Multi-Fidelity Sparse Polynomial Chaos and Kriging Surrogate Models Applied to Analytical Benchmark Problems
In this article, multi-fidelity kriging and sparse polynomial chaos expansion (SPCE) surrogate models are constructed. In addition, a novel combination of the two surrogate approaches into a multi-fidelity SPCE-Kriging model will be presented. Accurate surrogate models, once obtained, can be employe...
        Saved in:
      
    
          | Published in | Algorithms Vol. 15; no. 3; p. 101 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.03.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1999-4893 1999-4893  | 
| DOI | 10.3390/a15030101 | 
Cover
| Abstract | In this article, multi-fidelity kriging and sparse polynomial chaos expansion (SPCE) surrogate models are constructed. In addition, a novel combination of the two surrogate approaches into a multi-fidelity SPCE-Kriging model will be presented. Accurate surrogate models, once obtained, can be employed for evaluating a large number of designs for uncertainty quantification, optimization, or design space exploration. Analytical benchmark problems are used to show that accurate multi-fidelity surrogate models can be obtained at lower computational cost than high-fidelity models. The benchmarks include non-polynomial and polynomial functions of various input dimensions, lower dimensional heterogeneous non-polynomial functions, as well as a coupled spring-mass-system. Overall, multi-fidelity models are more accurate than high-fidelity ones for the same cost, especially when only a few high-fidelity training points are employed. Full-order PCEs tend to be a factor of two or so worse than SPCES in terms of overall accuracy. The combination of the two approaches into the SPCE-Kriging model leads to a more accurate and flexible method overall. | 
    
|---|---|
| AbstractList | In this article, multi-fidelity kriging and sparse polynomial chaos expansion (SPCE) surrogate models are constructed. In addition, a novel combination of the two surrogate approaches into a multi-fidelity SPCE-Kriging model will be presented. Accurate surrogate models, once obtained, can be employed for evaluating a large number of designs for uncertainty quantification, optimization, or design space exploration. Analytical benchmark problems are used to show that accurate multi-fidelity surrogate models can be obtained at lower computational cost than high-fidelity models. The benchmarks include non-polynomial and polynomial functions of various input dimensions, lower dimensional heterogeneous non-polynomial functions, as well as a coupled spring-mass-system. Overall, multi-fidelity models are more accurate than high-fidelity ones for the same cost, especially when only a few high-fidelity training points are employed. Full-order PCEs tend to be a factor of two or so worse than SPCES in terms of overall accuracy. The combination of the two approaches into the SPCE-Kriging model leads to a more accurate and flexible method overall. | 
    
| Author | Rumpfkeil, Markus P. Beran, Phil Bryson, Dean  | 
    
| Author_xml | – sequence: 1 givenname: Markus P. surname: Rumpfkeil fullname: Rumpfkeil, Markus P. – sequence: 2 givenname: Dean surname: Bryson fullname: Bryson, Dean – sequence: 3 givenname: Phil surname: Beran fullname: Beran, Phil  | 
    
| BookMark | eNp1kF9rFDEUxYO0YP_44DcI-KQwNplMMjOP69JqscVC9Tncvclss2YnY5JB5tsbXSki7dM9XM75cTin5GgMoyXkNWfvhejZBXDJBOOMvyAnvO_7qul6cfSPfklOU9oxpmSv-Anxt7PPrrpyxnqXF3o_QUyW3gW_jGHvwNP1A4REYTT0c3RbN27p_Rxj2EK29DaUWKKrafLOGpoDXY3gl-ywBD_YER_2EL_Tuxg23u7TOTkewCf76u89I9-uLr-uP1U3Xz5er1c3FQrZ5UptEJCB3Ki2VqZTRXDLWM3RNigE9tjZDatbFA0zkhnTCTOwzg4dmEGiEmfk-sA1AXZ6iq60WHQAp_88QtxqiKWktxosR9XjgLZlTdMqqLFhrekAWzkI1RTWuwNrHidYfoL3j0DO9O_N9ePmxfzmYJ5i-DHblPUuzLFMknStmlrUUnJZXBcHF8aQUrSDRpchuzDmCM4_yX37X-L5Dr8AKBSfWw | 
    
| CitedBy_id | crossref_primary_10_3390_a18010004 crossref_primary_10_1002_advs_202403543 crossref_primary_10_3390_a15070250 crossref_primary_10_3390_a16040191  | 
    
| Cites_doi | 10.2514/1.J051633 10.2514/6.2008-5953 10.1080/00401706.1974.10489157 10.1016/j.compfluid.2017.06.016 10.2514/1.J053064 10.2514/6.2010-1225 10.1109/TIT.2006.871582 10.1017/CBO9780511617539 10.2514/6.2020-3158 10.1109/TEVC.2017.2758360 10.1016/j.ast.2017.07.043 10.2514/6.2020-0677 10.1016/j.compfluid.2019.104372 10.1504/IJRS.2006.010692 10.1016/j.ast.2012.01.006 10.1137/20M1315774 10.1016/j.jcp.2010.12.021 10.1002/jnm.2722 10.1109/TIT.2005.862083 10.1016/S0169-7161(96)13011-X 10.13182/NSE08-79 10.1007/BF00889887 10.2514/1.J054860 10.2514/6.2000-4890 10.1017/CBO9780511794308 10.2514/2.2877 10.1016/j.jcp.2015.02.025 10.2514/6.2012-1852 10.1016/j.probengmech.2020.103082 10.1016/j.jcp.2011.01.002 10.1111/0272-4332.205054 10.2514/1.J058452  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/a15030101 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1999-4893 | 
    
| ExternalDocumentID | oai_doaj_org_article_ae1c69cfce704476a2c407d8ac75f364 10.3390/a15030101 10_3390_a15030101  | 
    
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 ICD JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A IPNFZ ITC RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c358t-6bcac0a5b6726d865b61e0021ce4c33c9c8eb027c340d50dd83df08ef8adf5c63 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1999-4893 | 
    
| IngestDate | Fri Oct 03 12:45:06 EDT 2025 Sun Oct 26 04:14:27 EDT 2025 Fri Jul 25 11:54:47 EDT 2025 Thu Apr 24 22:52:13 EDT 2025 Thu Oct 16 04:40:23 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c358t-6bcac0a5b6726d865b61e0021ce4c33c9c8eb027c340d50dd83df08ef8adf5c63 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doaj.org/article/ae1c69cfce704476a2c407d8ac75f364 | 
    
| PQID | 2642325515 | 
    
| PQPubID | 2032439 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ae1c69cfce704476a2c407d8ac75f364 unpaywall_primary_10_3390_a15030101 proquest_journals_2642325515 crossref_citationtrail_10_3390_a15030101 crossref_primary_10_3390_a15030101  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-03-01 | 
    
| PublicationDateYYYYMMDD | 2022-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Algorithms | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Yamazaki (ref_17) 2013; 51 Luethen (ref_29) 2021; 9 ref_14 ref_36 ref_35 ref_12 Bryson (ref_13) 2017; 70C ref_11 Roderick (ref_4) 2010; 164 Cressie (ref_6) 1990; 22 ref_10 Rumpfkeil (ref_30) 2020; 58 Han (ref_18) 2013; 25 ref_19 Rumpfkeil (ref_34) 2020; 197 ref_16 ref_38 ref_15 ref_37 Blatman (ref_24) 2011; 230 Alexandrov (ref_21) 2001; 38 Isukapalli (ref_2) 2000; 20 Clark (ref_44) 2016; 54 Salehi (ref_31) 2017; 154 Kougioumtzoglou (ref_28) 2020; 61 Leifsson (ref_33) 2020; 33 ref_20 Curtin (ref_39) 2013; 14 ref_42 Kim (ref_3) 2006; 1 Forrester (ref_41) 2007; 463 ref_1 Schobi (ref_32) 2015; 5 Boopathy (ref_9) 2015; 53 Jakeman (ref_27) 2015; 289 Wang (ref_43) 2017; 22 Krige (ref_5) 1951; 52 Donoho (ref_23) 2006; 52 Doostan (ref_25) 2011; 230 ref_26 Ghosh (ref_7) 1996; 13 ref_8 Candes (ref_22) 2006; 52 Allen (ref_40) 1974; 16  | 
    
| References_xml | – volume: 51 start-page: 126 year: 2013 ident: ref_17 article-title: Derivative-Enhanced Variable Fidelity Surrogate Modeling for Aerodynamic Functions publication-title: AIAA J. doi: 10.2514/1.J051633 – ident: ref_8 doi: 10.2514/6.2008-5953 – volume: 14 start-page: 801 year: 2013 ident: ref_39 article-title: MLPACK: A Scalable C++ Machine Learning Library publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 125 year: 1974 ident: ref_40 article-title: The relationship between variable selection and data agumentation and a method for prediction publication-title: Technometrics doi: 10.1080/00401706.1974.10489157 – volume: 154 start-page: 296 year: 2017 ident: ref_31 article-title: Efficient Uncertainty Quantification of Stochastic CFD Problems Using Sparse Polynomial Chaos and Compressed Sensing publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2017.06.016 – volume: 53 start-page: 215 year: 2015 ident: ref_9 article-title: A Unified Framework for Training Point Selection and Error Estimation for Surrogate Models publication-title: AIAA J. doi: 10.2514/1.J053064 – ident: ref_15 doi: 10.2514/6.2010-1225 – volume: 52 start-page: 1289 year: 2006 ident: ref_23 article-title: Compressed sensing publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2006.871582 – ident: ref_36 doi: 10.1017/CBO9780511617539 – ident: ref_1 doi: 10.2514/6.2020-3158 – volume: 22 start-page: 836 year: 2017 ident: ref_43 article-title: A generic test suite for evolutionary multifidelity optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2758360 – volume: 70C start-page: 121 year: 2017 ident: ref_13 article-title: All-at-Once Approach to Multifidelity Polynomial Chaos Expansion Surrogate Modeling publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.07.043 – volume: 463 start-page: 3251 year: 2007 ident: ref_41 article-title: Multi-fidelity optimization via surrogate modelling publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – ident: ref_11 – ident: ref_35 doi: 10.2514/6.2020-0677 – volume: 197 start-page: 104372 year: 2020 ident: ref_34 article-title: Multi-Fidelity Surrogate Models for Flutter Database Generation publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2019.104372 – volume: 1 start-page: 102 year: 2006 ident: ref_3 article-title: Adaptive reduction of random variables using global sensitivity in reliability-based optimisation publication-title: Int. J. Reliab. Saf. doi: 10.1504/IJRS.2006.010692 – ident: ref_16 – volume: 25 start-page: 177 year: 2013 ident: ref_18 article-title: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2012.01.006 – volume: 9 start-page: 593 year: 2021 ident: ref_29 article-title: Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/20M1315774 – ident: ref_37 – ident: ref_14 – volume: 230 start-page: 2345 year: 2011 ident: ref_24 article-title: Adaptive sparse polynomial chaos expansion based on least angle regression publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.021 – ident: ref_42 – volume: 33 start-page: e2722 year: 2020 ident: ref_33 article-title: Efficient yield estimation of multiband patch antennas by polynomial chaos-based Kriging publication-title: Int. J. Numer. Model. doi: 10.1002/jnm.2722 – volume: 52 start-page: 489 year: 2006 ident: ref_22 article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2005.862083 – volume: 13 start-page: 261 year: 1996 ident: ref_7 article-title: Computer Experiments publication-title: Handbook of Statistics doi: 10.1016/S0169-7161(96)13011-X – volume: 164 start-page: 122 year: 2010 ident: ref_4 article-title: Polynomial regression approaches using derivative information for uncertainty quantification publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE08-79 – volume: 22 start-page: 239 year: 1990 ident: ref_6 article-title: The Origins of Kriging publication-title: Math. Geol. doi: 10.1007/BF00889887 – volume: 54 start-page: 3160 year: 2016 ident: ref_44 article-title: Engineering Design Exploration utilizing Locally Optimized Covariance Kriging publication-title: AIAA J. doi: 10.2514/1.J054860 – volume: 52 start-page: 119 year: 1951 ident: ref_5 article-title: A statistical approach to some basic mine valuations problems on the Witwatersrand publication-title: J. Chem. Metall. Min. Eng. Soc. South Afr. – ident: ref_20 doi: 10.2514/6.2000-4890 – ident: ref_26 doi: 10.1017/CBO9780511794308 – volume: 38 start-page: 1093 year: 2001 ident: ref_21 article-title: Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models publication-title: J. Aircr. doi: 10.2514/2.2877 – volume: 289 start-page: 18 year: 2015 ident: ref_27 article-title: Enhancing l1-minimization estimates of polynomial chaos expansions using basis selection publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.02.025 – ident: ref_10 – ident: ref_12 doi: 10.2514/6.2012-1852 – ident: ref_38 – volume: 5 start-page: 171 year: 2015 ident: ref_32 article-title: Polynomial-chaos–based Kriging publication-title: Int. J. UQ – ident: ref_19 – volume: 61 start-page: 103082 year: 2020 ident: ref_28 article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications publication-title: Probabilistic Eng. Mech. doi: 10.1016/j.probengmech.2020.103082 – volume: 230 start-page: 3015 year: 2011 ident: ref_25 article-title: A non-adapted sparse approximation of PDEs with stochastic inputs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.002 – volume: 20 start-page: 591 year: 2000 ident: ref_2 article-title: Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: Application to environmental and biological systems publication-title: Risk Anal. doi: 10.1111/0272-4332.205054 – volume: 58 start-page: 1292 year: 2020 ident: ref_30 article-title: Multi-Fidelity Sparse Polynomial Chaos Surrogate Models Applied to Flutter Databases publication-title: AIAA J. doi: 10.2514/1.J058452  | 
    
| SSID | ssj0065961 | 
    
| Score | 2.268759 | 
    
| Snippet | In this article, multi-fidelity kriging and sparse polynomial chaos expansion (SPCE) surrogate models are constructed. In addition, a novel combination of the... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 101 | 
    
| SubjectTerms | Accuracy Algorithms analytical benchmark problems Approximation Benchmarks Computing costs Design optimization Functions (mathematics) kriging Mathematical analysis multi-fidelity surrogate models Optimization Polynomials sparse polynomial chaos expansions Sparsity Trends  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbp5tBe0jfdNC2i7aEXEdt6WD6E0A1ZQkuXpWkgN6NnAnXsjXeXkn_fkVbeNtD2ZswgG43mJWm-D6EPZclLBV6OhEM0wkDrRHPPSAkad8xVuspDg_PXmTi7YJ8v-eUOmg29MOFa5eATo6O2nQl75IcQuCH4Q3znx4tbElijwunqQKGhErWCPYoQYw_QbhGQsUZod3I6m38bfLPglcg3-EIUiv1DBekQDShr96JSBO-_l3E-XLcLdfdTNc0fwWf6BO2lrBF_2qj5Kdpx7TP0eGBkwMlAn6Mm9tOSacCugvQany-gbnV43jV3of0Yhji5Vt0Sq9biL5ES6wqfr_u-C5tpOPCiNUucElO86nCELIm73XgCX7i-Uf0PPN9w0CxfoIvp6feTM5L4FIihXK6I0EaZTHEtykJYKeAhdyHIG8cMpaYy0mkoUw1lmeWZtZJan0nnpbKeG0FfolHbte4VwgwMt_BVLkuwZ2205JmnKmOWV75wWozRx2E-a5PAxgPnRVND0RGmvt5O_Ri924ouNggbfxOaBKVsBQIodnzR9Vd1srFaudyIynjjyoyxUqjCQLlqpTIl91SwMToYVFonS13Wv9fVGL3fqvnff7L__0Feo0dFaJCIt9QO0GjVr90bSFtW-m1ai78AoQ_sYg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_0-qAv1k88rbKoD76kl2S_kidpi0dRLAf1oD6F_WxLY3IkOaX-9c5u9g4rCuJLCGGSbJjZ2d9Mdn6D0BshmJDg5RL_Ey2hoPVEMUcTARq31JaqzHyB86cTfrykH87YWUy49XFbJYTil8FJhxJ5z44yy9gMDmk2Wxn37lvMJHkqrDL3C9JttMMZYPEJ2lmeLA6-hF_J8d6RTohAbD-TgH6IJ1W7sQgFrv4bAPPOulnJ6--yrn9Za-a7qNqMctxicrW_HtS-_vEbgeP_f8Z9dC_CUHww2s0DdMs2D9HupsUDjjP-EapDgW4y92RYgNfx6QoCYYsXbX3t65nhEUcXsu2xbAz-GHpsnePTdde1PjuHfaO1uscR6eKhxYEDJaTP8SG84eKr7K7wYmxq0z9Gy_n7z0fHSWzQkGjCiiHhSkudSqa4yLkpOJxk1qMGbakmRJe6sAriXk1oalhqTEGMSwvrCmkc05w8QZOmbexThCl4gtyVWSHAQSitCpY6IlNqWOlyq_gUvd1orNKRvdw30agriGK8cqutcqfo1VZ0NVJ2_Eno0Kt9K-BZtsOFtjuv4qStpM00L7XTVqSUCi5zDfGvKaQWzBFOp2hvYzRVnPp9BQgTUCoAUTZFr7eG9PeRPPsnqefobu4LL8Lutz00Gbq1fQFwaFAvo83_BJwgA1M priority: 102 providerName: Unpaywall  | 
    
| Title | Multi-Fidelity Sparse Polynomial Chaos and Kriging Surrogate Models Applied to Analytical Benchmark Problems | 
    
| URI | https://www.proquest.com/docview/2642325515 https://www.mdpi.com/1999-4893/15/3/101/pdf?version=1647920613 https://doaj.org/article/ae1c69cfce704476a2c407d8ac75f364  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BOcCFNyJQohVw4GLV9j59bKqGCkQUUSKVk7XPVsLYUR5C_ffMrp2olUBcuNnWyF7NY_eb9c43AO-l5FLjLJfFn2gZQ6tnhgeWSbS4Z74yVRELnL_MxNmCfbrgFzdafcUzYT09cK-4I-0LKyobrJc5Y1Lo0mIO4pS2kgcqEhNorqpdMtXPwYJXouh5hCgm9UcaYQ-NbGq3Vp9E0n8LWd7ftkt9_Us3zY1FZvoYHg7okBz3o3oCd3z7FB7tOi-QIRCfQZPqZrNp5KhCGE3Ol5ifejLvmutYZoyvOLnS3Zro1pHPqfXVJTnfrlZd3DQjsf9ZsyYDACWbjiRqkrSrTSb4haufevWDzPteM-vnsJiefjs5y4a-CZmlXG0yYay2ueZGyFI4JfCi8HExt55ZSm1llTeYjlrKcsdz5xR1IVc-KO0Ct4K-gIO2a_1LIAwDtAxVoSTGrbFG8TxQnTPHq1B6I0bwYafP2g6k4rG3RVNjchFVX-9VP4K3e9Flz6TxJ6FJNMpeIJJfpwfoEvXgEvW_XGIEhzuT1kNErmsEfggeER_yEbzbm_nvI3n1P0byGh6UsVwinVk7hIPNauvfIIjZmDHcVdOPY7g3OZ3Nv46T9-LdYjY__v4bSQXzHw | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONBLS1_qtpRafUi9RCTxI8kBVSxltXRhtSogcQuO7YDUNNkmu0L75_rbOs46S5Ha3rhFkTWJZux52J7vA_gQRTyS6OU8e4jmMbS6l_GceRFa3DCTZElgG5xPxmJ4zr5e8Is1-NX1wthrlZ1PbB21rpTdI9_FwI3BH-M7_zz96VnWKHu62lFoSEetoPdaiDHX2DEyixss4Zq9oy9o749hODg8Oxh6jmXAU5THM09kSipf8kxEodCxwIfA2NCnDFOUqkTFJsPiTVHma-5rHVOd-7HJY6lzrgRFuQ9gg1GWYPG30T8cT751sUDwRARLPCNKE39XYvpFLarbnSjYkgXcyXA35-VULm5kUfwR7AZb8MhlqWR_Oa2ewJopn8LjjgGCOIfwDIq2f9cbWKwsTOfJ6RTrZEMmVbGw7c4o4uBaVg2RpSajloLripzO67qym3fE8rAVDXGJMJlVpIVIaXfXSR-_cP1D1t_JZMl50zyH83vR7AtYL6vSvATC0FGEeRLEEfqPTGUx93MqfaZ5kocmEz341OkzVQ7c3HJsFCkWOVb16Ur1PXi3GjpdInr8bVDfGmU1wIJwty-q-ip1azqVJlAiUbkykc9YJGSosDzWsVQRz6lgPdjuTJo6z9Ckt_O4B-9XZv73n7z6v5C3sDk8OzlOj4_Go9fwMLTNGe0NuW1Yn9Vz8wZTplm24-Ylgcv7Xgq_AdbMKpU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UCuqLd3G16uAFfAmbZG7Jg4htXVtXy0It9C1O5tJC02RNdin71_x1nslltaC-9S2EYRLOOXMuM3O-D-C1lFwq9HKBP0QLGGo9yLljgUSNW2bTPI18g_PXA7F3xD4f8-MN-Dn0wvhrlYNPbB21qbTfIx9j4Mbgj_Gdj11_LWK2O3k__xF4Bil_0jrQaXQmMrWrCyzfmnf7u6jrN3E8-fhtZy_oGQYCTXmyCESulQ4Vz4WMhUkEPkTWhz1tmaZUpzqxORZumrLQ8NCYhBoXJtYlyjiuBcV5r8F16VHcfZf65NMQBQRPRdQhGVGahmOFiRf1eG6X4l9LE3Apt725LOdqdaGK4o8wN7kLt_v8lHzoDOoebNjyPtwZuB9I7woeQNF27gYTj5KFiTw5nGOFbMmsKla-0Rmn2DlVVUNUaci0Jd86IYfLuq78th3xDGxFQ_oUmCwq0oKjtPvqZBu_cHqu6jMy69humodwdCVyfQSbZVXax0AYuojYpVEi0XPkOk946KgKmeGpi20uRvB2kGeme1hzz65RZFjeeNFna9GP4OV66LzD8vjboG2vlPUAD7_dvqjqk6xfzZmykRapdtrKkDEpVKyxMDaJ0pI7KtgItgaVZr1PaLLfFjyCV2s1__tPnvx_khdwAxdA9mX_YPoUbsW-K6O9GrcFm4t6aZ9hrrTIn7dGSeD7Va-CX7mWKC8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_0-qAv1k88rbKoD76kl2S_kidpi0dRLAf1oD6F_WxLY3IkOaX-9c5u9g4rCuJLCGGSbJjZ2d9Mdn6D0BshmJDg5RL_Ey2hoPVEMUcTARq31JaqzHyB86cTfrykH87YWUy49XFbJYTil8FJhxJ5z44yy9gMDmk2Wxn37lvMJHkqrDL3C9JttMMZYPEJ2lmeLA6-hF_J8d6RTohAbD-TgH6IJ1W7sQgFrv4bAPPOulnJ6--yrn9Za-a7qNqMctxicrW_HtS-_vEbgeP_f8Z9dC_CUHww2s0DdMs2D9HupsUDjjP-EapDgW4y92RYgNfx6QoCYYsXbX3t65nhEUcXsu2xbAz-GHpsnePTdde1PjuHfaO1uscR6eKhxYEDJaTP8SG84eKr7K7wYmxq0z9Gy_n7z0fHSWzQkGjCiiHhSkudSqa4yLkpOJxk1qMGbakmRJe6sAriXk1oalhqTEGMSwvrCmkc05w8QZOmbexThCl4gtyVWSHAQSitCpY6IlNqWOlyq_gUvd1orNKRvdw30agriGK8cqutcqfo1VZ0NVJ2_Eno0Kt9K-BZtsOFtjuv4qStpM00L7XTVqSUCi5zDfGvKaQWzBFOp2hvYzRVnPp9BQgTUCoAUTZFr7eG9PeRPPsnqefobu4LL8Lutz00Gbq1fQFwaFAvo83_BJwgA1M | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Fidelity+Sparse+Polynomial+Chaos+and+Kriging+Surrogate+Models+Applied+to+Analytical+Benchmark+Problems&rft.jtitle=Algorithms&rft.au=Markus+P.+Rumpfkeil&rft.au=Dean+Bryson&rft.au=Phil+Beran&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=15&rft.issue=3&rft.spage=101&rft_id=info:doi/10.3390%2Fa15030101&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae1c69cfce704476a2c407d8ac75f364 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |