Robust Recursive Regulator for Systems Subject to Polytopic Uncertainties
We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main...
Saved in:
Published in | IEEE access Vol. 9; pp. 139352 - 139360 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2021.3118571 |
Cover
Abstract | We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main contribution of this paper consists of a robust recursive framework for the computation of stabilizing feedback gains. The solution does not require numerical optimization packages and relies ultimately on a single penalty parameter which is easily tuned. Moreover, the gains are obtained recursively through algebraic expressions, as opposed to related works which employ linear matrix inequalities. Under observability and controllability conditions, we demonstrate convergence and stability of the closed-loop system in terms of an algebraic Riccati equation. We provide numerical and real-world examples to validate the proposed approach and for comparison with a robust <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> controller. |
---|---|
AbstractList | We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main contribution of this paper consists of a robust recursive framework for the computation of stabilizing feedback gains. The solution does not require numerical optimization packages and relies ultimately on a single penalty parameter which is easily tuned. Moreover, the gains are obtained recursively through algebraic expressions, as opposed to related works which employ linear matrix inequalities. Under observability and controllability conditions, we demonstrate convergence and stability of the closed-loop system in terms of an algebraic Riccati equation. We provide numerical and real-world examples to validate the proposed approach and for comparison with a robust <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> controller. We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main contribution of this paper consists of a robust recursive framework for the computation of stabilizing feedback gains. The solution does not require numerical optimization packages and relies ultimately on a single penalty parameter which is easily tuned. Moreover, the gains are obtained recursively through algebraic expressions, as opposed to related works which employ linear matrix inequalities. Under observability and controllability conditions, we demonstrate convergence and stability of the closed-loop system in terms of an algebraic Riccati equation. We provide numerical and real-world examples to validate the proposed approach and for comparison with a robust <tex-math notation="LaTeX">$H_{\infty }$ </tex-math> controller. We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized least-squares with a penalty parameter, we formulate a convex optimization problem and weight the polytope vertices altogether. In this sense, the main contribution of this paper consists of a robust recursive framework for the computation of stabilizing feedback gains. The solution does not require numerical optimization packages and relies ultimately on a single penalty parameter which is easily tuned. Moreover, the gains are obtained recursively through algebraic expressions, as opposed to related works which employ linear matrix inequalities. Under observability and controllability conditions, we demonstrate convergence and stability of the closed-loop system in terms of an algebraic Riccati equation. We provide numerical and real-world examples to validate the proposed approach and for comparison with a robust [Formula Omitted] controller. |
Author | Bueno, Jose Nuno A. D. Terra, Marco H. Rocha, Kaio D. T. |
Author_xml | – sequence: 1 givenname: Jose Nuno A. D. orcidid: 0000-0001-5103-6431 surname: Bueno fullname: Bueno, Jose Nuno A. D. email: bueno.nuno@usp.br organization: Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil – sequence: 2 givenname: Kaio D. T. orcidid: 0000-0002-0760-2018 surname: Rocha fullname: Rocha, Kaio D. T. organization: Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil – sequence: 3 givenname: Marco H. orcidid: 0000-0002-4477-1769 surname: Terra fullname: Terra, Marco H. organization: Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil |
BookMark | eNpNUV1LAzEQDFLBWv0Fvhz43JrPS-6xHFULBcXqc0hye-VKe6lJTui_9-qV4sKyw7AzuzC3aNT6FhB6IHhGCC6e5mW5WK9nFFMyY4QoIckVGlOSF1MmWD76h2_QfYxb3JfqKSHHaPnhbRdT9gGuC7H5gR5tup1JPmR13-tjTLCP2bqzW3ApSz5797tj8ofGZV-tg5BM06YG4h26rs0uwv15TtDX8-KzfJ2u3l6W5Xw1dUyoNGUqL7CzrlbEFpxi7iTDlaoqBVWtXMUlFEAsMG4wZqwGymRlrKMFryzGhk3QcvCtvNnqQ2j2Jhy1N43-I3zYaBNS43aguROGOyxzoRTHubKWWKkwJ5I4w5XrvR4Hr0Pw3x3EpLe-C23_vqZCUcolJqLfYsOWCz7GAPXlKsH6FIEeItCnCPQ5gl71MKgaALgoCpFTwSX7BWEjg8k |
CODEN | IAECCG |
Cites_doi | 10.1080/23307706.2020.1803774 10.1109/TAC.2020.3000182 10.1016/j.conengprac.2020.104630 10.1049/iet-cta.2015.0235 10.1093/oso/9780198537953.001.0001 10.1016/j.automatica.2017.12.027 10.1109/TCST.2019.2953624 10.1109/TCST.2019.2916042 10.1109/ACCESS.2020.2972028 10.1016/j.ins.2018.04.052 10.1109/TSMC.2018.2801284 10.1016/j.automatica.2014.10.120 10.1016/j.ejcon.2020.12.006 10.1109/ICUAS.2017.7991492 10.1109/CACSD.2004.1393890 10.1007/s11071-020-05742-z 10.1109/9.935054 10.1109/TAC.2014.2309282 10.23919/ACC.2018.8430995 10.1109/JSYST.2016.2619366 10.1109/TNNLS.2019.2897814 10.1016/j.conengprac.2017.05.001 10.1016/0167-6911(89)90022-4 10.1049/iet-cta.2020.0483 10.1109/COMST.2020.2988367 10.1016/S0167-6911(99)00119-X 10.1016/j.conengprac.2019.01.017 10.1002/rnc.3527 10.1016/S0167-6911(02)00160-3 10.1137/1.9781611970777 10.1109/ACCESS.2019.2935209 10.1109/TSMC.2017.2757760 10.1109/CDC.1991.261360 10.1016/j.isatra.2019.08.050 10.1016/S0167-6911(99)00035-3 10.1002/0471787779 10.1016/j.sysconle.2018.05.006 10.1109/TAC.2020.2984221 10.1016/j.jfranklin.2018.10.035 10.1007/978-0-387-74503-9 10.1109/TSG.2017.2728319 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3118571 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 139360 |
ExternalDocumentID | oai_doaj_org_article_4c5a4c0765884068bb1b7804171ca48c 10_1109_ACCESS_2021_3118571 9562547 |
Genre | orig-research |
GrantInformation_xml | – fundername: São Paulo Research Foundation (FAPESP) grantid: 2017/16346-4; 2014/50851-0 funderid: 10.13039/501100001807 – fundername: National Council for Scientific and Technological Development (CNPq) grantid: 465755/2014-3 funderid: 10.13039/501100003593 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c358t-38690cbcf81b94204c730d8dd8edf8cd47e9e1be34a0033fe237dabc294db00a3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 00:52:24 EDT 2025 Mon Jun 30 06:16:43 EDT 2025 Tue Jul 01 04:20:40 EDT 2025 Wed Aug 27 02:26:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c358t-38690cbcf81b94204c730d8dd8edf8cd47e9e1be34a0033fe237dabc294db00a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4477-1769 0000-0002-0760-2018 0000-0001-5103-6431 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9562547 |
PQID | 2582247015 |
PQPubID | 4845423 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c5a4c0765884068bb1b7804171ca48c ieee_primary_9562547 proquest_journals_2582247015 crossref_primary_10_1109_ACCESS_2021_3118571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 da silva campos (ref22) 2021; 133 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref45 ref23 ref26 ref20 ref41 ref44 ref21 patrizio colaneri (ref25) 1997 bertsekas (ref42) 1996 ref28 ref27 ref29 ref8 ref7 ref9 ref4 lancaster (ref43) 1995 ref3 ref6 ref5 ref40 bertsekas (ref37) 2005; 1 |
References_xml | – ident: ref14 doi: 10.1080/23307706.2020.1803774 – ident: ref3 doi: 10.1109/TAC.2020.3000182 – ident: ref36 doi: 10.1016/j.conengprac.2020.104630 – ident: ref34 doi: 10.1049/iet-cta.2015.0235 – year: 1995 ident: ref43 publication-title: Algebraic Riccati Equations doi: 10.1093/oso/9780198537953.001.0001 – ident: ref21 doi: 10.1016/j.automatica.2017.12.027 – year: 1997 ident: ref25 publication-title: Control Theory and Design An RH2 and $RH_\infty$ Viewpoint – ident: ref4 doi: 10.1109/TCST.2019.2953624 – ident: ref5 doi: 10.1109/TCST.2019.2916042 – ident: ref10 doi: 10.1109/ACCESS.2020.2972028 – ident: ref18 doi: 10.1016/j.ins.2018.04.052 – ident: ref2 doi: 10.1109/TSMC.2018.2801284 – ident: ref29 doi: 10.1016/j.automatica.2014.10.120 – ident: ref20 doi: 10.1016/j.ejcon.2020.12.006 – ident: ref45 doi: 10.1109/ICUAS.2017.7991492 – ident: ref44 doi: 10.1109/CACSD.2004.1393890 – ident: ref12 doi: 10.1007/s11071-020-05742-z – ident: ref39 doi: 10.1109/9.935054 – ident: ref31 doi: 10.1109/TAC.2014.2309282 – ident: ref11 doi: 10.23919/ACC.2018.8430995 – volume: 133 year: 2021 ident: ref22 article-title: Adaptive gain-scheduling control for continuous-time systems with polytopic uncertainties: An LMI-based approach publication-title: Automatica – ident: ref33 doi: 10.1109/JSYST.2016.2619366 – ident: ref1 doi: 10.1109/TNNLS.2019.2897814 – ident: ref8 doi: 10.1016/j.conengprac.2017.05.001 – ident: ref23 doi: 10.1016/0167-6911(89)90022-4 – ident: ref6 doi: 10.1049/iet-cta.2020.0483 – ident: ref35 doi: 10.1109/COMST.2020.2988367 – ident: ref27 doi: 10.1016/S0167-6911(99)00119-X – ident: ref32 doi: 10.1016/j.conengprac.2019.01.017 – ident: ref30 doi: 10.1002/rnc.3527 – ident: ref40 doi: 10.1016/S0167-6911(02)00160-3 – ident: ref28 doi: 10.1137/1.9781611970777 – ident: ref16 doi: 10.1109/ACCESS.2019.2935209 – volume: 1 year: 2005 ident: ref37 publication-title: Dynamic Programming and Optimal Control – ident: ref7 doi: 10.1109/TSMC.2017.2757760 – ident: ref24 doi: 10.1109/CDC.1991.261360 – ident: ref17 doi: 10.1016/j.isatra.2019.08.050 – ident: ref26 doi: 10.1016/S0167-6911(99)00035-3 – ident: ref38 doi: 10.1002/0471787779 – ident: ref15 doi: 10.1016/j.sysconle.2018.05.006 – ident: ref13 doi: 10.1109/TAC.2020.2984221 – ident: ref19 doi: 10.1016/j.jfranklin.2018.10.035 – year: 1996 ident: ref42 publication-title: Neuro-Dynamic Programming – ident: ref41 doi: 10.1007/978-0-387-74503-9 – ident: ref9 doi: 10.1109/TSG.2017.2728319 |
SSID | ssj0000816957 |
Score | 2.2026768 |
Snippet | We present a robust recursive framework for the regulation of discrete-time linear systems subject to polytopic uncertainties. Based on regularized... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 139352 |
SubjectTerms | Algebra Apexes Computational geometry Control stability Controllability Convexity Discrete time systems Feedback control least-squares Linear matrix inequalities Linear systems Minimization Observability (systems) Optimization optimization problem Parameters penalty function Regulation Riccati equation Riccati equations Robust control robust regulator Symmetric matrices Uncertainty |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EneJ0Sg4eLWvatEmOczimoMhwsFtofhQEWcfWHfzvfS_txsSDF2-llLT5Xt_L-8LL9wi5K3LnGKwEkZfgblwkLpIcD-qmeeF4UvA86My-vOaTGX-eZ_O9Vl9YE9bIAzfADbjNCm6BbeOJyjiXxjATRHMEQ0Fui9E3VvEemQoxWLJcZaKVGWKxGgxHI5gREMKEAU9FBST2YykKiv1ti5VfcTksNuMTctxmiXTYfN0pOfCLM3K0px3YJU_TymzWNZ3ihjnWoMNVaCtfrSgkorSVIqcQGXCrhdYVfas-v-pq-WHpDEwdSgFQTvWczMaP76NJ1PZFiGyayTpKsYuUNbaElFMBsNyCmzrpnPSuxGZEwivPjE95ga3aSp-kwhXGJoo78LIivSCdRbXwl4SmxktlBZcmBY6smLGo8OVKZhPnc1X2yP0WIr1s5C90oA2x0g2iGhHVLaI98oAw7h5F7epwAyyqW4vqvyzaI100wm4QhRyNix7pb42iWz9b6yTDKlgBOc3Vf7z6mhzidJotlj7p1KuNv4Gkoza34f_6Bt8W0BI priority: 102 providerName: Directory of Open Access Journals |
Title | Robust Recursive Regulator for Systems Subject to Polytopic Uncertainties |
URI | https://ieeexplore.ieee.org/document/9562547 https://www.proquest.com/docview/2582247015 https://doaj.org/article/4c5a4c0765884068bb1b7804171ca48c |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHDzaddOmTXPURVFBEXHBW2geBVG2ot2D_npn0uzi6-AtlLak-WaSmenMNwCHVeEcx5Mg8SWqm5CpS0pBhbpZUTmRVqIIPLPXN8XFSFw95A9zcDSrhfHeh-Qz36dh-JfvGjuhUNmxImtdyHmYRzHrarVm8RRqIKFyGYmF-EAdnwyH-A3oAqYcPVPiPOLfDp_A0R-bqvzaicPxcr4C19OJdVklT_1Ja_r24wdn439nvgrL0c5kJ51grMGcH6_D0hf2wQ24vGvM5K1ldxRypyx2HIXG9M0rQ1OWRTJzhnsLBWtY27Db5vm9bV4eLRuhsIRkAiJk3YTR-dn98CKJnRUSm-Vlm2TUh8oaW6PRqhAaYVHRXelc6V1N7YykV54bn4mKmr3VPs2kq4xNlXCop1W2BQvjZuy3gWXGl8pKUZoMvWzFjSWOMFdzmzpfqLoHR9Ml1y8dgYYOjsdA6Q4hTQjpiFAPTgmW2a3Efh0u4HLqqExa2LwSdiALqrIdFKUx3AQiJcmJpN32YIMgmL0krn4P9qYg66ipbzrNKY9WolW08_dTu7BIE-zCLnuw0L5O_D4aIq05CA78QZDDTw4X26g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQ9lFerbktbHziSZZ04sX2EVdHyWIQQK3Gz4kekqtUGQfYAv74zjndVaA-9WVESOTMee2Yy830A-3XlPceTIAsKzU3I3GdKUKNuUdVe5LWoIs7s9LKazMTZbXm7BgerXpgQQiw-C0Maxn_5vnULSpUdavLWhXwFGyVGFarv1lplVIhCQpcyQQvxkT48Go_xKzAIzDnGpoR6xJ8dPxGlP9Gq_LUXxwPmZBOmy6n1dSU_h4vODt3TC9TG_537FrxLniY76pfGNqyF-Q68_QN_cBdOr1u7eOjYNSXdqY4dR5Gavr1n6MyyBGfOcHehdA3rWnbV_nrs2rsfjs1wucRyAoJkfQ-zk-8340mWuBUyV5SqywpionLWNei2alSOcGjqXnmvgm-I0EgGHbgNhaiJ7q0JeSF9bV2uhUdLrYsPsD5v5-EjsMIGpZ0UyhYYZ2tuHaGE-Ya73IdKNwM4WIrc3PUQGiaGHiNteg0Z0pBJGhrAMalldSvhX8cLKE6TzMkIV9bCjWRFfbajSlnLbYRSkpxg2t0AdkkFq5ck6Q9gb6lkk2z1weQlVdJK9Is-_fupb_B6cjO9MBenl-ef4Q1Ntk_C7MF6d78IX9At6ezXuBp_A5Sz3gY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Recursive+Regulator+for+Systems+Subject+to+Polytopic+Uncertainties&rft.jtitle=IEEE+access&rft.au=Bueno%2C+Jose+Nuno+A.+D.&rft.au=Rocha%2C+Kaio+D.+T.&rft.au=Terra%2C+Marco+H.&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=139352&rft.epage=139360&rft_id=info:doi/10.1109%2FACCESS.2021.3118571&rft.externalDocID=9562547 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |