Multi-Fidelity Sparse Polynomial Chaos and Kriging Surrogate Models Applied to Analytical Benchmark Problems

In this article, multi-fidelity kriging and sparse polynomial chaos expansion (SPCE) surrogate models are constructed. In addition, a novel combination of the two surrogate approaches into a multi-fidelity SPCE-Kriging model will be presented. Accurate surrogate models, once obtained, can be employe...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 15; no. 3; p. 101
Main Authors Rumpfkeil, Markus P., Bryson, Dean, Beran, Phil
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2022
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a15030101

Cover

Abstract In this article, multi-fidelity kriging and sparse polynomial chaos expansion (SPCE) surrogate models are constructed. In addition, a novel combination of the two surrogate approaches into a multi-fidelity SPCE-Kriging model will be presented. Accurate surrogate models, once obtained, can be employed for evaluating a large number of designs for uncertainty quantification, optimization, or design space exploration. Analytical benchmark problems are used to show that accurate multi-fidelity surrogate models can be obtained at lower computational cost than high-fidelity models. The benchmarks include non-polynomial and polynomial functions of various input dimensions, lower dimensional heterogeneous non-polynomial functions, as well as a coupled spring-mass-system. Overall, multi-fidelity models are more accurate than high-fidelity ones for the same cost, especially when only a few high-fidelity training points are employed. Full-order PCEs tend to be a factor of two or so worse than SPCES in terms of overall accuracy. The combination of the two approaches into the SPCE-Kriging model leads to a more accurate and flexible method overall.
AbstractList In this article, multi-fidelity kriging and sparse polynomial chaos expansion (SPCE) surrogate models are constructed. In addition, a novel combination of the two surrogate approaches into a multi-fidelity SPCE-Kriging model will be presented. Accurate surrogate models, once obtained, can be employed for evaluating a large number of designs for uncertainty quantification, optimization, or design space exploration. Analytical benchmark problems are used to show that accurate multi-fidelity surrogate models can be obtained at lower computational cost than high-fidelity models. The benchmarks include non-polynomial and polynomial functions of various input dimensions, lower dimensional heterogeneous non-polynomial functions, as well as a coupled spring-mass-system. Overall, multi-fidelity models are more accurate than high-fidelity ones for the same cost, especially when only a few high-fidelity training points are employed. Full-order PCEs tend to be a factor of two or so worse than SPCES in terms of overall accuracy. The combination of the two approaches into the SPCE-Kriging model leads to a more accurate and flexible method overall.
Author Rumpfkeil, Markus P.
Beran, Phil
Bryson, Dean
Author_xml – sequence: 1
  givenname: Markus P.
  surname: Rumpfkeil
  fullname: Rumpfkeil, Markus P.
– sequence: 2
  givenname: Dean
  surname: Bryson
  fullname: Bryson, Dean
– sequence: 3
  givenname: Phil
  surname: Beran
  fullname: Beran, Phil
BookMark eNp1kF9rFDEUxYO0YP_44DcI-KQwNplMMjOP69JqscVC9Tncvclss2YnY5JB5tsbXSki7dM9XM75cTin5GgMoyXkNWfvhejZBXDJBOOMvyAnvO_7qul6cfSPfklOU9oxpmSv-Anxt7PPrrpyxnqXF3o_QUyW3gW_jGHvwNP1A4REYTT0c3RbN27p_Rxj2EK29DaUWKKrafLOGpoDXY3gl-ywBD_YER_2EL_Tuxg23u7TOTkewCf76u89I9-uLr-uP1U3Xz5er1c3FQrZ5UptEJCB3Ki2VqZTRXDLWM3RNigE9tjZDatbFA0zkhnTCTOwzg4dmEGiEmfk-sA1AXZ6iq60WHQAp_88QtxqiKWktxosR9XjgLZlTdMqqLFhrekAWzkI1RTWuwNrHidYfoL3j0DO9O_N9ePmxfzmYJ5i-DHblPUuzLFMknStmlrUUnJZXBcHF8aQUrSDRpchuzDmCM4_yX37X-L5Dr8AKBSfWw
CitedBy_id crossref_primary_10_3390_a18010004
crossref_primary_10_1002_advs_202403543
crossref_primary_10_3390_a15070250
crossref_primary_10_3390_a16040191
Cites_doi 10.2514/1.J051633
10.2514/6.2008-5953
10.1080/00401706.1974.10489157
10.1016/j.compfluid.2017.06.016
10.2514/1.J053064
10.2514/6.2010-1225
10.1109/TIT.2006.871582
10.1017/CBO9780511617539
10.2514/6.2020-3158
10.1109/TEVC.2017.2758360
10.1016/j.ast.2017.07.043
10.2514/6.2020-0677
10.1016/j.compfluid.2019.104372
10.1504/IJRS.2006.010692
10.1016/j.ast.2012.01.006
10.1137/20M1315774
10.1016/j.jcp.2010.12.021
10.1002/jnm.2722
10.1109/TIT.2005.862083
10.1016/S0169-7161(96)13011-X
10.13182/NSE08-79
10.1007/BF00889887
10.2514/1.J054860
10.2514/6.2000-4890
10.1017/CBO9780511794308
10.2514/2.2877
10.1016/j.jcp.2015.02.025
10.2514/6.2012-1852
10.1016/j.probengmech.2020.103082
10.1016/j.jcp.2011.01.002
10.1111/0272-4332.205054
10.2514/1.J058452
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a15030101
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_ae1c69cfce704476a2c407d8ac75f364
10.3390/a15030101
10_3390_a15030101
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
ICD
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
C1A
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c358t-6bcac0a5b6726d865b61e0021ce4c33c9c8eb027c340d50dd83df08ef8adf5c63
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Fri Oct 03 12:45:06 EDT 2025
Sun Oct 26 04:14:27 EDT 2025
Fri Jul 25 11:54:47 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
Thu Oct 16 04:40:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-6bcac0a5b6726d865b61e0021ce4c33c9c8eb027c340d50dd83df08ef8adf5c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/ae1c69cfce704476a2c407d8ac75f364
PQID 2642325515
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_ae1c69cfce704476a2c407d8ac75f364
unpaywall_primary_10_3390_a15030101
proquest_journals_2642325515
crossref_citationtrail_10_3390_a15030101
crossref_primary_10_3390_a15030101
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yamazaki (ref_17) 2013; 51
Luethen (ref_29) 2021; 9
ref_14
ref_36
ref_35
ref_12
Bryson (ref_13) 2017; 70C
ref_11
Roderick (ref_4) 2010; 164
Cressie (ref_6) 1990; 22
ref_10
Rumpfkeil (ref_30) 2020; 58
Han (ref_18) 2013; 25
ref_19
Rumpfkeil (ref_34) 2020; 197
ref_16
ref_38
ref_15
ref_37
Blatman (ref_24) 2011; 230
Alexandrov (ref_21) 2001; 38
Isukapalli (ref_2) 2000; 20
Clark (ref_44) 2016; 54
Salehi (ref_31) 2017; 154
Kougioumtzoglou (ref_28) 2020; 61
Leifsson (ref_33) 2020; 33
ref_20
Curtin (ref_39) 2013; 14
ref_42
Kim (ref_3) 2006; 1
Forrester (ref_41) 2007; 463
ref_1
Schobi (ref_32) 2015; 5
Boopathy (ref_9) 2015; 53
Jakeman (ref_27) 2015; 289
Wang (ref_43) 2017; 22
Krige (ref_5) 1951; 52
Donoho (ref_23) 2006; 52
Doostan (ref_25) 2011; 230
ref_26
Ghosh (ref_7) 1996; 13
ref_8
Candes (ref_22) 2006; 52
Allen (ref_40) 1974; 16
References_xml – volume: 51
  start-page: 126
  year: 2013
  ident: ref_17
  article-title: Derivative-Enhanced Variable Fidelity Surrogate Modeling for Aerodynamic Functions
  publication-title: AIAA J.
  doi: 10.2514/1.J051633
– ident: ref_8
  doi: 10.2514/6.2008-5953
– volume: 14
  start-page: 801
  year: 2013
  ident: ref_39
  article-title: MLPACK: A Scalable C++ Machine Learning Library
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 125
  year: 1974
  ident: ref_40
  article-title: The relationship between variable selection and data agumentation and a method for prediction
  publication-title: Technometrics
  doi: 10.1080/00401706.1974.10489157
– volume: 154
  start-page: 296
  year: 2017
  ident: ref_31
  article-title: Efficient Uncertainty Quantification of Stochastic CFD Problems Using Sparse Polynomial Chaos and Compressed Sensing
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2017.06.016
– volume: 53
  start-page: 215
  year: 2015
  ident: ref_9
  article-title: A Unified Framework for Training Point Selection and Error Estimation for Surrogate Models
  publication-title: AIAA J.
  doi: 10.2514/1.J053064
– ident: ref_15
  doi: 10.2514/6.2010-1225
– volume: 52
  start-page: 1289
  year: 2006
  ident: ref_23
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2006.871582
– ident: ref_36
  doi: 10.1017/CBO9780511617539
– ident: ref_1
  doi: 10.2514/6.2020-3158
– volume: 22
  start-page: 836
  year: 2017
  ident: ref_43
  article-title: A generic test suite for evolutionary multifidelity optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2758360
– volume: 70C
  start-page: 121
  year: 2017
  ident: ref_13
  article-title: All-at-Once Approach to Multifidelity Polynomial Chaos Expansion Surrogate Modeling
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.07.043
– volume: 463
  start-page: 3251
  year: 2007
  ident: ref_41
  article-title: Multi-fidelity optimization via surrogate modelling
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– ident: ref_11
– ident: ref_35
  doi: 10.2514/6.2020-0677
– volume: 197
  start-page: 104372
  year: 2020
  ident: ref_34
  article-title: Multi-Fidelity Surrogate Models for Flutter Database Generation
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2019.104372
– volume: 1
  start-page: 102
  year: 2006
  ident: ref_3
  article-title: Adaptive reduction of random variables using global sensitivity in reliability-based optimisation
  publication-title: Int. J. Reliab. Saf.
  doi: 10.1504/IJRS.2006.010692
– ident: ref_16
– volume: 25
  start-page: 177
  year: 2013
  ident: ref_18
  article-title: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2012.01.006
– volume: 9
  start-page: 593
  year: 2021
  ident: ref_29
  article-title: Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/20M1315774
– ident: ref_37
– ident: ref_14
– volume: 230
  start-page: 2345
  year: 2011
  ident: ref_24
  article-title: Adaptive sparse polynomial chaos expansion based on least angle regression
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.12.021
– ident: ref_42
– volume: 33
  start-page: e2722
  year: 2020
  ident: ref_33
  article-title: Efficient yield estimation of multiband patch antennas by polynomial chaos-based Kriging
  publication-title: Int. J. Numer. Model.
  doi: 10.1002/jnm.2722
– volume: 52
  start-page: 489
  year: 2006
  ident: ref_22
  article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 13
  start-page: 261
  year: 1996
  ident: ref_7
  article-title: Computer Experiments
  publication-title: Handbook of Statistics
  doi: 10.1016/S0169-7161(96)13011-X
– volume: 164
  start-page: 122
  year: 2010
  ident: ref_4
  article-title: Polynomial regression approaches using derivative information for uncertainty quantification
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE08-79
– volume: 22
  start-page: 239
  year: 1990
  ident: ref_6
  article-title: The Origins of Kriging
  publication-title: Math. Geol.
  doi: 10.1007/BF00889887
– volume: 54
  start-page: 3160
  year: 2016
  ident: ref_44
  article-title: Engineering Design Exploration utilizing Locally Optimized Covariance Kriging
  publication-title: AIAA J.
  doi: 10.2514/1.J054860
– volume: 52
  start-page: 119
  year: 1951
  ident: ref_5
  article-title: A statistical approach to some basic mine valuations problems on the Witwatersrand
  publication-title: J. Chem. Metall. Min. Eng. Soc. South Afr.
– ident: ref_20
  doi: 10.2514/6.2000-4890
– ident: ref_26
  doi: 10.1017/CBO9780511794308
– volume: 38
  start-page: 1093
  year: 2001
  ident: ref_21
  article-title: Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models
  publication-title: J. Aircr.
  doi: 10.2514/2.2877
– volume: 289
  start-page: 18
  year: 2015
  ident: ref_27
  article-title: Enhancing l1-minimization estimates of polynomial chaos expansions using basis selection
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.02.025
– ident: ref_10
– ident: ref_12
  doi: 10.2514/6.2012-1852
– ident: ref_38
– volume: 5
  start-page: 171
  year: 2015
  ident: ref_32
  article-title: Polynomial-chaos–based Kriging
  publication-title: Int. J. UQ
– ident: ref_19
– volume: 61
  start-page: 103082
  year: 2020
  ident: ref_28
  article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/j.probengmech.2020.103082
– volume: 230
  start-page: 3015
  year: 2011
  ident: ref_25
  article-title: A non-adapted sparse approximation of PDEs with stochastic inputs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.002
– volume: 20
  start-page: 591
  year: 2000
  ident: ref_2
  article-title: Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: Application to environmental and biological systems
  publication-title: Risk Anal.
  doi: 10.1111/0272-4332.205054
– volume: 58
  start-page: 1292
  year: 2020
  ident: ref_30
  article-title: Multi-Fidelity Sparse Polynomial Chaos Surrogate Models Applied to Flutter Databases
  publication-title: AIAA J.
  doi: 10.2514/1.J058452
SSID ssj0065961
Score 2.268759
Snippet In this article, multi-fidelity kriging and sparse polynomial chaos expansion (SPCE) surrogate models are constructed. In addition, a novel combination of the...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 101
SubjectTerms Accuracy
Algorithms
analytical benchmark problems
Approximation
Benchmarks
Computing costs
Design optimization
Functions (mathematics)
kriging
Mathematical analysis
multi-fidelity surrogate models
Optimization
Polynomials
sparse polynomial chaos expansions
Sparsity
Trends
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbp5tBe0jfdNC2i7aEXEdt6WD6E0A1ZQkuXpWkgN6NnAnXsjXeXkn_fkVbeNtD2ZswgG43mJWm-D6EPZclLBV6OhEM0wkDrRHPPSAkad8xVuspDg_PXmTi7YJ8v-eUOmg29MOFa5eATo6O2nQl75IcQuCH4Q3znx4tbElijwunqQKGhErWCPYoQYw_QbhGQsUZod3I6m38bfLPglcg3-EIUiv1DBekQDShr96JSBO-_l3E-XLcLdfdTNc0fwWf6BO2lrBF_2qj5Kdpx7TP0eGBkwMlAn6Mm9tOSacCugvQany-gbnV43jV3of0Yhji5Vt0Sq9biL5ES6wqfr_u-C5tpOPCiNUucElO86nCELIm73XgCX7i-Uf0PPN9w0CxfoIvp6feTM5L4FIihXK6I0EaZTHEtykJYKeAhdyHIG8cMpaYy0mkoUw1lmeWZtZJan0nnpbKeG0FfolHbte4VwgwMt_BVLkuwZ2205JmnKmOWV75wWozRx2E-a5PAxgPnRVND0RGmvt5O_Ri924ouNggbfxOaBKVsBQIodnzR9Vd1srFaudyIynjjyoyxUqjCQLlqpTIl91SwMToYVFonS13Wv9fVGL3fqvnff7L__0Feo0dFaJCIt9QO0GjVr90bSFtW-m1ai78AoQ_sYg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_0-qAv1k88rbKoD76kl2S_kidpi0dRLAf1oD6F_WxLY3IkOaX-9c5u9g4rCuJLCGGSbJjZ2d9Mdn6D0BshmJDg5RL_Ey2hoPVEMUcTARq31JaqzHyB86cTfrykH87YWUy49XFbJYTil8FJhxJ5z44yy9gMDmk2Wxn37lvMJHkqrDL3C9JttMMZYPEJ2lmeLA6-hF_J8d6RTohAbD-TgH6IJ1W7sQgFrv4bAPPOulnJ6--yrn9Za-a7qNqMctxicrW_HtS-_vEbgeP_f8Z9dC_CUHww2s0DdMs2D9HupsUDjjP-EapDgW4y92RYgNfx6QoCYYsXbX3t65nhEUcXsu2xbAz-GHpsnePTdde1PjuHfaO1uscR6eKhxYEDJaTP8SG84eKr7K7wYmxq0z9Gy_n7z0fHSWzQkGjCiiHhSkudSqa4yLkpOJxk1qMGbakmRJe6sAriXk1oalhqTEGMSwvrCmkc05w8QZOmbexThCl4gtyVWSHAQSitCpY6IlNqWOlyq_gUvd1orNKRvdw30agriGK8cqutcqfo1VZ0NVJ2_Eno0Kt9K-BZtsOFtjuv4qStpM00L7XTVqSUCi5zDfGvKaQWzBFOp2hvYzRVnPp9BQgTUCoAUTZFr7eG9PeRPPsnqefobu4LL8Lutz00Gbq1fQFwaFAvo83_BJwgA1M
  priority: 102
  providerName: Unpaywall
Title Multi-Fidelity Sparse Polynomial Chaos and Kriging Surrogate Models Applied to Analytical Benchmark Problems
URI https://www.proquest.com/docview/2642325515
https://www.mdpi.com/1999-4893/15/3/101/pdf?version=1647920613
https://doaj.org/article/ae1c69cfce704476a2c407d8ac75f364
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BOcCFNyJQohVw4GLV9j59bKqGCkQUUSKVk7XPVsLYUR5C_ffMrp2olUBcuNnWyF7NY_eb9c43AO-l5FLjLJfFn2gZQ6tnhgeWSbS4Z74yVRELnL_MxNmCfbrgFzdafcUzYT09cK-4I-0LKyobrJc5Y1Lo0mIO4pS2kgcqEhNorqpdMtXPwYJXouh5hCgm9UcaYQ-NbGq3Vp9E0n8LWd7ftkt9_Us3zY1FZvoYHg7okBz3o3oCd3z7FB7tOi-QIRCfQZPqZrNp5KhCGE3Ol5ifejLvmutYZoyvOLnS3Zro1pHPqfXVJTnfrlZd3DQjsf9ZsyYDACWbjiRqkrSrTSb4haufevWDzPteM-vnsJiefjs5y4a-CZmlXG0yYay2ueZGyFI4JfCi8HExt55ZSm1llTeYjlrKcsdz5xR1IVc-KO0Ct4K-gIO2a_1LIAwDtAxVoSTGrbFG8TxQnTPHq1B6I0bwYafP2g6k4rG3RVNjchFVX-9VP4K3e9Flz6TxJ6FJNMpeIJJfpwfoEvXgEvW_XGIEhzuT1kNErmsEfggeER_yEbzbm_nvI3n1P0byGh6UsVwinVk7hIPNauvfIIjZmDHcVdOPY7g3OZ3Nv46T9-LdYjY__v4bSQXzHw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONBLS1_qtpRafUi9RCTxI8kBVSxltXRhtSogcQuO7YDUNNkmu0L75_rbOs46S5Ha3rhFkTWJZux52J7vA_gQRTyS6OU8e4jmMbS6l_GceRFa3DCTZElgG5xPxmJ4zr5e8Is1-NX1wthrlZ1PbB21rpTdI9_FwI3BH-M7_zz96VnWKHu62lFoSEetoPdaiDHX2DEyixss4Zq9oy9o749hODg8Oxh6jmXAU5THM09kSipf8kxEodCxwIfA2NCnDFOUqkTFJsPiTVHma-5rHVOd-7HJY6lzrgRFuQ9gg1GWYPG30T8cT751sUDwRARLPCNKE39XYvpFLarbnSjYkgXcyXA35-VULm5kUfwR7AZb8MhlqWR_Oa2ewJopn8LjjgGCOIfwDIq2f9cbWKwsTOfJ6RTrZEMmVbGw7c4o4uBaVg2RpSajloLripzO67qym3fE8rAVDXGJMJlVpIVIaXfXSR-_cP1D1t_JZMl50zyH83vR7AtYL6vSvATC0FGEeRLEEfqPTGUx93MqfaZ5kocmEz341OkzVQ7c3HJsFCkWOVb16Ur1PXi3GjpdInr8bVDfGmU1wIJwty-q-ip1azqVJlAiUbkykc9YJGSosDzWsVQRz6lgPdjuTJo6z9Ckt_O4B-9XZv73n7z6v5C3sDk8OzlOj4_Go9fwMLTNGe0NuW1Yn9Vz8wZTplm24-Ylgcv7Xgq_AdbMKpU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UCuqLd3G16uAFfAmbZG7Jg4htXVtXy0It9C1O5tJC02RNdin71_x1nslltaC-9S2EYRLOOXMuM3O-D-C1lFwq9HKBP0QLGGo9yLljgUSNW2bTPI18g_PXA7F3xD4f8-MN-Dn0wvhrlYNPbB21qbTfIx9j4Mbgj_Gdj11_LWK2O3k__xF4Bil_0jrQaXQmMrWrCyzfmnf7u6jrN3E8-fhtZy_oGQYCTXmyCESulQ4Vz4WMhUkEPkTWhz1tmaZUpzqxORZumrLQ8NCYhBoXJtYlyjiuBcV5r8F16VHcfZf65NMQBQRPRdQhGVGahmOFiRf1eG6X4l9LE3Apt725LOdqdaGK4o8wN7kLt_v8lHzoDOoebNjyPtwZuB9I7woeQNF27gYTj5KFiTw5nGOFbMmsKla-0Rmn2DlVVUNUaci0Jd86IYfLuq78th3xDGxFQ_oUmCwq0oKjtPvqZBu_cHqu6jMy69humodwdCVyfQSbZVXax0AYuojYpVEi0XPkOk946KgKmeGpi20uRvB2kGeme1hzz65RZFjeeNFna9GP4OV66LzD8vjboG2vlPUAD7_dvqjqk6xfzZmykRapdtrKkDEpVKyxMDaJ0pI7KtgItgaVZr1PaLLfFjyCV2s1__tPnvx_khdwAxdA9mX_YPoUbsW-K6O9GrcFm4t6aZ9hrrTIn7dGSeD7Va-CX7mWKC8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_0-qAv1k88rbKoD76kl2S_kidpi0dRLAf1oD6F_WxLY3IkOaX-9c5u9g4rCuJLCGGSbJjZ2d9Mdn6D0BshmJDg5RL_Ey2hoPVEMUcTARq31JaqzHyB86cTfrykH87YWUy49XFbJYTil8FJhxJ5z44yy9gMDmk2Wxn37lvMJHkqrDL3C9JttMMZYPEJ2lmeLA6-hF_J8d6RTohAbD-TgH6IJ1W7sQgFrv4bAPPOulnJ6--yrn9Za-a7qNqMctxicrW_HtS-_vEbgeP_f8Z9dC_CUHww2s0DdMs2D9HupsUDjjP-EapDgW4y92RYgNfx6QoCYYsXbX3t65nhEUcXsu2xbAz-GHpsnePTdde1PjuHfaO1uscR6eKhxYEDJaTP8SG84eKr7K7wYmxq0z9Gy_n7z0fHSWzQkGjCiiHhSkudSqa4yLkpOJxk1qMGbakmRJe6sAriXk1oalhqTEGMSwvrCmkc05w8QZOmbexThCl4gtyVWSHAQSitCpY6IlNqWOlyq_gUvd1orNKRvdw30agriGK8cqutcqfo1VZ0NVJ2_Eno0Kt9K-BZtsOFtjuv4qStpM00L7XTVqSUCi5zDfGvKaQWzBFOp2hvYzRVnPp9BQgTUCoAUTZFr7eG9PeRPPsnqefobu4LL8Lutz00Gbq1fQFwaFAvo83_BJwgA1M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Fidelity+Sparse+Polynomial+Chaos+and+Kriging+Surrogate+Models+Applied+to+Analytical+Benchmark+Problems&rft.jtitle=Algorithms&rft.au=Markus+P.+Rumpfkeil&rft.au=Dean+Bryson&rft.au=Phil+Beran&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=15&rft.issue=3&rft.spage=101&rft_id=info:doi/10.3390%2Fa15030101&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae1c69cfce704476a2c407d8ac75f364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon