndswiSKXBEp4FyQ-xSfPRSA12atYxNZRcvLefjY-TD4fpUcr8KvLhaFrld2ZWB_UtjIUI9_EnSmQLsQy3PTttYgvw9H72c-AOkjRn9aunUYDkR23vED3bf5uMsS1fhPHo4_ftsdB22EgMDzNF0FmlOSe8zSisl9aSW-y0EUizzjn-G3SWZMahLnjiQmljr31yIfyhCdSE7Rx3BtwU1AVd8pSH33q4zsh5-j-8aaYEec4bVei8SSP4YoJrDsFXKG3t8_LmVpeqOn0kqUb3YO7LUVlWw2m7sOKKx_AnUuFCx_C3sH3r4xCuGy8pJQvtn2iKhRnE0o3cWxreoz6WpycMuTE7MCpmvCz3UpZNnSnqrSMeoIaNadb14_g8FrU9hhWy6p0T4BppFNChzbyUqPv5CTKZY6bJNUobN0A3na6KkxbtZyaZ0wL9F5IrUWv1gG87EVnTamOvwl9IIX3AlRdu35RnR0X7WYtdK5VjLzYCY7G26TKCGvTJPJ5KOlLBrDRLVfRbvl58QegA3jVL-G_Z7L-_0FewC3Ed7E72d95CmtNJJtiPxuwujg7d8-QCi308xpzDH5cN8h_Awd3Gbk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEN_o8aA8-G04AbNRH3wp_djdtvtETpCcRogRz-BTsx-zaDzay31A4K9ntl0uQDAxvjXtNO1mZjq_mc7-hpB3pU14mgKPVOEg4k7gkWNFJLWPV1mRWfCbk_cP8uGIfz4SR6E3ZxbaKjEV_91-pNsOWcxPWMzjPEasHU-s2z4NhaQUg4soZcny-2QlF3i5R1ZGB18HP9s_yeHWjk2IYWofQ43Ry0P2GzGopeq_gS8fLOqJOj9T4_G1ULP3uJunOmsZCn2HyZ-txVxvmYtb_I3_vYon5FEAoXTQWc1Tcg_qZ2T1GjXhc7J_-OMb9UVaOjz3m7rozi_VoDj95DeUAB2Mj5spXj6hiHrpIagW0tMvjbJ0F05Ubamf-mnUzPdVvyCjvY_fd4ZRGL0QGSbKeZQbJZljTKSeD00r6UyeQFqUOWMMlS7BGmHQ_4Fxk0idOesQKJaccam9z78kvbqpYY1QjYCp0IlNndSYHYFEuRyY4UKjsIU-eX-ljMoEXnI_HmNcYX7i9VYt9dYnb5aik46M4y6hD16jSwHPn92eaKbHVXDHSpdaZYh8oWAYno1QprBW8NSVifQr6ZONK3uoglPPKgwOBSLWTOIz3i5t5O9v8uqfpNbJw65O7Ss7G6Q3ny5gE4HOXL8O5nwJAeH2Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVR+with+Hybrid+Chaotic+Immune+Algorithm+for+Seasonal+Load+Demand+Forecasting&rft.jtitle=Energies+%28Basel%29&rft.au=Shih-Yung+Wei&rft.au=Wei-Chiang+Hong&rft.au=Li-Yueh+Chen&rft.au=Chien-Yuan+Lai&rft.date=2011-06-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=4&rft.issue=6&rft.spage=960&rft.epage=977&rft_id=info:doi/10.3390%2Fen4060960&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b8ba2774e73847c5ac7dd541f809df31
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon