Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm
The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM) has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heur...
        Saved in:
      
    
          | Published in | Energies (Basel) Vol. 5; no. 11; pp. 4430 - 4445 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.11.2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1996-1073 1996-1073  | 
| DOI | 10.3390/en5114430 | 
Cover
| Abstract | The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM) has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA) has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA) outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA), generalized regression neural network (GRNN) and regression model. | 
    
|---|---|
| AbstractList | The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM) has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA) has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA) outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA), generalized regression neural network (GRNN) and regression model. | 
    
| Author | Zhao, Huiru Li, Hongze Guo, Sen Wang, Bao Su, Chenbo  | 
    
| Author_xml | – sequence: 1 givenname: Hongze surname: Li fullname: Li, Hongze – sequence: 2 givenname: Sen surname: Guo fullname: Guo, Sen – sequence: 3 givenname: Huiru surname: Zhao fullname: Zhao, Huiru – sequence: 4 givenname: Chenbo surname: Su fullname: Su, Chenbo – sequence: 5 givenname: Bao surname: Wang fullname: Wang, Bao  | 
    
| BookMark | eNp1kU1rXCEUhqWk0Hwt8g-ErBKYRke9epdDyLSBKVmkyVaOjnfi4OiN18sw-fU1mRJCadyoh-c8eF6P0EFM0SF0Rsl3xlpy5aKglHNGvqBD2rbNhBLJDj6cv6HTYViTuhijjLFDlGcxjhDwTXC2ZG_xIsESz1N2Fobi4wqbHQa8cPWG759HyG7A92Pfp1zwY-1JGf8C--Sjw1tfnio7z6MveB52-K4vfuNfoPgU8SysUq7E5gR97SAM7vTvfowe5je_r39OFnc_bq9ni4llQpUJI1JyJZeWK-N4N50S0sBUmYY62RCjbCuZEqIyRpFlK51i3HaSi450HIRjx-h2710mWOs--w3knU7g9Vsh5ZWGXLwNTlMgqpHWWG4Nl0y01DihpsYqK5QDUV2Xe9cYe9htIYR3ISX6NXz9Hn6Fz_dwn9Pz6Iai12nMsc6qqWCy_oOir9TVnrI5DUN2nba-vEVVMvjwX-_FPx2fv-EPm4ShIw | 
    
| CitedBy_id | crossref_primary_10_3390_en12071331 crossref_primary_10_1007_s13042_017_0669_5 crossref_primary_10_1016_j_energy_2016_09_065 crossref_primary_10_3390_en15238919 crossref_primary_10_1007_s10700_024_09425_x crossref_primary_10_1007_s00521_016_2799_1 crossref_primary_10_1016_j_rser_2017_08_017 crossref_primary_10_3390_su9071188 crossref_primary_10_3390_en8032268 crossref_primary_10_1155_2017_2984853 crossref_primary_10_1016_j_patrec_2017_10_004 crossref_primary_10_1049_tje2_12183 crossref_primary_10_1016_j_knosys_2016_01_006 crossref_primary_10_3390_en16031404 crossref_primary_10_3233_JIFS_191325 crossref_primary_10_1109_ACCESS_2022_3187839 crossref_primary_10_2166_ws_2023_282 crossref_primary_10_1016_j_eswa_2016_08_039 crossref_primary_10_1016_j_jhydrol_2017_07_053 crossref_primary_10_1016_j_knosys_2016_01_002 crossref_primary_10_3390_en11040781 crossref_primary_10_1016_j_energy_2016_04_009 crossref_primary_10_1007_s10462_023_10451_1 crossref_primary_10_1016_j_energy_2017_03_009 crossref_primary_10_1049_gtd2_12069 crossref_primary_10_1186_s12859_019_2771_z crossref_primary_10_3390_app6100294 crossref_primary_10_3390_en6126137 crossref_primary_10_2113_JEEG22_4_353 crossref_primary_10_3390_info6010069 crossref_primary_10_4028_www_scientific_net_AMR_823_500 crossref_primary_10_1252_jcej_19we004 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_3390_app6070199 crossref_primary_10_1007_s13198_021_01586_x crossref_primary_10_1155_2020_9676279 crossref_primary_10_3390_en10070885 crossref_primary_10_1016_j_aei_2020_101154 crossref_primary_10_1016_j_ejor_2018_11_003 crossref_primary_10_3390_app6010020 crossref_primary_10_1007_s10878_016_0027_7 crossref_primary_10_1155_2022_3387543 crossref_primary_10_1016_j_eswa_2015_01_048 crossref_primary_10_3390_en10122066 crossref_primary_10_1016_j_engappai_2023_106347 crossref_primary_10_1134_S004060151805004X crossref_primary_10_1016_j_knosys_2017_07_005 crossref_primary_10_1002_er_6093 crossref_primary_10_1117_1_OE_56_1_013111 crossref_primary_10_1155_2015_492195 crossref_primary_10_1016_j_ijepes_2013_10_005 crossref_primary_10_1155_2014_424781 crossref_primary_10_1109_ACCESS_2023_3250110 crossref_primary_10_3390_en10070874 crossref_primary_10_1109_ACCESS_2023_3311271 crossref_primary_10_1016_j_jenvman_2016_12_011 crossref_primary_10_1016_j_ijrefrig_2018_09_031 crossref_primary_10_3390_en12010164 crossref_primary_10_3390_en11040712 crossref_primary_10_3390_en7085251 crossref_primary_10_3390_en8020939 crossref_primary_10_1109_ACCESS_2020_3010702 crossref_primary_10_1049_iet_gtd_2015_0284 crossref_primary_10_1080_03610470_2021_2008221 crossref_primary_10_1155_2022_9430526 crossref_primary_10_3390_en9040278 crossref_primary_10_1016_j_asoc_2017_12_010 crossref_primary_10_1016_j_egyr_2023_12_015 crossref_primary_10_3390_en15228669 crossref_primary_10_1016_j_eswa_2020_113713 crossref_primary_10_1177_0036850420936120 crossref_primary_10_1016_j_knosys_2019_03_028 crossref_primary_10_1007_s11012_015_0179_z crossref_primary_10_1155_2013_292575 crossref_primary_10_1016_j_applthermaleng_2014_08_057 crossref_primary_10_1007_s10115_018_1263_1 crossref_primary_10_1016_j_asoc_2023_110782 crossref_primary_10_3390_a7030363 crossref_primary_10_1108_K_02_2014_0024 crossref_primary_10_3390_en9010020 crossref_primary_10_3390_info8040120 crossref_primary_10_1016_j_energy_2018_05_147 crossref_primary_10_3390_app13148332 crossref_primary_10_1016_j_rser_2020_109792 crossref_primary_10_1155_2014_217630 crossref_primary_10_1016_j_asoc_2019_105704 crossref_primary_10_3390_en11030596 crossref_primary_10_1109_SURV_2014_032014_00094  | 
    
| Cites_doi | 10.1016/j.cie.2011.06.003 10.1007/BF00994018 10.1016/j.energy.2011.09.010 10.1016/j.ijepes.2010.01.009 10.1016/j.ijepes.2011.12.007 10.1016/j.epsr.2011.07.020 10.1016/S0196-8904(02)00225-X 10.1016/j.eswa.2011.09.137 10.1023/A:1018628609742 10.1016/j.epsr.2009.09.006 10.1016/j.eswa.2009.08.019 10.1016/j.apenergy.2012.01.010 10.1016/j.epsr.2009.01.003 10.1162/089976603321891855 10.1007/s10287-005-0003-7 10.1016/j.neucom.2006.06.015 10.1016/j.energy.2008.05.008 10.1016/j.physa.2008.01.095 10.1109/72.97934 10.1016/j.camwa.2008.10.044 10.1016/j.engappai.2011.11.003 10.1016/S0378-7796(01)00098-0 10.1016/j.enconman.2010.11.007 10.1016/j.knosys.2011.07.001 10.1016/j.eswa.2010.06.075 10.1142/5089 10.1016/j.energy.2011.07.015 10.1016/j.enconman.2005.02.004 10.1016/j.engappai.2005.09.001 10.1109/TSMCB.2009.2020435 10.1016/j.enconman.2010.08.023 10.1016/j.atmosenv.2012.02.092 10.1016/j.epsr.2004.10.015 10.1016/j.neunet.2010.05.005  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright MDPI AG 2012 | 
    
| Copyright_xml | – notice: Copyright MDPI AG 2012 | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/en5114430 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1996-1073 | 
    
| EndPage | 4445 | 
    
| ExternalDocumentID | oai_doaj_org_article_1a0867cbc4cb473591be582bc8c58ea5 10.3390/en5114430 3337794541 10_3390_en5114430  | 
    
| GeographicLocations | Beijing China China  | 
    
| GeographicLocations_xml | – name: China – name: Beijing China  | 
    
| GroupedDBID | 29G 2WC 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IPNFZ KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC RIG TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 2XV ADTOC C1A IAO ITC UNPAY  | 
    
| ID | FETCH-LOGICAL-c358t-3077487dc48be4f22006a28b61e760b8c973855748b80d97e834cf745f0f4a5e3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1996-1073 | 
    
| IngestDate | Fri Oct 03 12:53:22 EDT 2025 Sun Oct 26 03:13:13 EDT 2025 Mon Jun 30 04:36:23 EDT 2025 Thu Oct 16 04:34:36 EDT 2025 Thu Apr 24 22:55:50 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c358t-3077487dc48be4f22006a28b61e760b8c973855748b80d97e834cf745f0f4a5e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://www.proquest.com/docview/1537073810?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 1537073810 | 
    
| PQPubID | 2032402 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1a0867cbc4cb473591be582bc8c58ea5 unpaywall_primary_10_3390_en5114430 proquest_journals_1537073810 crossref_citationtrail_10_3390_en5114430 crossref_primary_10_3390_en5114430  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-11-01 | 
    
| PublicationDateYYYYMMDD | 2012-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Energies (Basel) | 
    
| PublicationYear | 2012 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Meng (ref_11) 2011; 52 Zhao (ref_21) 2009; 19 Marianib (ref_29) 2012; 39 Niu (ref_46) 2010; 37 Li (ref_31) 2011; 31 Pappas (ref_2) 2008; 33 ref_34 Suykens (ref_33) 1999; 9 Pan (ref_32) 2012; 26 Shi (ref_36) 2012; 34 Liao (ref_20) 2011; 81 ref_39 Suykens (ref_17) 2001; 54 Xiao (ref_38) 2012; 29 Wang (ref_1) 2012; 94 Cortes (ref_16) 1995; 20 Dong (ref_3) 2008; 387 Wang (ref_28) 2011; 36 Kisi (ref_26) 2012; 25 Sulaimana (ref_30) 2012; 37 Suykens (ref_41) 2010; 40 Yeganeha (ref_19) 2012; 55 Chen (ref_12) 2012; 63 Kandil (ref_13) 2001; 58 Keerthi (ref_35) 2003; 15 Sorjamaa (ref_6) 2007; 70 Vong (ref_18) 2006; 19 Espinoza (ref_23) 2006; 3 ref_45 ref_44 Pappas (ref_4) 2010; 80 Xia (ref_8) 2010; 32 Xu (ref_37) 2012; 42 ref_40 Soliman (ref_5) 2005; 74 Specht (ref_42) 1991; 2 Lin (ref_25) 2011; 14 Hong (ref_14) 2011; 36 Niu (ref_7) 2009; 57 Hsu (ref_9) 2003; 44 Allam (ref_10) 2009; 79 Zhou (ref_27) 2011; 52 Wu (ref_22) 2011; 38 Pai (ref_15) 2005; 46 Espinoza (ref_24) 2007; 27 Amiri (ref_43) 2010; 23  | 
    
| References_xml | – volume: 63 start-page: 66 year: 2012 ident: ref_12 article-title: A collaborative fuzzy-neural approach for long-term load forecasting in Taiwan publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2011.06.003 – volume: 20 start-page: 273 year: 1995 ident: ref_16 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 36 start-page: 6542 year: 2011 ident: ref_28 article-title: A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China publication-title: Energy doi: 10.1016/j.energy.2011.09.010 – volume: 32 start-page: 743 year: 2010 ident: ref_8 article-title: Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks publication-title: Int. J. Electr. Power doi: 10.1016/j.ijepes.2010.01.009 – volume: 37 start-page: 67 year: 2012 ident: ref_30 article-title: An application of artificial bee colony algorithm with least squares supports vector machine for real and reactive power tracing in deregulated power system publication-title: Int. J. Electr. Power doi: 10.1016/j.ijepes.2011.12.007 – volume: 54 start-page: 5 year: 2001 ident: ref_17 article-title: Benchmarking least squares support vector machine classifiers publication-title: Mach. Learn. – volume: 81 start-page: 2074 year: 2011 ident: ref_20 article-title: Particle swarm optimization-least squares support vector regression based forecasting model on dissolved gases in oil-filled power transformers publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2011.07.020 – volume: 44 start-page: 1941 year: 2003 ident: ref_9 article-title: Regional load forecasting in Taiwan—Applications of artificial neural networks publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(02)00225-X – volume: 39 start-page: 4805 year: 2012 ident: ref_29 article-title: Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.137 – volume: 9 start-page: 293 year: 1999 ident: ref_33 article-title: Least squares support vector machine classifiers publication-title: Neural Process Lett. doi: 10.1023/A:1018628609742 – volume: 29 start-page: 26 year: 2012 ident: ref_38 article-title: Design of analog filter based on fruit fly optimization algorithm publication-title: J Hubei Univ. Educ. – volume: 31 start-page: 63 year: 2011 ident: ref_31 article-title: Mid-long term load forecasting based on simulated annealing and SVM algorithm publication-title: Proc. CSEE – ident: ref_39 – ident: ref_40 – volume: 14 start-page: 196 year: 2011 ident: ref_25 article-title: Revenue forecasting using a least-squares support vector regression model in a fuzzy environment publication-title: Inf. Sci. – volume: 34 start-page: 63 year: 2012 ident: ref_36 article-title: A judge model of the impact of lane closure incident on individual vehicles on freeways based on RFID technology and FOA-GRNN method publication-title: J. Wuhan Univ. Technol. – ident: ref_44 – volume: 27 start-page: 43 year: 2007 ident: ref_24 article-title: Electric load forecasting—Using kernel based modeling for nonlinear system identification publication-title: IEEE Control Syst. – volume: 80 start-page: 256 year: 2010 ident: ref_4 article-title: Electricity demand load forecasting of the Hellenic power system using an ARMA model publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2009.09.006 – volume: 37 start-page: 2531 year: 2010 ident: ref_46 article-title: Power load forecasting using support vector machine and ant colony optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.08.019 – volume: 94 start-page: 65 year: 2012 ident: ref_1 article-title: An annual load forecasting model based on support vector regression with differential evolution algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.01.010 – volume: 79 start-page: 1032 year: 2009 ident: ref_10 article-title: Long-term load forecasting and economical operation of wind farms for Egyptian electrical network publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2009.01.003 – volume: 15 start-page: 1667 year: 2003 ident: ref_35 article-title: Asymptotic behaviors of support vector machines with Gaussian kernel publication-title: Neural Comput. doi: 10.1162/089976603321891855 – volume: 3 start-page: 113 year: 2006 ident: ref_23 article-title: Fixed-size least squares support vector machines: A large Scale application in electrical load forecasting publication-title: Comput. Manag. Sci. doi: 10.1007/s10287-005-0003-7 – volume: 70 start-page: 861 year: 2007 ident: ref_6 article-title: Methodology for long-term prediction of time series publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.06.015 – volume: 33 start-page: 1353 year: 2008 ident: ref_2 article-title: Electricity demand loads modeling using auto regressive moving average (ARMA) models publication-title: Energy doi: 10.1016/j.energy.2008.05.008 – volume: 387 start-page: 3253 year: 2008 ident: ref_3 article-title: A granular time series approach to long-term forecasting and trend forecasting publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2008.01.095 – volume: 19 start-page: 194 year: 2009 ident: ref_21 article-title: On-line least squares support vector machine algorithm in gas prediction publication-title: Min. Sci. Technol. – volume: 2 start-page: 568 year: 1991 ident: ref_42 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – volume: 57 start-page: 1883 year: 2009 ident: ref_7 article-title: Middle-long power load forecasting based on particle swarm optimization publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.10.044 – volume: 25 start-page: 783 year: 2012 ident: ref_26 article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2011.11.003 – volume: 58 start-page: 1 year: 2001 ident: ref_13 article-title: The implementation of long-term forecasting strategies using a knowledge-based expert system: Part-II publication-title: Electr. Power Syst. Res. doi: 10.1016/S0378-7796(01)00098-0 – volume: 52 start-page: 1990 year: 2011 ident: ref_27 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.11.007 – volume: 26 start-page: 69 year: 2012 ident: ref_32 article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2011.07.001 – volume: 38 start-page: 379 year: 2011 ident: ref_22 article-title: Hybrid model based on wavelet support vector machine and modified genetic algorithm penalizing Gaussian noises for power load forecasts publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.075 – ident: ref_34 doi: 10.1142/5089 – volume: 36 start-page: 556 year: 2011 ident: ref_14 article-title: Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm publication-title: Energy doi: 10.1016/j.energy.2011.07.015 – volume: 42 start-page: 16 year: 2012 ident: ref_37 article-title: A forecast of export trades based on the FOA-RBF neural network [in Chinese] publication-title: Math. Pract. Theor. – volume: 46 start-page: 266 year: 2005 ident: ref_15 article-title: Support vector machines with simulated annealing algorithms in electricity load forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2005.02.004 – volume: 19 start-page: 277 year: 2006 ident: ref_18 article-title: Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2005.09.001 – ident: ref_45 – volume: 40 start-page: 320 year: 2010 ident: ref_41 article-title: Coupled simulated annealing publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2009.2020435 – volume: 52 start-page: 953 year: 2011 ident: ref_11 article-title: Annual electricity consumption analysis and forecasting of China based on few observations methods publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.08.023 – volume: 55 start-page: 357 year: 2012 ident: ref_19 article-title: Prediction of CO concentrations based on a hybrid partial least square and support vector machine model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.02.092 – volume: 74 start-page: 353 year: 2005 ident: ref_5 article-title: Long-term/mid-term electric load forecasting based on short-term correlation and annual growth publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2004.10.015 – volume: 23 start-page: 69 year: 2010 ident: ref_43 article-title: Feedback associative memory based on a new hybrid model of generalized regression and self-feedback neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2010.05.005  | 
    
| SSID | ssj0000331333 | 
    
| Score | 2.341241 | 
    
| Snippet | The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 4430 | 
    
| SubjectTerms | Accuracy annual electric load forecasting Electric power Electricity Electricity distribution Forecasting Forecasting techniques fruit fly optimization algorithm (FOA) Genetic algorithms Heuristic least squares support vector machine (LSSVM) Neural networks Optimization algorithms optimization problem Optimization techniques Support vector machines  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSxxBEG2ClyQHUZPgGg2NySGXwfnorzlqcBFRc0gM3obumloRxlmz7iL7763qGZcJRLx4HQqmqa7peVW8fk-Ib8bl1kMKSWmDSVSdu8SHoBId0GCeGV9ENuH5hTm5VKdX-mpg9cWcsE4euEvcQeYJdFsIoCCwTW6ZBdQuD-BAO_RRvTR15aCZimdwUVDzFdn1zLKlHqfoZIUK6vEPsCWYoRQznwc_o6jZ_w_QfLto7_zywTfN4J8z3hDrPViUh90iN8UbbLfE-4GE4Acx6wTy5XG0s7kBeTb1tWTDTfD3TGmWYSm9PGOLHvnr74KvG0m28iTYLf_Ekb08j4RKlDyTpdjxbHEzl-NmKX_SeXLbX9SUh831dEYRtx_F5fj494-TpPdRSKDQbs7jJUt9SQ3KBVSTnKcIPnfBZGhNGhyULGmjKSa4tC4tukLBxCo9SSfKayw-ibV22uK2kDUiBlVbNA6UN1CG1AAbGPvSIWo_Et-fElpBLzLOXhdNRc0G575a5X4k9lehd52yxv-CjnhXVgEshh0fUIlUfYlUL5XISOw-7WnVf6H3FZ30lqrCZfSOr6t9fn4lO6-xks_iHQGuvLvLuCvW5rMF7hGomYcvsX4fAYKr8uo priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gAcKE91aUEWcOCS5mU7zgktqKsKtQUJFpVTsJ1JtSLNLtkEtPx6xo531SKQkLhF0SRxNGN7ZjzzfYS8EDLJlIlMkGdaBKxMZKC0ZgHXICCJhUpdNeHpmTiesbfn_NzznK58WSWG4nO3SLsKWYxP0pCHcRwylkbhsqxeffeppBi3F56zxPb27uCViEZkZ3b2fvLZnSX7hwc8oRSD-xAa9C_sa67tQg6s_5qHebNvlmr9Q9X1lc1muku-bIY51Jh8Pew7fWh-_obg-B__cZfc8Y4onQyWc4_cgOY-uX0FnvABaQfwfXrkqHLmhp4sVEktmadRK1suTfWaKnpi6X_oh2-9bWWiliYUXXr6yR0H0FNXrAnU5ntRdtr2845O6zV9h2vVpW8CpZP6YtGixOVDMpsefXxzHHiOhsCkXHY2dZVhzFMaJjWwKrEZCpVILWLIRKSlyS1cDkcZLaMyz0CmzFQZ41VUMcUhfURGzaKBPUJLANCszEBIw5QwuY6EseTIKpcAXI3Jy43OCuMBzC2PRl1gIGPVW2zVOybPtqLLAbXjT0KvreK3AhZo291YtBeFn7dFrDDmy4w2zGjL0pzHGrhMtJGGS1B8TA42ZlP42b8qcBfJUNsyxm8835rS30fy-J-k9skt9NaSoRHygIy6tocn6BF1-qm3-l-T5AVt priority: 102 providerName: Unpaywall  | 
    
| Title | Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm | 
    
| URI | https://www.proquest.com/docview/1537073810 https://www.mdpi.com/1996-1073/5/11/4430/pdf?version=1426594211 https://doaj.org/article/1a0867cbc4cb473591be582bc8c58ea5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB616QE4IJ4iUKIVcOBi1Y_d9fqAUIriVqgNFRAUTtbuelIquU6aOkL59-z4RZCAiw-rkWXNzO7OjGe-D-CNVGGsrW-9JDbS43moPG0M94RBiWEgdVR3E55P5emMf5yL-R5Mu1kYaqvszsT6oM6XlmrkR25nxs4dVeC_X914xBpFf1c7Cg3dUivk72qIsX04CAkZawAHx5Ppxee-6uJHkUvKogZiKHL5_hGWLuTgnLqgdy6mGr__j6DzzqZc6e1PXRQ790_6AO63gSMbN5Z-CHtYPoJ7O3CCj2HdgOWzSU1tc2XZ2VLnjMg3rb6l9mZmtkyzM6LrYV9uNjR6xIjW04Xg7FtdvmfndXMlMqrPOtl0vbmqWFps2Sd3tly3Q5tsXFw63VQ_rp_ALJ18_XDqtZwKno2EqqjUFLscJbdcGeSLkCoKOlRGBhhL3yibELyNcDJG-XkSo4q4XcRcLPwF1wKjpzAolyU-A5YjouF5jFJZrqVNjC8tkRnrRCEKPYS3nUIz2wKOE-9FkbnEg3Sf9bofwqtedNWgbPxN6Jis0gsQMHa9sFxfZu0-ywLtcrTYGsutIVblJDAoVGisskKhFkM47Gyatbv1NvvtW0N43dv531_y_P8veQF3XVgVNhOLhzCo1ht86UKXyoxgX6Uno9YrR3UBwD1P5oFbm00vxt9_AVpM8v8 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lB6QDzVQCkrHhIXq7b34fWhQi0kSmkSELSoN3d3PSmVXCdNHFX5c_y27vhFkIBbr9ZoZc3szs7MznwfIW-lCiNtfevFkZEeT0PlaWO4JwxICAOpWdlNOBzJ_in_fCbO1sivZhYG2yobn1g66nRisUa-505m5LajCvwP02sPWaPwdbWh0NA1tUK6X0KM1YMdx7C8cSncfP_ok7P3uzDsdU8-9r2aZcCzTKgCiy-Ri9pTy5UBPg4xx9ahMjKASPpG2RgBX4STMcpP4wgU43YccTH2x1wLYG7de2SDMx675G_jsDv6-q2t8viMuSSQVZBGjMX-HuQuxOEcu65XLsKSL-CPIHdzkU_18kZn2cp913tIHtSBKj2odtYjsgb5Y7K1Al_4hMwqcH7aLal0Li0dTHRKkezT6jm2U1OzpJoOkB6Ifr9e4KgTRRpRF_LTH-VzAR2WzZxAsR7sZHuzxWVBe9mSfnG-7KoeEqUH2YWzRfHz6ik5vRPtPiPr-SSHbUJTADA8jUAqy7W0sfGlRfJkHSsAoTvkfaPQxNYA58izkSUu0UHdJ63uO-R1KzqtUD3-JnSIVmkFEIi7_DCZXST1uU4C7XLCyBrLrUEW5zgwIFRorLJCgRYdstPYNKm9wzz5vZc75E1r53__yfP_L_KKbPZPhoNkcDQ6fkHuu5AurKYld8h6MVvASxc2FWa33puUnN_1cbgF5DUptA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZTxRBEO4gJooPxjOuoHY8El8mO0df80AICiPIgiaK4W3s7qkBkmF22Z0N2b_mr6NrLtdEfeN1UulM6uqq6qr6CHkrVCi19a0XSyM8loXK08YwjxsQEAZCR3U34eGR2Dtmn0_4yQr51c3CYFtl5xNrR52NLdbIh84ypVNHFfjDvG2L-LqTbE0uPUSQwpfWDk6jUZEDWFy59G22ub_jZP0uDJPd7x_3vBZhwLMRVxUWXqSL2DPLlAGWh5hf61AZEYAUvlE2xmUv3NEY5WexBBUxm0vGcz9nmkPkzr1Fbkvc4o5T6smnvr7jR5FL_6JmmVEUxf4QShfcMIb91ktXYI0U8Ed4e3deTvTiShfF0k2XPCD32xCVbjc69ZCsQPmI3FtaXPiYTJu1_HS3BtE5t3Q01hlFmE-rZ9hITc2CajpCYCD67XKOQ04UAURdsE9_1A8F9LBu4wSKlWBHm0zn5xVNigX94rzYRTseSreLU8f56uziCTm-Ed4-JavluIRnhGYAYFgmQSjLtLCx8YVF2GQdKwCuB-R9x9DUtqvNEWGjSF2Kg7xPe94PyOuedNLs8_gb0QeUSk-AK7jrD-PpadpadBpolw1KayyzBvGb48AAV6GxynIFmg_IRifTtPULs_S3Fg_Im17O__6T5_8_5BW544wgHe0fHayTNRfLhc2Y5AZZraZzeOHipcq8rBWTkp83bQnXvZknTg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gAcKE91aUEWcOCS5mU7zgktqKsKtQUJFpVTsJ1JtSLNLtkEtPx6xo531SKQkLhF0SRxNGN7ZjzzfYS8EDLJlIlMkGdaBKxMZKC0ZgHXICCJhUpdNeHpmTiesbfn_NzznK58WSWG4nO3SLsKWYxP0pCHcRwylkbhsqxeffeppBi3F56zxPb27uCViEZkZ3b2fvLZnSX7hwc8oRSD-xAa9C_sa67tQg6s_5qHebNvlmr9Q9X1lc1muku-bIY51Jh8Pew7fWh-_obg-B__cZfc8Y4onQyWc4_cgOY-uX0FnvABaQfwfXrkqHLmhp4sVEktmadRK1suTfWaKnpi6X_oh2-9bWWiliYUXXr6yR0H0FNXrAnU5ntRdtr2845O6zV9h2vVpW8CpZP6YtGixOVDMpsefXxzHHiOhsCkXHY2dZVhzFMaJjWwKrEZCpVILWLIRKSlyS1cDkcZLaMyz0CmzFQZ41VUMcUhfURGzaKBPUJLANCszEBIw5QwuY6EseTIKpcAXI3Jy43OCuMBzC2PRl1gIGPVW2zVOybPtqLLAbXjT0KvreK3AhZo291YtBeFn7dFrDDmy4w2zGjL0pzHGrhMtJGGS1B8TA42ZlP42b8qcBfJUNsyxm8835rS30fy-J-k9skt9NaSoRHygIy6tocn6BF1-qm3-l-T5AVt | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annual+Electric+Load+Forecasting+by+a+Least+Squares+Support+Vector+Machine+with+a+Fruit+Fly+Optimization+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Li%2C+Hongze&rft.au=Guo%2C+Sen&rft.au=Zhao%2C+Huiru&rft.au=Su%2C+Chenbo&rft.date=2012-11-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=5&rft.issue=11&rft.spage=4430&rft_id=info:doi/10.3390%2Fen5114430&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3337794541 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |