The staggered quantum walk model

There are at least three models of discrete-time quantum walks (QWs) on graphs currently under active development. In this work, we focus on the equivalence of two of them, known as Szegedy’s and staggered QWs. We give a formal definition of the staggered model and discuss generalized versions for s...

Full description

Saved in:
Bibliographic Details
Published inQuantum information processing Vol. 15; no. 1; pp. 85 - 101
Main Authors Portugal, R., Santos, R. A. M., Fernandes, T. D., Gonçalves, D. N.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2016
Subjects
Online AccessGet full text
ISSN1570-0755
1573-1332
DOI10.1007/s11128-015-1149-z

Cover

More Information
Summary:There are at least three models of discrete-time quantum walks (QWs) on graphs currently under active development. In this work, we focus on the equivalence of two of them, known as Szegedy’s and staggered QWs. We give a formal definition of the staggered model and discuss generalized versions for searching marked vertices. Using this formal definition, we prove that any instance of Szegedy’s model is equivalent to an instance of the staggered model. On the other hand, we show that there are instances of the staggered model that cannot be cast into Szegedy’s framework. Our analysis also works when there are marked vertices. We show that Szegedy’s spatial search algorithms can be converted into search algorithms in staggered QWs. We take advantage of the similarity of those models to define the quantum hitting time in the staggered model and to describe a method to calculate the eigenvalues and eigenvectors of the evolution operator of staggered QWs.
ISSN:1570-0755
1573-1332
DOI:10.1007/s11128-015-1149-z