Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization
The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of equation-base...
Saved in:
| Published in | Journal of global optimization Vol. 82; no. 1; pp. 21 - 50 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.01.2022
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-5001 1573-2916 |
| DOI | 10.1007/s10898-021-01045-8 |
Cover
| Summary: | The ability to use complex computer simulations in quantitative analysis and decision-making is highly desired in science and engineering, at the same rate as computation capabilities and first-principle knowledge advance. Due to the complexity of simulation models, direct embedding of equation-based optimization solvers may be impractical and data-driven optimization techniques are often needed. In this work, we present a novel data-driven spatial branch-and-bound algorithm for simulation-based optimization problems with box constraints, aiming for consistent globally convergent solutions. The main contribution of this paper is the introduction of the concept data-driven convex underestimators of data and surrogate functions, which are employed within a spatial branch-and-bound algorithm. The algorithm is showcased by an illustrative example and is then extensively studied via computational experiments on a large set of benchmark problems. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-021-01045-8 |