Robust Recursive Regulator for Systems Subject to Polytopic Uncertainties

We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 139352 - 139360
Main Authors Bueno, Jose Nuno A. D., Rocha, Kaio D. T., Terra, Marco H.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3118571

Cover

Abstract We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main contribution of this paper consists of a robust recursive framework for the computation of stabilizing feedback gains. The solution does not require numerical optimization packages and relies ultimately on a single penalty parameter which is easily tuned. Moreover, the gains are obtained recursively through algebraic expressions, as opposed to related works which employ linear matrix inequalities. Under observability and controllability conditions, we demonstrate convergence and stability of the closed-loop system in terms of an algebraic Riccati equation. We provide numerical and real-world examples to validate the proposed approach and for comparison with a robust <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> controller.
AbstractList We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main contribution of this paper consists of a robust recursive framework for the computation of stabilizing feedback gains. The solution does not require numerical optimization packages and relies ultimately on a single penalty parameter which is easily tuned. Moreover, the gains are obtained recursively through algebraic expressions, as opposed to related works which employ linear matrix inequalities. Under observability and controllability conditions, we demonstrate convergence and stability of the closed-loop system in terms of an algebraic Riccati equation. We provide numerical and real-world examples to validate the proposed approach and for comparison with a robust <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> controller.
We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main contribution of this paper consists of a robust recursive framework for the computation of stabilizing feedback gains. The solution does not require numerical optimization packages and relies ultimately on a single penalty parameter which is easily tuned. Moreover, the gains are obtained recursively through algebraic expressions, as opposed to related works which employ linear matrix inequalities. Under observability and controllability conditions, we demonstrate convergence and stability of the closed-loop system in terms of an algebraic Riccati equation. We provide numerical and real-world examples to validate the proposed approach and for comparison with a robust <tex-math notation="LaTeX">$H_{\infty }$ </tex-math> controller.
We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main contribution of this paper consists of a robust recursive framework for the computation of stabilizing feedback gains. The solution does not require numerical optimization packages and relies ultimately on a single penalty parameter which is easily tuned. Moreover, the gains are obtained recursively through algebraic expressions, as opposed to related works which employ linear matrix inequalities. Under observability and controllability conditions, we demonstrate convergence and stability of the closed-loop system in terms of an algebraic Riccati equation. We provide numerical and real-world examples to validate the proposed approach and for comparison with a robust [Formula Omitted] controller.
Author Bueno, Jose Nuno A. D.
Terra, Marco H.
Rocha, Kaio D. T.
Author_xml – sequence: 1
  givenname: Jose Nuno A. D.
  orcidid: 0000-0001-5103-6431
  surname: Bueno
  fullname: Bueno, Jose Nuno A. D.
  email: bueno.nuno@usp.br
  organization: Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
– sequence: 2
  givenname: Kaio D. T.
  orcidid: 0000-0002-0760-2018
  surname: Rocha
  fullname: Rocha, Kaio D. T.
  organization: Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
– sequence: 3
  givenname: Marco H.
  orcidid: 0000-0002-4477-1769
  surname: Terra
  fullname: Terra, Marco H.
  organization: Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
BookMark eNpNUV1LAzEQDFLBWv0Fvhz43JrPS-6xHFULBcXqc0hye-VKe6lJTui_9-qV4sKyw7AzuzC3aNT6FhB6IHhGCC6e5mW5WK9nFFMyY4QoIckVGlOSF1MmWD76h2_QfYxb3JfqKSHHaPnhbRdT9gGuC7H5gR5tup1JPmR13-tjTLCP2bqzW3ApSz5797tj8ofGZV-tg5BM06YG4h26rs0uwv15TtDX8-KzfJ2u3l6W5Xw1dUyoNGUqL7CzrlbEFpxi7iTDlaoqBVWtXMUlFEAsMG4wZqwGymRlrKMFryzGhk3QcvCtvNnqQ2j2Jhy1N43-I3zYaBNS43aguROGOyxzoRTHubKWWKkwJ5I4w5XrvR4Hr0Pw3x3EpLe-C23_vqZCUcolJqLfYsOWCz7GAPXlKsH6FIEeItCnCPQ5gl71MKgaALgoCpFTwSX7BWEjg8k
CODEN IAECCG
Cites_doi 10.1080/23307706.2020.1803774
10.1109/TAC.2020.3000182
10.1016/j.conengprac.2020.104630
10.1049/iet-cta.2015.0235
10.1093/oso/9780198537953.001.0001
10.1016/j.automatica.2017.12.027
10.1109/TCST.2019.2953624
10.1109/TCST.2019.2916042
10.1109/ACCESS.2020.2972028
10.1016/j.ins.2018.04.052
10.1109/TSMC.2018.2801284
10.1016/j.automatica.2014.10.120
10.1016/j.ejcon.2020.12.006
10.1109/ICUAS.2017.7991492
10.1109/CACSD.2004.1393890
10.1007/s11071-020-05742-z
10.1109/9.935054
10.1109/TAC.2014.2309282
10.23919/ACC.2018.8430995
10.1109/JSYST.2016.2619366
10.1109/TNNLS.2019.2897814
10.1016/j.conengprac.2017.05.001
10.1016/0167-6911(89)90022-4
10.1049/iet-cta.2020.0483
10.1109/COMST.2020.2988367
10.1016/S0167-6911(99)00119-X
10.1016/j.conengprac.2019.01.017
10.1002/rnc.3527
10.1016/S0167-6911(02)00160-3
10.1137/1.9781611970777
10.1109/ACCESS.2019.2935209
10.1109/TSMC.2017.2757760
10.1109/CDC.1991.261360
10.1016/j.isatra.2019.08.050
10.1016/S0167-6911(99)00035-3
10.1002/0471787779
10.1016/j.sysconle.2018.05.006
10.1109/TAC.2020.2984221
10.1016/j.jfranklin.2018.10.035
10.1007/978-0-387-74503-9
10.1109/TSG.2017.2728319
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3118571
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 139360
ExternalDocumentID oai_doaj_org_article_4c5a4c0765884068bb1b7804171ca48c
10_1109_ACCESS_2021_3118571
9562547
Genre orig-research
GrantInformation_xml – fundername: São Paulo Research Foundation (FAPESP)
  grantid: 2017/16346-4; 2014/50851-0
  funderid: 10.13039/501100001807
– fundername: National Council for Scientific and Technological Development (CNPq)
  grantid: 465755/2014-3
  funderid: 10.13039/501100003593
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-38690cbcf81b94204c730d8dd8edf8cd47e9e1be34a0033fe237dabc294db00a3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 00:52:24 EDT 2025
Mon Jun 30 06:16:43 EDT 2025
Tue Jul 01 04:20:40 EDT 2025
Wed Aug 27 02:26:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-38690cbcf81b94204c730d8dd8edf8cd47e9e1be34a0033fe237dabc294db00a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4477-1769
0000-0002-0760-2018
0000-0001-5103-6431
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9562547
PQID 2582247015
PQPubID 4845423
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_4c5a4c0765884068bb1b7804171ca48c
ieee_primary_9562547
proquest_journals_2582247015
crossref_primary_10_1109_ACCESS_2021_3118571
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
da silva campos (ref22) 2021; 133
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref45
ref23
ref26
ref20
ref41
ref44
ref21
patrizio colaneri (ref25) 1997
bertsekas (ref42) 1996
ref28
ref27
ref29
ref8
ref7
ref9
ref4
lancaster (ref43) 1995
ref3
ref6
ref5
ref40
bertsekas (ref37) 2005; 1
References_xml – ident: ref14
  doi: 10.1080/23307706.2020.1803774
– ident: ref3
  doi: 10.1109/TAC.2020.3000182
– ident: ref36
  doi: 10.1016/j.conengprac.2020.104630
– ident: ref34
  doi: 10.1049/iet-cta.2015.0235
– year: 1995
  ident: ref43
  publication-title: Algebraic Riccati Equations
  doi: 10.1093/oso/9780198537953.001.0001
– ident: ref21
  doi: 10.1016/j.automatica.2017.12.027
– year: 1997
  ident: ref25
  publication-title: Control Theory and Design An RH2 and $RH_\infty$ Viewpoint
– ident: ref4
  doi: 10.1109/TCST.2019.2953624
– ident: ref5
  doi: 10.1109/TCST.2019.2916042
– ident: ref10
  doi: 10.1109/ACCESS.2020.2972028
– ident: ref18
  doi: 10.1016/j.ins.2018.04.052
– ident: ref2
  doi: 10.1109/TSMC.2018.2801284
– ident: ref29
  doi: 10.1016/j.automatica.2014.10.120
– ident: ref20
  doi: 10.1016/j.ejcon.2020.12.006
– ident: ref45
  doi: 10.1109/ICUAS.2017.7991492
– ident: ref44
  doi: 10.1109/CACSD.2004.1393890
– ident: ref12
  doi: 10.1007/s11071-020-05742-z
– ident: ref39
  doi: 10.1109/9.935054
– ident: ref31
  doi: 10.1109/TAC.2014.2309282
– ident: ref11
  doi: 10.23919/ACC.2018.8430995
– volume: 133
  year: 2021
  ident: ref22
  article-title: Adaptive gain-scheduling control for continuous-time systems with polytopic uncertainties: An LMI-based approach
  publication-title: Automatica
– ident: ref33
  doi: 10.1109/JSYST.2016.2619366
– ident: ref1
  doi: 10.1109/TNNLS.2019.2897814
– ident: ref8
  doi: 10.1016/j.conengprac.2017.05.001
– ident: ref23
  doi: 10.1016/0167-6911(89)90022-4
– ident: ref6
  doi: 10.1049/iet-cta.2020.0483
– ident: ref35
  doi: 10.1109/COMST.2020.2988367
– ident: ref27
  doi: 10.1016/S0167-6911(99)00119-X
– ident: ref32
  doi: 10.1016/j.conengprac.2019.01.017
– ident: ref30
  doi: 10.1002/rnc.3527
– ident: ref40
  doi: 10.1016/S0167-6911(02)00160-3
– ident: ref28
  doi: 10.1137/1.9781611970777
– ident: ref16
  doi: 10.1109/ACCESS.2019.2935209
– volume: 1
  year: 2005
  ident: ref37
  publication-title: Dynamic Programming and Optimal Control
– ident: ref7
  doi: 10.1109/TSMC.2017.2757760
– ident: ref24
  doi: 10.1109/CDC.1991.261360
– ident: ref17
  doi: 10.1016/j.isatra.2019.08.050
– ident: ref26
  doi: 10.1016/S0167-6911(99)00035-3
– ident: ref38
  doi: 10.1002/0471787779
– ident: ref15
  doi: 10.1016/j.sysconle.2018.05.006
– ident: ref13
  doi: 10.1109/TAC.2020.2984221
– ident: ref19
  doi: 10.1016/j.jfranklin.2018.10.035
– year: 1996
  ident: ref42
  publication-title: Neuro-Dynamic Programming
– ident: ref41
  doi: 10.1007/978-0-387-74503-9
– ident: ref9
  doi: 10.1109/TSG.2017.2728319
SSID ssj0000816957
Score 2.2026768
Snippet We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 139352
SubjectTerms Algebra
Apexes
Computational geometry
Control stability
Controllability
Convexity
Discrete time systems
Feedback control
least-squares
Linear matrix inequalities
Linear systems
Minimization
Observability (systems)
Optimization
optimization problem
Parameters
penalty function
Regulation
Riccati equation
Riccati equations
Robust control
robust regulator
Symmetric matrices
Uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EneJ0Sg4eLWvatEmOczimoMhwsFtofhQEWcfWHfzvfS_txsSDF2-llLT5Xt_L-8LL9wi5K3LnGKwEkZfgblwkLpIcD-qmeeF4UvA86My-vOaTGX-eZ_O9Vl9YE9bIAzfADbjNCm6BbeOJyjiXxjATRHMEQ0Fui9E3VvEemQoxWLJcZaKVGWKxGgxHI5gREMKEAU9FBST2YykKiv1ti5VfcTksNuMTctxmiXTYfN0pOfCLM3K0px3YJU_TymzWNZ3ihjnWoMNVaCtfrSgkorSVIqcQGXCrhdYVfas-v-pq-WHpDEwdSgFQTvWczMaP76NJ1PZFiGyayTpKsYuUNbaElFMBsNyCmzrpnPSuxGZEwivPjE95ga3aSp-kwhXGJoo78LIivSCdRbXwl4SmxktlBZcmBY6smLGo8OVKZhPnc1X2yP0WIr1s5C90oA2x0g2iGhHVLaI98oAw7h5F7epwAyyqW4vqvyzaI100wm4QhRyNix7pb42iWz9b6yTDKlgBOc3Vf7z6mhzidJotlj7p1KuNv4Gkoza34f_6Bt8W0BI
  priority: 102
  providerName: Directory of Open Access Journals
Title Robust Recursive Regulator for Systems Subject to Polytopic Uncertainties
URI https://ieeexplore.ieee.org/document/9562547
https://www.proquest.com/docview/2582247015
https://doaj.org/article/4c5a4c0765884068bb1b7804171ca48c
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHDzaddOmTXPURVFBEXHBW2geBVG2ot2D_npn0uzi6-AtlLak-WaSmenMNwCHVeEcx5Mg8SWqm5CpS0pBhbpZUTmRVqIIPLPXN8XFSFw95A9zcDSrhfHeh-Qz36dh-JfvGjuhUNmxImtdyHmYRzHrarVm8RRqIKFyGYmF-EAdnwyH-A3oAqYcPVPiPOLfDp_A0R-bqvzaicPxcr4C19OJdVklT_1Ja_r24wdn439nvgrL0c5kJ51grMGcH6_D0hf2wQ24vGvM5K1ldxRypyx2HIXG9M0rQ1OWRTJzhnsLBWtY27Db5vm9bV4eLRuhsIRkAiJk3YTR-dn98CKJnRUSm-Vlm2TUh8oaW6PRqhAaYVHRXelc6V1N7YykV54bn4mKmr3VPs2kq4xNlXCop1W2BQvjZuy3gWXGl8pKUZoMvWzFjSWOMFdzmzpfqLoHR9Ml1y8dgYYOjsdA6Q4hTQjpiFAPTgmW2a3Efh0u4HLqqExa2LwSdiALqrIdFKUx3AQiJcmJpN32YIMgmL0krn4P9qYg66ipbzrNKY9WolW08_dTu7BIE-zCLnuw0L5O_D4aIq05CA78QZDDTw4X26g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQ9lFerbktbHziSZZ04sX2EVdHyWIQQK3Gz4kekqtUGQfYAv74zjndVaA-9WVESOTMee2Yy830A-3XlPceTIAsKzU3I3GdKUKNuUdVe5LWoIs7s9LKazMTZbXm7BgerXpgQQiw-C0Maxn_5vnULSpUdavLWhXwFGyVGFarv1lplVIhCQpcyQQvxkT48Go_xKzAIzDnGpoR6xJ8dPxGlP9Gq_LUXxwPmZBOmy6n1dSU_h4vODt3TC9TG_537FrxLniY76pfGNqyF-Q68_QN_cBdOr1u7eOjYNSXdqY4dR5Gavr1n6MyyBGfOcHehdA3rWnbV_nrs2rsfjs1wucRyAoJkfQ-zk-8340mWuBUyV5SqywpionLWNei2alSOcGjqXnmvgm-I0EgGHbgNhaiJ7q0JeSF9bV2uhUdLrYsPsD5v5-EjsMIGpZ0UyhYYZ2tuHaGE-Ya73IdKNwM4WIrc3PUQGiaGHiNteg0Z0pBJGhrAMalldSvhX8cLKE6TzMkIV9bCjWRFfbajSlnLbYRSkpxg2t0AdkkFq5ck6Q9gb6lkk2z1weQlVdJK9Is-_fupb_B6cjO9MBenl-ef4Q1Ntk_C7MF6d78IX9At6ezXuBp_A5Sz3gY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Recursive+Regulator+for+Systems+Subject+to+Polytopic+Uncertainties&rft.jtitle=IEEE+access&rft.au=Bueno%2C+Jose+Nuno+A.+D.&rft.au=Rocha%2C+Kaio+D.+T.&rft.au=Terra%2C+Marco+H.&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=139352&rft.epage=139360&rft_id=info:doi/10.1109%2FACCESS.2021.3118571&rft.externalDocID=9562547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon