SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting
Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cy...
Saved in:
| Published in | Energies (Basel) Vol. 4; no. 6; pp. 960 - 977 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.06.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1996-1073 1996-1073 |
| DOI | 10.3390/en4060960 |
Cover
| Abstract | Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cyclic electric load forecasting have not been widely explored. The purpose of this paper is to present a SVR model which combines the seasonal adjustment mechanism and a chaotic immune algorithm (namely SSVRCIA) to forecast monthly electric loads. Based on the operation procedure of the immune algorithm (IA), if the population diversity of an initial population cannot be maintained under selective pressure, then IA could only seek for the solutions in the narrow space and the solution is far from the global optimum (premature convergence). The proposed chaotic immune algorithm (CIA) based on the chaos optimization algorithm and IA, which diversifies the initial definition domain in stochastic optimization procedures, is used to overcome the premature local optimum issue in determining three parameters of a SVR model. A numerical example from an existing reference is used to elucidate the forecasting performance of the proposed SSVRCIA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the ARIMA and TF-ε-SVR-SA models, and therefore the SSVRCIA model is a promising alternative for electric load forecasting. |
|---|---|
| AbstractList | Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cyclic electric load forecasting have not been widely explored. The purpose of this paper is to present a SVR model which combines the seasonal adjustment mechanism and a chaotic immune algorithm (namely SSVRCIA) to forecast monthly electric loads. Based on the operation procedure of the immune algorithm (IA), if the population diversity of an initial population cannot be maintained under selective pressure, then IA could only seek for the solutions in the narrow space and the solution is far from the global optimum (premature convergence). The proposed chaotic immune algorithm (CIA) based on the chaos optimization algorithm and IA, which diversifies the initial definition domain in stochastic optimization procedures, is used to overcome the premature local optimum issue in determining three parameters of a SVR model. A numerical example from an existing reference is used to elucidate the forecasting performance of the proposed SSVRCIA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the ARIMA and TF-[straight epsilon]-SVR-SA models, and therefore the SSVRCIA model is a promising alternative for electric load forecasting. Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cyclic electric load forecasting have not been widely explored. The purpose of this paper is to present a SVR model which combines the seasonal adjustment mechanism and a chaotic immune algorithm (namely SSVRCIA) to forecast monthly electric loads. Based on the operation procedure of the immune algorithm (IA), if the population diversity of an initial population cannot be maintained under selective pressure, then IA could only seek for the solutions in the narrow space and the solution is far from the global optimum (premature convergence). The proposed chaotic immune algorithm (CIA) based on the chaos optimization algorithm and IA, which diversifies the initial definition domain in stochastic optimization procedures, is used to overcome the premature local optimum issue in determining three parameters of a SVR model. A numerical example from an existing reference is used to elucidate the forecasting performance of the proposed SSVRCIA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the ARIMA and TF-ε-SVR-SA models, and therefore the SSVRCIA model is a promising alternative for electric load forecasting. |
| Author | Wei, Shih-Yung Hong, Wei-Chiang Lai, Chien-Yuan Dong, Yucheng Chen, Li-Yueh |
| Author_xml | – sequence: 1 givenname: Wei-Chiang orcidid: 0000-0002-3001-2921 surname: Hong fullname: Hong, Wei-Chiang – sequence: 2 givenname: Yucheng surname: Dong fullname: Dong, Yucheng – sequence: 3 givenname: Chien-Yuan surname: Lai fullname: Lai, Chien-Yuan – sequence: 4 givenname: Li-Yueh surname: Chen fullname: Chen, Li-Yueh – sequence: 5 givenname: Shih-Yung surname: Wei fullname: Wei, Shih-Yung |
| BookMark | eNp1kE1LAzEQhoMoqNWD_yDgSaGadHY3m6NUq4WK4Nc1zGazbcpuUpMtpf_erZUionOZYeadh5n3mOw77wwhZ5xdAUh2bVzCMiYztkeOuJRZnzMB-z_qQ3Ia45x1AcAB4Ig8vrw_05VtZ_RhXQRb0uEMfWs1HTfN0hl6U0996MYNrXygLwajd1jTiceS3poGXUlHPhiNsbVuekIOKqyjOf3OPfI2unsdPvQnT_fj4c2kryHN236mUUIFkPI8lVCgrHTGDBd51t2ku6EpdaoTxgwkmsliUJUVcJYnkMiCCwk9Mt5yS49ztQi2wbBWHq36avgwVRi6L2qjirzAgRCJEZAnQqeoRVmmCa9yJjfUjnW5ZS3dAtcrrOsdkDO18VXtfO3E51vxIviPpYmtmvtl6ByJiqcgWA4DuVFdb1U6-BiDqZS2LbbWuzagrf_kXvza-P-GT5v6k48 |
| CitedBy_id | crossref_primary_10_1016_j_energy_2016_09_065 crossref_primary_10_1007_s42452_020_03778_9 crossref_primary_10_1016_j_asoc_2020_106738 crossref_primary_10_3390_en12061093 crossref_primary_10_1016_j_enconman_2020_113123 crossref_primary_10_3390_en12030393 crossref_primary_10_1109_ACCESS_2021_3053317 crossref_primary_10_1007_s11042_020_09397_1 crossref_primary_10_3390_sym12081292 crossref_primary_10_1007_s11042_020_09733_5 crossref_primary_10_3390_en9060426 crossref_primary_10_3233_JIFS_211093 crossref_primary_10_3390_forecast2020009 crossref_primary_10_1063_5_0021564 crossref_primary_10_1016_j_knosys_2021_107297 crossref_primary_10_3390_en4101495 crossref_primary_10_1007_s11071_019_05252_7 crossref_primary_10_1155_2020_4181045 crossref_primary_10_1007_s11042_020_10448_w crossref_primary_10_1155_2012_720849 crossref_primary_10_1016_j_renene_2019_08_126 crossref_primary_10_4236_cs_2016_710283 crossref_primary_10_1049_gtd2_12798 crossref_primary_10_3390_en9110873 crossref_primary_10_1049_iet_gtd_2019_0797 crossref_primary_10_1007_s11042_020_09331_5 crossref_primary_10_1007_s12667_016_0203_y crossref_primary_10_1016_j_compeleceng_2025_110174 crossref_primary_10_1016_j_engappai_2019_06_017 crossref_primary_10_1155_2020_4251517 crossref_primary_10_1016_j_ins_2022_03_060 crossref_primary_10_3390_en13092307 crossref_primary_10_1007_s00521_012_1323_5 crossref_primary_10_1016_j_apm_2013_05_016 crossref_primary_10_1007_s11042_020_09471_8 crossref_primary_10_1155_2020_6901084 crossref_primary_10_1109_TITS_2018_2876871 crossref_primary_10_1016_j_asoc_2018_04_051 crossref_primary_10_3390_en11040712 crossref_primary_10_1155_2020_1209547 crossref_primary_10_1049_iet_gtd_2016_0340 crossref_primary_10_1155_2013_292575 crossref_primary_10_1007_s11042_022_12244_0 crossref_primary_10_1186_s40854_021_00266_w crossref_primary_10_1007_s11042_020_09268_9 crossref_primary_10_3390_joitmc6020029 crossref_primary_10_1007_s11042_020_09538_6 crossref_primary_10_1016_j_knosys_2023_110476 crossref_primary_10_1016_j_procs_2020_08_044 crossref_primary_10_1016_j_neucom_2015_09_089 crossref_primary_10_1109_SURV_2014_032014_00094 |
| Cites_doi | 10.2307/2981420 10.1016/S0169-2070(99)00045-X 10.1016/j.chaos.2004.11.095 10.1016/j.chaos.2006.04.057 10.1016/j.asoc.2010.06.003 10.1007/s11269-006-9026-2 10.1016/S0893-6080(99)00032-5 10.1007/978-1-4757-2440-0 10.1016/S0142-0615(96)00048-8 10.1016/j.chaos.2005.04.110 10.1016/S0305-0483(01)00026-3 10.1016/S0196-8904(02)00225-X 10.1007/s00170-004-2340-z 10.1016/j.enconman.2005.02.004 10.1109/ICICIC.2009.287 10.1109/59.76686 10.1109/59.76685 10.1016/0378-7796(95)00980-9 10.1016/j.renene.2003.11.009 10.1016/j.enpol.2009.06.046 10.1016/j.enconman.2008.08.031 10.1016/j.ijepes.2009.03.020 10.1016/j.chaos.2007.10.032 10.1109/TPWRS.2005.860944 10.1016/j.apm.2008.07.010 10.1016/0378-7796(95)00977-1 10.1016/j.eswa.2007.09.031 10.1016/j.annals.2005.01.002 10.1016/j.advengsoft.2007.01.024 10.1016/j.epsr.2005.01.006 10.1016/j.chaos.2005.08.126 10.1109/T-PAS.1975.31945 10.1109/59.41700 10.1016/j.enpol.2010.05.033 10.1080/019697298125678 10.1016/S0957-4174(97)00048-1 10.1109/TPAS.1971.293123 10.1016/j.omega.2004.07.024 10.1109/TPWRS.2003.820695 10.1109/59.260833 10.1016/j.cor.2004.03.016 10.1016/j.enconman.2008.01.035 10.1016/j.chaos.2006.05.070 10.1109/59.99410 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1016/S0140-9883(03)00034-3 10.1108/02644400310465317 10.1016/j.jeconom.2005.01.003 10.1109/59.192889 10.1023/A:1026620313483 10.1016/j.jss.2005.02.025 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2011 |
| Copyright_xml | – notice: Copyright MDPI AG 2011 |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/en4060960 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| EndPage | 977 |
| ExternalDocumentID | oai_doaj_org_article_b8ba2774e73847c5ac7dd541f809df31 10.3390/en4060960 3337817801 10_3390_en4060960 |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR C1A CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IPNFZ KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC RIG TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 2XV ADTOC IAO ITC UNPAY |
| ID | FETCH-LOGICAL-c358t-6ca93f33518593ba9fc60e1786333cca9edc5c400e34c09b2fdf31084349b1793 |
| IEDL.DBID | DOA |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 19:08:28 EDT 2025 Sun Oct 26 04:13:54 EDT 2025 Mon Jun 30 04:38:49 EDT 2025 Thu Oct 16 04:29:03 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-6ca93f33518593ba9fc60e1786333cca9edc5c400e34c09b2fdf31084349b1793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3001-2921 |
| OpenAccessLink | https://doaj.org/article/b8ba2774e73847c5ac7dd541f809df31 |
| PQID | 1537083290 |
| PQPubID | 2032402 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b8ba2774e73847c5ac7dd541f809df31 unpaywall_primary_10_3390_en4060960 proquest_journals_1537083290 crossref_citationtrail_10_3390_en4060960 crossref_primary_10_3390_en4060960 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-06-01 |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2011 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Tavazoei (ref_60) 2007; 187 Li (ref_59) 2006; 28 Xiao (ref_51) 2009; 36 ref_54 Pai (ref_26) 2005; 33 ref_52 Morimoto (ref_2) 2004; 26 Pai (ref_30) 2006; 79 Hong (ref_33) 2007; 21 Moghram (ref_10) 1989; 4 Chiu (ref_15) 1997; 13 Hsu (ref_21) 2003; 44 Pan (ref_55) 2008; 35 Papalexopoulos (ref_12) 1990; 5 Dagum (ref_48) 1978; 27 Amari (ref_53) 1999; 12 Pai (ref_27) 2006; 17 Zuo (ref_56) 2006; 30 Tay (ref_23) 2001; 29 Hong (ref_36) 2009; 31 Wang (ref_50) 2009; 37 Deo (ref_63) 2006; 131 Hung (ref_25) 2009; 38 Mori (ref_42) 1993; 113-C ref_22 Mohandes (ref_35) 2004; 29 ref_62 Wang (ref_44) 2001; 20 Liu (ref_57) 2005; 25 Azadeh (ref_64) 2008; 49 Li (ref_45) 1998; 29 Hong (ref_31) 2006; 28 Wang (ref_34) 2003; 20 Darbellay (ref_19) 2000; 16 Prakash (ref_43) 2008; 39 Asbury (ref_11) 1975; 94 Pai (ref_29) 2005; 32 Lorenz (ref_47) 1963; 20 Hong (ref_37) 2009; 50 Ohya (ref_46) 1998; 37 Pai (ref_40) 2005; 74 Rahman (ref_14) 1998; 3 Novak (ref_18) 1995; 35 Soliman (ref_13) 1997; 19 Kenny (ref_49) 1982; 145 Hong (ref_28) 2011; 11 Yang (ref_58) 2007; 34 Fan (ref_1) 2006; 21 (ref_20) 2004; 19 Christianse (ref_6) 1971; 90 Hong (ref_38) 2009; 33 Rahman (ref_16) 1993; 8 Park (ref_7) 1991; 6 Chen (ref_4) 1995; 34 Hong (ref_41) 2010; 38 ref_3 Pai (ref_39) 2005; 46 Coelho (ref_61) 2009; 40 Huang (ref_24) 2005; 32 ref_9 Park (ref_17) 1991; 6 ref_8 ref_5 Hong (ref_32) 2008; 200 |
| References_xml | – volume: 145 start-page: 1 year: 1982 ident: ref_49 article-title: Local trend estimation and seasonal adjustment of economic and social time series publication-title: J. R. Stat. Soc. Series A doi: 10.2307/2981420 – ident: ref_9 – volume: 16 start-page: 71 year: 2000 ident: ref_19 article-title: Forecasting the short-term demand for electricity—do neural networks stand a better chance? publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(99)00045-X – volume: 27 start-page: 203 year: 1978 ident: ref_48 article-title: Modelling, forecasting and seasonally adjusting economic time series with the X-11 ARIMA method publication-title: J. R. Stat. Soc. Series D – volume: 25 start-page: 1261 year: 2005 ident: ref_57 article-title: Improved particle swam optimization combined with chaos publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.11.095 – volume: 34 start-page: 1366 year: 2007 ident: ref_58 article-title: On the efficiency of chaos optimization algorithms for global optimization publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.04.057 – ident: ref_5 – volume: 11 start-page: 1881 year: 2011 ident: ref_28 article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.003 – volume: 21 start-page: 495 year: 2007 ident: ref_33 article-title: Potential assessment of the support vector regression technique in rainfall forecasting publication-title: Water Resour. Manag. doi: 10.1007/s11269-006-9026-2 – volume: 12 start-page: 783 year: 1999 ident: ref_53 article-title: Improving support vector machine classifiers by modifying kernel functions publication-title: Neural Netw. doi: 10.1016/S0893-6080(99)00032-5 – volume: 113-C start-page: 872 year: 1993 ident: ref_42 article-title: Immune algorithm with searching diversity and its application to resource allocation problem publication-title: Trans. Inst. Electr. Eng. Jpn. – ident: ref_52 doi: 10.1007/978-1-4757-2440-0 – volume: 19 start-page: 209 year: 1997 ident: ref_13 article-title: Application of least absolute value parameter estimation based on linear programming to short-term load forecasting publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/S0142-0615(96)00048-8 – volume: 28 start-page: 1204 year: 2006 ident: ref_59 article-title: Parameters identification of chaotic systems via chaotic ant swarm publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.04.110 – volume: 17 start-page: 19 year: 2006 ident: ref_27 article-title: A hybrid support vector machine regression for exchange rate prediction publication-title: Int. J. Inf. Manag. Sci. – volume: 29 start-page: 309 year: 2001 ident: ref_23 article-title: Application of support vector machines in financial time series forecasting publication-title: Omega doi: 10.1016/S0305-0483(01)00026-3 – volume: 44 start-page: 1941 year: 2003 ident: ref_21 article-title: Regional load forecasting in Taiwan—application of artificial neural networks publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(02)00225-X – volume: 28 start-page: 154 year: 2006 ident: ref_31 article-title: Predicting engine reliability by support vector machines publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2340-z – volume: 20 start-page: 1 year: 2001 ident: ref_44 article-title: Survey on chaotic optimization methods publication-title: Comput. Technol. Autom. – volume: 46 start-page: 2669 year: 2005 ident: ref_39 article-title: Support vector machines with simulated annealing algorithms in electricity load forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2005.02.004 – ident: ref_62 doi: 10.1109/ICICIC.2009.287 – volume: 6 start-page: 450 year: 1991 ident: ref_7 article-title: Composite modeling for adaptive short-term load forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.76686 – ident: ref_8 – volume: 6 start-page: 442 year: 1991 ident: ref_17 article-title: Electric load forecasting using an artificial neural network publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.76685 – volume: 35 start-page: 11 year: 1995 ident: ref_18 article-title: Superfast autoconfiguring artificial neural networks and their application to power systems publication-title: Electr. Power Syst. Res. doi: 10.1016/0378-7796(95)00980-9 – volume: 29 start-page: 939 year: 2004 ident: ref_35 article-title: Support vector machines for wind speed prediction publication-title: Renew Energy doi: 10.1016/j.renene.2003.11.009 – volume: 37 start-page: 4901 year: 2009 ident: ref_50 article-title: A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand publication-title: Energy Policy doi: 10.1016/j.enpol.2009.06.046 – volume: 200 start-page: 41 year: 2008 ident: ref_32 article-title: Rainfall forecasting by technological machine learning models publication-title: Appl. Math. Comput. – volume: 50 start-page: 105 year: 2009 ident: ref_37 article-title: Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.08.031 – volume: 31 start-page: 409 year: 2009 ident: ref_36 article-title: Hybrid evolutionary algorithms in a SVR-based electric load forecasting model publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2009.03.020 – volume: 40 start-page: 2376 year: 2009 ident: ref_61 article-title: Chaotic artificial immune approach applied to economic dispatch of electric energy using thermal units publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2007.10.032 – volume: 187 start-page: 1076 year: 2007 ident: ref_60 article-title: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms publication-title: Appl. Math. Comput. – volume: 21 start-page: 392 year: 2006 ident: ref_1 article-title: Short-term load forecasting based on an adaptive hybrid method publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2005.860944 – volume: 33 start-page: 2444 year: 2009 ident: ref_38 article-title: Electric load forecasting by support vector model publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2008.07.010 – volume: 34 start-page: 187 year: 1995 ident: ref_4 article-title: Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting publication-title: Electr. Power Syst. Res. doi: 10.1016/0378-7796(95)00977-1 – volume: 36 start-page: 273 year: 2009 ident: ref_51 article-title: BP neural network with rough set for short term load forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.09.031 – ident: ref_3 – volume: 32 start-page: 1138 year: 2005 ident: ref_29 article-title: An improved neural network model in forecasting arrivals publication-title: Ann. Tourism Res. doi: 10.1016/j.annals.2005.01.002 – volume: 39 start-page: 219 year: 2008 ident: ref_43 article-title: Modified immune algorithm for job selection and operation allocation problem in flexible manufacturing system publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2007.01.024 – volume: 74 start-page: 417 year: 2005 ident: ref_40 article-title: Forecasting regional electric load based on recurrent support vector machines with genetic algorithms publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2005.01.006 – volume: 30 start-page: 94 year: 2006 ident: ref_56 article-title: A chaos search immune algorithm with its application to neuro-fuzzy controller design publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.08.126 – volume: 94 start-page: 1111 year: 1975 ident: ref_11 article-title: Weather load model for electric demand energy forecasting publication-title: IEEE Trans. Power Apparatus Syst. doi: 10.1109/T-PAS.1975.31945 – volume: 4 start-page: 1484 year: 1989 ident: ref_10 article-title: Analysis and evaluation of five short-term load forecasting techniques publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.41700 – volume: 38 start-page: 5830 year: 2010 ident: ref_41 article-title: Application of chaotic ant swarm optimization in electric load forecasting publication-title: Energy Policy doi: 10.1016/j.enpol.2010.05.033 – volume: 29 start-page: 409 year: 1998 ident: ref_45 article-title: Optimizing complex functions by chaos search publication-title: Cybern. Syst. doi: 10.1080/019697298125678 – volume: 13 start-page: 299 year: 1997 ident: ref_15 article-title: Combining a Neural Network with a rule-based expert system approach for short-term power load forecasting in Taiwan publication-title: Expert Syst. Appl. doi: 10.1016/S0957-4174(97)00048-1 – volume: 90 start-page: 900 year: 1971 ident: ref_6 article-title: Short term load forecasting using general exponential smoothing publication-title: IEEE Trans. Power Apparatus Syst. doi: 10.1109/TPAS.1971.293123 – volume: 33 start-page: 497 year: 2005 ident: ref_26 article-title: A hybrid ARIMA and support vector machines model in stock price forecasting publication-title: Omega doi: 10.1016/j.omega.2004.07.024 – volume: 19 start-page: 164 year: 2004 ident: ref_20 article-title: Short-term hourly load forecasting using abductive networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2003.820695 – volume: 8 start-page: 508 year: 1993 ident: ref_16 article-title: A generalized knowledge-based short-term load- forecasting technique publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.260833 – volume: 32 start-page: 2513 year: 2005 ident: ref_24 article-title: Forecasting stock market movement direction with support vector machine publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2004.03.016 – ident: ref_54 – volume: 49 start-page: 2272 year: 2008 ident: ref_64 article-title: Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.01.035 – volume: 35 start-page: 888 year: 2008 ident: ref_55 article-title: Chaotic annealing with hypothesis test for function optimization in noisy environments publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.05.070 – volume: 38 start-page: 863 year: 2009 ident: ref_25 article-title: Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting publication-title: Control Cybern. – volume: 5 start-page: 1535 year: 1990 ident: ref_12 article-title: A regression-based approach to short-term system load forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.99410 – volume: 20 start-page: 130 year: 1963 ident: ref_47 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 26 start-page: 77 year: 2004 ident: ref_2 article-title: The impact of electricity supply on economic growth in Sri Lanka publication-title: Energy Econ. doi: 10.1016/S0140-9883(03)00034-3 – ident: ref_22 – volume: 20 start-page: 192 year: 2003 ident: ref_34 article-title: Three improved neural network models for air quality forecasting publication-title: Eng. Comput. doi: 10.1108/02644400310465317 – volume: 131 start-page: 29 year: 2006 ident: ref_63 article-title: Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment publication-title: J. Econometrics doi: 10.1016/j.jeconom.2005.01.003 – volume: 3 start-page: 392 year: 1998 ident: ref_14 article-title: An expert system based algorithm for short-term load forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.192889 – volume: 37 start-page: 495 year: 1998 ident: ref_46 article-title: Complexities and their applications to characterization of chaos publication-title: Int. J. Theor. Phys. doi: 10.1023/A:1026620313483 – volume: 79 start-page: 747 year: 2006 ident: ref_30 article-title: Software reliability forecasting by support vector machines with simulated annealing algorithms publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2005.02.025 |
| SSID | ssj0000331333 |
| Score | 2.178513 |
| Snippet | Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 960 |
| SubjectTerms | Accuracy Algorithms Back propagation chaotic immune algorithm (CIA) electric load forecasting Electricity Energy industry Forecasting Humidity Neural networks Parameter estimation Regression analysis seasonal adjustment support vector regression (SVR) Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9xADLbocmh7QPSlboFq1PbQS0SSmTzmUFVAQduqrCooFbdoHh44LMkWFlX8-9rZJAUJeosiK4rH4_izM_4M8KH0sUoSVJEpAkYqZHQVZBFpy_EqLVKP3Jx8OM0nJ-rbaXa6AtO-F4aPVfbfxPZD7RvHNfJt8syC4EKq48_z3xFPjeK_q_0IDdONVvCfWoqxR7CaMjPWCFZ396c_joaqSywlJWVySTEkKd_fxppCGuP4O4Gp5e-_AzofX9dzc_PHzGa34s_BOqx1wFHsLC39DFawfg5Pb9EJvoDD419HggurYnLDjVhi79w0JC6-chMIip3ZGWm0OL8QhFTFMZoWhovvjfHiC16Y2gue1OnMFZ-FfgknB_s_9yZRNy4hcjIrF1HujJZBStI_09IaHVweY1KUOWlMhtLoXebIZ1EqF2ubBh8I3JVKKm3ZT1_BqG5qfA3CEsgpbOyToC1lNKhJLkfpVGZJ2OMYPvZrVbmOS5xHWswqyil4WathWcfwbhCdLwk07hPa5QUfBJjzur3RXJ5VnQtVtrQmJbSKhaSQ6jLjCu8zlYQy1qzJGDZ7c1WdI15V_7bNGN4PJnz4Td78_yEb8GRZVOYyzCaMFpfXuEWoZGHfdlvtLwvw4AY priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEN_o8aA8-G04AbNRH3wp_djdtvtETpCcRogRz-BTsx-zaDzay31A4K9ntl0uQDAxvjXtNO1mZjq_mc7-hpB3pU14mgKPVOEg4k7gkWNFJLWPV1mRWfCbk_cP8uGIfz4SR6E3ZxbaKjEV_91-pNsOWcxPWMzjPEasHU-s2z4NhaQUg4soZcny-2QlF3i5R1ZGB18HP9s_yeHWjk2IYWofQ43Ry0P2GzGopeq_gS8fLOqJOj9T4_G1ULP3uJunOmsZCn2HyZ-txVxvmYtb_I3_vYon5FEAoXTQWc1Tcg_qZ2T1GjXhc7J_-OMb9UVaOjz3m7rozi_VoDj95DeUAB2Mj5spXj6hiHrpIagW0tMvjbJ0F05Ubamf-mnUzPdVvyCjvY_fd4ZRGL0QGSbKeZQbJZljTKSeD00r6UyeQFqUOWMMlS7BGmHQ_4Fxk0idOesQKJaccam9z78kvbqpYY1QjYCp0IlNndSYHYFEuRyY4UKjsIU-eX-ljMoEXnI_HmNcYX7i9VYt9dYnb5aik46M4y6hD16jSwHPn92eaKbHVXDHSpdaZYh8oWAYno1QprBW8NSVifQr6ZONK3uoglPPKgwOBSLWTOIz3i5t5O9v8uqfpNbJw65O7Ss7G6Q3ny5gE4HOXL8O5nwJAeH2Tg priority: 102 providerName: Unpaywall |
| Title | SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting |
| URI | https://www.proquest.com/docview/1537083290 https://www.mdpi.com/1996-1073/4/6/960/pdf?version=1426589836 https://doaj.org/article/b8ba2774e73847c5ac7dd541f809df31 |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5ROFAOiAJVwyNaFQ5cLGzv-rHH8AgBlQhBU6Unax-z5RAcRIJQ_j0ztomCVNRLL5a1Gsnrmd2db1Yz3zB2mLtQRhHIQGceAukTfPMiC5QhfxVnsQMqTr7up72BvBomw4VWX5QTVtMD14o7NrnRMWIUyAQepDbRNnMukZHPQ-V8VUEdh7laCKaqM1gIDL6q7HrKssUYR9S0QgJj_GMo0Y0Rdn_njCrO_ndAc_W5fNSzFz0aLfic7gZbb8Ai79ST_MKWoNxkawsUglvs-u7XLafLVN6bUfEVP73XYxTnl1T4Abwz-jPG-P_-gSM65XegK-jNf4y142fwoEvHqTun1RPKf95mg-75z9Ne0LRICKxI8mmQWq2EFyKJiLfMaOVtGkKU5Sn-PRpHgbOJxX0KQtpQmdiTzsJcCqkM7c2vbLkcl_CNcYPAJjOhi7wyGMWAQrkUhJWJQWEHLXb0pqvCNvzh1MZiVGAcQWot5mptse9z0ceaNONvQiek8LkA8VxXA2j9orF-8S_rt9jem7mKZvNNCjzEM0SWscJvHMxN-PFMdv7HTHbZ5_q6mS5o9tjy9OkZ9hGvTE2bfcq7F222cnLev7ltVwsVnxfDCMcG_ZvO71eNguk8 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLYoHGgPiL7ULRRGfUi9RCSZvOaAKp7aLburikfFLcwTDkuyZReh_XP9bbWzSQCp7Y1bEjmjjO0Zf3bGNsDnzPhRENjIk6mzXuRivHI89YQiexWmobGUnDwYJt2z6Pt5fL4Av5tcGDpW2eyJ1UZtSk0x8i1cmSnChVD438a_POoaRX9XmxYasm6tYLarEmN1YseRnd2hCzfZ7u2jvL-E4eHB6V7Xq7sMeJrH2dRLtBTccY6vxYIrKZxOfBukWcI5x_kJa3SsUdUtj7QvVOiMQ0yURTwSitQbx30GS3SLzt_S7sHwx3Eb5fE5RyeQz0sacS78LVugCSW_4ZEhrPoFPAK5y7fFWM7u5Gj0wN4drsJKDVTZzlyzXsKCLV7BiwflC1_D4OTnMaNALuvOKPGL7V3JEslZj5JOLNsZXSIHp1fXDJExO7Gygv2sX0rD9u21LAyjzqBaTujs9Rs4exLGvYXFoizsO2AKQVWqfBM4odCDsgLpEst1FCskNrYDXxte5bquXU4tNEY5-jDE1rxlawc-tqTjecGOvxHtEsNbAqqxXT0oby7zesnmKlMyRHRsU44mXMdSp8bEUeAyX9BMOrDeiCuvF_4kv1fTDnxqRfjvL3n__0E2Ybl7Oujn_d7waA2ezwPaFAJah8Xpza39gIhoqjZqtWNw8dSa_gfTnBwf |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5IJ5iSwGLh8QlahIncXxAqHRZdulDiFLUW_CzPWyTpbtVtX-NX8dMXrQScOstikaWM_7s-WbimQF4ndswiSKXBEp4FyQ-xSfPRSA12atYxNZRcvLefjY-TD4fpUcr8KvLhaFrld2ZWB_UtjIUI9_EnSmQLsQy3PTttYgvw9H72c-AOkjRn9aunUYDkR23vED3bf5uMsS1fhPHo4_ftsdB22EgMDzNF0FmlOSe8zSisl9aSW-y0EUizzjn-G3SWZMahLnjiQmljr31yIfyhCdSE7Rx3BtwU1AVd8pSH33q4zsh5-j-8aaYEec4bVei8SSP4YoJrDsFXKG3t8_LmVpeqOn0kqUb3YO7LUVlWw2m7sOKKx_AnUuFCx_C3sH3r4xCuGy8pJQvtn2iKhRnE0o3cWxreoz6WpycMuTE7MCpmvCz3UpZNnSnqrSMeoIaNadb14_g8FrU9hhWy6p0T4BppFNChzbyUqPv5CTKZY6bJNUobN0A3na6KkxbtZyaZ0wL9F5IrUWv1gG87EVnTamOvwl9IIX3AlRdu35RnR0X7WYtdK5VjLzYCY7G26TKCGvTJPJ5KOlLBrDRLVfRbvl58QegA3jVL-G_Z7L-_0FewC3Ed7E72d95CmtNJJtiPxuwujg7d8-QCi308xpzDH5cN8h_Awd3Gbk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEN_o8aA8-G04AbNRH3wp_djdtvtETpCcRogRz-BTsx-zaDzay31A4K9ntl0uQDAxvjXtNO1mZjq_mc7-hpB3pU14mgKPVOEg4k7gkWNFJLWPV1mRWfCbk_cP8uGIfz4SR6E3ZxbaKjEV_91-pNsOWcxPWMzjPEasHU-s2z4NhaQUg4soZcny-2QlF3i5R1ZGB18HP9s_yeHWjk2IYWofQ43Ry0P2GzGopeq_gS8fLOqJOj9T4_G1ULP3uJunOmsZCn2HyZ-txVxvmYtb_I3_vYon5FEAoXTQWc1Tcg_qZ2T1GjXhc7J_-OMb9UVaOjz3m7rozi_VoDj95DeUAB2Mj5spXj6hiHrpIagW0tMvjbJ0F05Ubamf-mnUzPdVvyCjvY_fd4ZRGL0QGSbKeZQbJZljTKSeD00r6UyeQFqUOWMMlS7BGmHQ_4Fxk0idOesQKJaccam9z78kvbqpYY1QjYCp0IlNndSYHYFEuRyY4UKjsIU-eX-ljMoEXnI_HmNcYX7i9VYt9dYnb5aik46M4y6hD16jSwHPn92eaKbHVXDHSpdaZYh8oWAYno1QprBW8NSVifQr6ZONK3uoglPPKgwOBSLWTOIz3i5t5O9v8uqfpNbJw65O7Ss7G6Q3ny5gE4HOXL8O5nwJAeH2Tg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVR+with+Hybrid+Chaotic+Immune+Algorithm+for+Seasonal+Load+Demand+Forecasting&rft.jtitle=Energies+%28Basel%29&rft.au=Shih-Yung+Wei&rft.au=Wei-Chiang+Hong&rft.au=Li-Yueh+Chen&rft.au=Chien-Yuan+Lai&rft.date=2011-06-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=4&rft.issue=6&rft.spage=960&rft.epage=977&rft_id=info:doi/10.3390%2Fen4060960&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b8ba2774e73847c5ac7dd541f809df31 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |