Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm

The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM) has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heur...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 5; no. 11; pp. 4430 - 4445
Main Authors Li, Hongze, Guo, Sen, Zhao, Huiru, Su, Chenbo, Wang, Bao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2012
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en5114430

Cover

Abstract The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM) has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA) has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA) outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA), generalized regression neural network (GRNN) and regression model.
AbstractList The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares support vector machine (LSSVM) has been proven to offer strong potential in forecasting issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. As a novel meta-heuristic and evolutionary algorithm, the fruit fly optimization algorithm (FOA) has the advantages of being easy to understand and fast convergence to the global optimal solution. Therefore, to improve the forecasting performance, this paper proposes a LSSVM-based annual electric load forecasting model that uses FOA to automatically determine the appropriate values of the two parameters for the LSSVM model. By taking the annual electricity consumption of China as an instance, the computational result shows that the LSSVM combined with FOA (LSSVM-FOA) outperforms other alternative methods, namely single LSSVM, LSSVM combined with coupled simulated annealing algorithm (LSSVM-CSA), generalized regression neural network (GRNN) and regression model.
Author Zhao, Huiru
Li, Hongze
Guo, Sen
Wang, Bao
Su, Chenbo
Author_xml – sequence: 1
  givenname: Hongze
  surname: Li
  fullname: Li, Hongze
– sequence: 2
  givenname: Sen
  surname: Guo
  fullname: Guo, Sen
– sequence: 3
  givenname: Huiru
  surname: Zhao
  fullname: Zhao, Huiru
– sequence: 4
  givenname: Chenbo
  surname: Su
  fullname: Su, Chenbo
– sequence: 5
  givenname: Bao
  surname: Wang
  fullname: Wang, Bao
BookMark eNp1kU1rXCEUhqWk0Hwt8g-ErBKYRke9epdDyLSBKVmkyVaOjnfi4OiN18sw-fU1mRJCadyoh-c8eF6P0EFM0SF0Rsl3xlpy5aKglHNGvqBD2rbNhBLJDj6cv6HTYViTuhijjLFDlGcxjhDwTXC2ZG_xIsESz1N2Fobi4wqbHQa8cPWG759HyG7A92Pfp1zwY-1JGf8C--Sjw1tfnio7z6MveB52-K4vfuNfoPgU8SysUq7E5gR97SAM7vTvfowe5je_r39OFnc_bq9ni4llQpUJI1JyJZeWK-N4N50S0sBUmYY62RCjbCuZEqIyRpFlK51i3HaSi450HIRjx-h2710mWOs--w3knU7g9Vsh5ZWGXLwNTlMgqpHWWG4Nl0y01DihpsYqK5QDUV2Xe9cYe9htIYR3ISX6NXz9Hn6Fz_dwn9Pz6Iai12nMsc6qqWCy_oOir9TVnrI5DUN2nba-vEVVMvjwX-_FPx2fv-EPm4ShIw
CitedBy_id crossref_primary_10_3390_en12071331
crossref_primary_10_1007_s13042_017_0669_5
crossref_primary_10_1016_j_energy_2016_09_065
crossref_primary_10_3390_en15238919
crossref_primary_10_1007_s10700_024_09425_x
crossref_primary_10_1007_s00521_016_2799_1
crossref_primary_10_1016_j_rser_2017_08_017
crossref_primary_10_3390_su9071188
crossref_primary_10_3390_en8032268
crossref_primary_10_1155_2017_2984853
crossref_primary_10_1016_j_patrec_2017_10_004
crossref_primary_10_1049_tje2_12183
crossref_primary_10_1016_j_knosys_2016_01_006
crossref_primary_10_3390_en16031404
crossref_primary_10_3233_JIFS_191325
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_2166_ws_2023_282
crossref_primary_10_1016_j_eswa_2016_08_039
crossref_primary_10_1016_j_jhydrol_2017_07_053
crossref_primary_10_1016_j_knosys_2016_01_002
crossref_primary_10_3390_en11040781
crossref_primary_10_1016_j_energy_2016_04_009
crossref_primary_10_1007_s10462_023_10451_1
crossref_primary_10_1016_j_energy_2017_03_009
crossref_primary_10_1049_gtd2_12069
crossref_primary_10_1186_s12859_019_2771_z
crossref_primary_10_3390_app6100294
crossref_primary_10_3390_en6126137
crossref_primary_10_2113_JEEG22_4_353
crossref_primary_10_3390_info6010069
crossref_primary_10_4028_www_scientific_net_AMR_823_500
crossref_primary_10_1252_jcej_19we004
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_3390_app6070199
crossref_primary_10_1007_s13198_021_01586_x
crossref_primary_10_1155_2020_9676279
crossref_primary_10_3390_en10070885
crossref_primary_10_1016_j_aei_2020_101154
crossref_primary_10_1016_j_ejor_2018_11_003
crossref_primary_10_3390_app6010020
crossref_primary_10_1007_s10878_016_0027_7
crossref_primary_10_1155_2022_3387543
crossref_primary_10_1016_j_eswa_2015_01_048
crossref_primary_10_3390_en10122066
crossref_primary_10_1016_j_engappai_2023_106347
crossref_primary_10_1134_S004060151805004X
crossref_primary_10_1016_j_knosys_2017_07_005
crossref_primary_10_1002_er_6093
crossref_primary_10_1117_1_OE_56_1_013111
crossref_primary_10_1155_2015_492195
crossref_primary_10_1016_j_ijepes_2013_10_005
crossref_primary_10_1155_2014_424781
crossref_primary_10_1109_ACCESS_2023_3250110
crossref_primary_10_3390_en10070874
crossref_primary_10_1109_ACCESS_2023_3311271
crossref_primary_10_1016_j_jenvman_2016_12_011
crossref_primary_10_1016_j_ijrefrig_2018_09_031
crossref_primary_10_3390_en12010164
crossref_primary_10_3390_en11040712
crossref_primary_10_3390_en7085251
crossref_primary_10_3390_en8020939
crossref_primary_10_1109_ACCESS_2020_3010702
crossref_primary_10_1049_iet_gtd_2015_0284
crossref_primary_10_1080_03610470_2021_2008221
crossref_primary_10_1155_2022_9430526
crossref_primary_10_3390_en9040278
crossref_primary_10_1016_j_asoc_2017_12_010
crossref_primary_10_1016_j_egyr_2023_12_015
crossref_primary_10_3390_en15228669
crossref_primary_10_1016_j_eswa_2020_113713
crossref_primary_10_1177_0036850420936120
crossref_primary_10_1016_j_knosys_2019_03_028
crossref_primary_10_1007_s11012_015_0179_z
crossref_primary_10_1155_2013_292575
crossref_primary_10_1016_j_applthermaleng_2014_08_057
crossref_primary_10_1007_s10115_018_1263_1
crossref_primary_10_1016_j_asoc_2023_110782
crossref_primary_10_3390_a7030363
crossref_primary_10_1108_K_02_2014_0024
crossref_primary_10_3390_en9010020
crossref_primary_10_3390_info8040120
crossref_primary_10_1016_j_energy_2018_05_147
crossref_primary_10_3390_app13148332
crossref_primary_10_1016_j_rser_2020_109792
crossref_primary_10_1155_2014_217630
crossref_primary_10_1016_j_asoc_2019_105704
crossref_primary_10_3390_en11030596
crossref_primary_10_1109_SURV_2014_032014_00094
Cites_doi 10.1016/j.cie.2011.06.003
10.1007/BF00994018
10.1016/j.energy.2011.09.010
10.1016/j.ijepes.2010.01.009
10.1016/j.ijepes.2011.12.007
10.1016/j.epsr.2011.07.020
10.1016/S0196-8904(02)00225-X
10.1016/j.eswa.2011.09.137
10.1023/A:1018628609742
10.1016/j.epsr.2009.09.006
10.1016/j.eswa.2009.08.019
10.1016/j.apenergy.2012.01.010
10.1016/j.epsr.2009.01.003
10.1162/089976603321891855
10.1007/s10287-005-0003-7
10.1016/j.neucom.2006.06.015
10.1016/j.energy.2008.05.008
10.1016/j.physa.2008.01.095
10.1109/72.97934
10.1016/j.camwa.2008.10.044
10.1016/j.engappai.2011.11.003
10.1016/S0378-7796(01)00098-0
10.1016/j.enconman.2010.11.007
10.1016/j.knosys.2011.07.001
10.1016/j.eswa.2010.06.075
10.1142/5089
10.1016/j.energy.2011.07.015
10.1016/j.enconman.2005.02.004
10.1016/j.engappai.2005.09.001
10.1109/TSMCB.2009.2020435
10.1016/j.enconman.2010.08.023
10.1016/j.atmosenv.2012.02.092
10.1016/j.epsr.2004.10.015
10.1016/j.neunet.2010.05.005
ContentType Journal Article
Copyright Copyright MDPI AG 2012
Copyright_xml – notice: Copyright MDPI AG 2012
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/en5114430
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
EndPage 4445
ExternalDocumentID oai_doaj_org_article_1a0867cbc4cb473591be582bc8c58ea5
10.3390/en5114430
3337794541
10_3390_en5114430
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IPNFZ
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
RIG
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
2XV
ADTOC
C1A
IAO
ITC
UNPAY
ID FETCH-LOGICAL-c358t-3077487dc48be4f22006a28b61e760b8c973855748b80d97e834cf745f0f4a5e3
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Fri Oct 03 12:53:22 EDT 2025
Sun Oct 26 03:13:13 EDT 2025
Mon Jun 30 04:36:23 EDT 2025
Thu Oct 16 04:34:36 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-3077487dc48be4f22006a28b61e760b8c973855748b80d97e834cf745f0f4a5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/1537073810?pq-origsite=%requestingapplication%&accountid=15518
PQID 1537073810
PQPubID 2032402
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_1a0867cbc4cb473591be582bc8c58ea5
unpaywall_primary_10_3390_en5114430
proquest_journals_1537073810
crossref_citationtrail_10_3390_en5114430
crossref_primary_10_3390_en5114430
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2012
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Meng (ref_11) 2011; 52
Zhao (ref_21) 2009; 19
Marianib (ref_29) 2012; 39
Niu (ref_46) 2010; 37
Li (ref_31) 2011; 31
Pappas (ref_2) 2008; 33
ref_34
Suykens (ref_33) 1999; 9
Pan (ref_32) 2012; 26
Shi (ref_36) 2012; 34
Liao (ref_20) 2011; 81
ref_39
Suykens (ref_17) 2001; 54
Xiao (ref_38) 2012; 29
Wang (ref_1) 2012; 94
Cortes (ref_16) 1995; 20
Dong (ref_3) 2008; 387
Wang (ref_28) 2011; 36
Kisi (ref_26) 2012; 25
Sulaimana (ref_30) 2012; 37
Suykens (ref_41) 2010; 40
Yeganeha (ref_19) 2012; 55
Chen (ref_12) 2012; 63
Kandil (ref_13) 2001; 58
Keerthi (ref_35) 2003; 15
Sorjamaa (ref_6) 2007; 70
Vong (ref_18) 2006; 19
Espinoza (ref_23) 2006; 3
ref_45
ref_44
Pappas (ref_4) 2010; 80
Xia (ref_8) 2010; 32
Xu (ref_37) 2012; 42
ref_40
Soliman (ref_5) 2005; 74
Specht (ref_42) 1991; 2
Lin (ref_25) 2011; 14
Hong (ref_14) 2011; 36
Niu (ref_7) 2009; 57
Hsu (ref_9) 2003; 44
Allam (ref_10) 2009; 79
Zhou (ref_27) 2011; 52
Wu (ref_22) 2011; 38
Pai (ref_15) 2005; 46
Espinoza (ref_24) 2007; 27
Amiri (ref_43) 2010; 23
References_xml – volume: 63
  start-page: 66
  year: 2012
  ident: ref_12
  article-title: A collaborative fuzzy-neural approach for long-term load forecasting in Taiwan
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2011.06.003
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_16
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 36
  start-page: 6542
  year: 2011
  ident: ref_28
  article-title: A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China
  publication-title: Energy
  doi: 10.1016/j.energy.2011.09.010
– volume: 32
  start-page: 743
  year: 2010
  ident: ref_8
  article-title: Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks
  publication-title: Int. J. Electr. Power
  doi: 10.1016/j.ijepes.2010.01.009
– volume: 37
  start-page: 67
  year: 2012
  ident: ref_30
  article-title: An application of artificial bee colony algorithm with least squares supports vector machine for real and reactive power tracing in deregulated power system
  publication-title: Int. J. Electr. Power
  doi: 10.1016/j.ijepes.2011.12.007
– volume: 54
  start-page: 5
  year: 2001
  ident: ref_17
  article-title: Benchmarking least squares support vector machine classifiers
  publication-title: Mach. Learn.
– volume: 81
  start-page: 2074
  year: 2011
  ident: ref_20
  article-title: Particle swarm optimization-least squares support vector regression based forecasting model on dissolved gases in oil-filled power transformers
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2011.07.020
– volume: 44
  start-page: 1941
  year: 2003
  ident: ref_9
  article-title: Regional load forecasting in Taiwan—Applications of artificial neural networks
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(02)00225-X
– volume: 39
  start-page: 4805
  year: 2012
  ident: ref_29
  article-title: Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.137
– volume: 9
  start-page: 293
  year: 1999
  ident: ref_33
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett.
  doi: 10.1023/A:1018628609742
– volume: 29
  start-page: 26
  year: 2012
  ident: ref_38
  article-title: Design of analog filter based on fruit fly optimization algorithm
  publication-title: J Hubei Univ. Educ.
– volume: 31
  start-page: 63
  year: 2011
  ident: ref_31
  article-title: Mid-long term load forecasting based on simulated annealing and SVM algorithm
  publication-title: Proc. CSEE
– ident: ref_39
– ident: ref_40
– volume: 14
  start-page: 196
  year: 2011
  ident: ref_25
  article-title: Revenue forecasting using a least-squares support vector regression model in a fuzzy environment
  publication-title: Inf. Sci.
– volume: 34
  start-page: 63
  year: 2012
  ident: ref_36
  article-title: A judge model of the impact of lane closure incident on individual vehicles on freeways based on RFID technology and FOA-GRNN method
  publication-title: J. Wuhan Univ. Technol.
– ident: ref_44
– volume: 27
  start-page: 43
  year: 2007
  ident: ref_24
  article-title: Electric load forecasting—Using kernel based modeling for nonlinear system identification
  publication-title: IEEE Control Syst.
– volume: 80
  start-page: 256
  year: 2010
  ident: ref_4
  article-title: Electricity demand load forecasting of the Hellenic power system using an ARMA model
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2009.09.006
– volume: 37
  start-page: 2531
  year: 2010
  ident: ref_46
  article-title: Power load forecasting using support vector machine and ant colony optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.08.019
– volume: 94
  start-page: 65
  year: 2012
  ident: ref_1
  article-title: An annual load forecasting model based on support vector regression with differential evolution algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.01.010
– volume: 79
  start-page: 1032
  year: 2009
  ident: ref_10
  article-title: Long-term load forecasting and economical operation of wind farms for Egyptian electrical network
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2009.01.003
– volume: 15
  start-page: 1667
  year: 2003
  ident: ref_35
  article-title: Asymptotic behaviors of support vector machines with Gaussian kernel
  publication-title: Neural Comput.
  doi: 10.1162/089976603321891855
– volume: 3
  start-page: 113
  year: 2006
  ident: ref_23
  article-title: Fixed-size least squares support vector machines: A large Scale application in electrical load forecasting
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-005-0003-7
– volume: 70
  start-page: 861
  year: 2007
  ident: ref_6
  article-title: Methodology for long-term prediction of time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.06.015
– volume: 33
  start-page: 1353
  year: 2008
  ident: ref_2
  article-title: Electricity demand loads modeling using auto regressive moving average (ARMA) models
  publication-title: Energy
  doi: 10.1016/j.energy.2008.05.008
– volume: 387
  start-page: 3253
  year: 2008
  ident: ref_3
  article-title: A granular time series approach to long-term forecasting and trend forecasting
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2008.01.095
– volume: 19
  start-page: 194
  year: 2009
  ident: ref_21
  article-title: On-line least squares support vector machine algorithm in gas prediction
  publication-title: Min. Sci. Technol.
– volume: 2
  start-page: 568
  year: 1991
  ident: ref_42
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– volume: 57
  start-page: 1883
  year: 2009
  ident: ref_7
  article-title: Middle-long power load forecasting based on particle swarm optimization
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.10.044
– volume: 25
  start-page: 783
  year: 2012
  ident: ref_26
  article-title: Precipitation forecasting by using wavelet-support vector machine conjunction model
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2011.11.003
– volume: 58
  start-page: 1
  year: 2001
  ident: ref_13
  article-title: The implementation of long-term forecasting strategies using a knowledge-based expert system: Part-II
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/S0378-7796(01)00098-0
– volume: 52
  start-page: 1990
  year: 2011
  ident: ref_27
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.11.007
– volume: 26
  start-page: 69
  year: 2012
  ident: ref_32
  article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2011.07.001
– volume: 38
  start-page: 379
  year: 2011
  ident: ref_22
  article-title: Hybrid model based on wavelet support vector machine and modified genetic algorithm penalizing Gaussian noises for power load forecasts
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.075
– ident: ref_34
  doi: 10.1142/5089
– volume: 36
  start-page: 556
  year: 2011
  ident: ref_14
  article-title: Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2011.07.015
– volume: 42
  start-page: 16
  year: 2012
  ident: ref_37
  article-title: A forecast of export trades based on the FOA-RBF neural network [in Chinese]
  publication-title: Math. Pract. Theor.
– volume: 46
  start-page: 266
  year: 2005
  ident: ref_15
  article-title: Support vector machines with simulated annealing algorithms in electricity load forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2005.02.004
– volume: 19
  start-page: 277
  year: 2006
  ident: ref_18
  article-title: Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2005.09.001
– ident: ref_45
– volume: 40
  start-page: 320
  year: 2010
  ident: ref_41
  article-title: Coupled simulated annealing
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2009.2020435
– volume: 52
  start-page: 953
  year: 2011
  ident: ref_11
  article-title: Annual electricity consumption analysis and forecasting of China based on few observations methods
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.08.023
– volume: 55
  start-page: 357
  year: 2012
  ident: ref_19
  article-title: Prediction of CO concentrations based on a hybrid partial least square and support vector machine model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.02.092
– volume: 74
  start-page: 353
  year: 2005
  ident: ref_5
  article-title: Long-term/mid-term electric load forecasting based on short-term correlation and annual growth
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2004.10.015
– volume: 23
  start-page: 69
  year: 2010
  ident: ref_43
  article-title: Feedback associative memory based on a new hybrid model of generalized regression and self-feedback neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2010.05.005
SSID ssj0000331333
Score 2.341241
Snippet The accuracy of annual electric load forecasting plays an important role in the economic and social benefits of electric power systems. The least squares...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4430
SubjectTerms Accuracy
annual electric load forecasting
Electric power
Electricity
Electricity distribution
Forecasting
Forecasting techniques
fruit fly optimization algorithm (FOA)
Genetic algorithms
Heuristic
least squares support vector machine (LSSVM)
Neural networks
Optimization algorithms
optimization problem
Optimization techniques
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSxxBEG2ClyQHUZPgGg2NySGXwfnorzlqcBFRc0gM3obumloRxlmz7iL7763qGZcJRLx4HQqmqa7peVW8fk-Ib8bl1kMKSWmDSVSdu8SHoBId0GCeGV9ENuH5hTm5VKdX-mpg9cWcsE4euEvcQeYJdFsIoCCwTW6ZBdQuD-BAO_RRvTR15aCZimdwUVDzFdn1zLKlHqfoZIUK6vEPsCWYoRQznwc_o6jZ_w_QfLto7_zywTfN4J8z3hDrPViUh90iN8UbbLfE-4GE4Acx6wTy5XG0s7kBeTb1tWTDTfD3TGmWYSm9PGOLHvnr74KvG0m28iTYLf_Ekb08j4RKlDyTpdjxbHEzl-NmKX_SeXLbX9SUh831dEYRtx_F5fj494-TpPdRSKDQbs7jJUt9SQ3KBVSTnKcIPnfBZGhNGhyULGmjKSa4tC4tukLBxCo9SSfKayw-ibV22uK2kDUiBlVbNA6UN1CG1AAbGPvSIWo_Et-fElpBLzLOXhdNRc0G575a5X4k9lehd52yxv-CjnhXVgEshh0fUIlUfYlUL5XISOw-7WnVf6H3FZ30lqrCZfSOr6t9fn4lO6-xks_iHQGuvLvLuCvW5rMF7hGomYcvsX4fAYKr8uo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gAcKE91aUEWcOCS5mU7zgktqKsKtQUJFpVTsJ1JtSLNLtkEtPx6xo531SKQkLhF0SRxNGN7ZjzzfYS8EDLJlIlMkGdaBKxMZKC0ZgHXICCJhUpdNeHpmTiesbfn_NzznK58WSWG4nO3SLsKWYxP0pCHcRwylkbhsqxeffeppBi3F56zxPb27uCViEZkZ3b2fvLZnSX7hwc8oRSD-xAa9C_sa67tQg6s_5qHebNvlmr9Q9X1lc1muku-bIY51Jh8Pew7fWh-_obg-B__cZfc8Y4onQyWc4_cgOY-uX0FnvABaQfwfXrkqHLmhp4sVEktmadRK1suTfWaKnpi6X_oh2-9bWWiliYUXXr6yR0H0FNXrAnU5ntRdtr2845O6zV9h2vVpW8CpZP6YtGixOVDMpsefXxzHHiOhsCkXHY2dZVhzFMaJjWwKrEZCpVILWLIRKSlyS1cDkcZLaMyz0CmzFQZ41VUMcUhfURGzaKBPUJLANCszEBIw5QwuY6EseTIKpcAXI3Jy43OCuMBzC2PRl1gIGPVW2zVOybPtqLLAbXjT0KvreK3AhZo291YtBeFn7dFrDDmy4w2zGjL0pzHGrhMtJGGS1B8TA42ZlP42b8qcBfJUNsyxm8835rS30fy-J-k9skt9NaSoRHygIy6tocn6BF1-qm3-l-T5AVt
  priority: 102
  providerName: Unpaywall
Title Annual Electric Load Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm
URI https://www.proquest.com/docview/1537073810
https://www.mdpi.com/1996-1073/5/11/4430/pdf?version=1426594211
https://doaj.org/article/1a0867cbc4cb473591be582bc8c58ea5
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB616QE4IJ4iUKIVcOBi1Y_d9fqAUIriVqgNFRAUTtbuelIquU6aOkL59-z4RZCAiw-rkWXNzO7OjGe-D-CNVGGsrW-9JDbS43moPG0M94RBiWEgdVR3E55P5emMf5yL-R5Mu1kYaqvszsT6oM6XlmrkR25nxs4dVeC_X914xBpFf1c7Cg3dUivk72qIsX04CAkZawAHx5Ppxee-6uJHkUvKogZiKHL5_hGWLuTgnLqgdy6mGr__j6DzzqZc6e1PXRQ790_6AO63gSMbN5Z-CHtYPoJ7O3CCj2HdgOWzSU1tc2XZ2VLnjMg3rb6l9mZmtkyzM6LrYV9uNjR6xIjW04Xg7FtdvmfndXMlMqrPOtl0vbmqWFps2Sd3tly3Q5tsXFw63VQ_rp_ALJ18_XDqtZwKno2EqqjUFLscJbdcGeSLkCoKOlRGBhhL3yibELyNcDJG-XkSo4q4XcRcLPwF1wKjpzAolyU-A5YjouF5jFJZrqVNjC8tkRnrRCEKPYS3nUIz2wKOE-9FkbnEg3Sf9bofwqtedNWgbPxN6Jis0gsQMHa9sFxfZu0-ywLtcrTYGsutIVblJDAoVGisskKhFkM47Gyatbv1NvvtW0N43dv531_y_P8veQF3XVgVNhOLhzCo1ht86UKXyoxgX6Uno9YrR3UBwD1P5oFbm00vxt9_AVpM8v8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lB6QDzVQCkrHhIXq7b34fWhQi0kSmkSELSoN3d3PSmVXCdNHFX5c_y27vhFkIBbr9ZoZc3szs7MznwfIW-lCiNtfevFkZEeT0PlaWO4JwxICAOpWdlNOBzJ_in_fCbO1sivZhYG2yobn1g66nRisUa-505m5LajCvwP02sPWaPwdbWh0NA1tUK6X0KM1YMdx7C8cSncfP_ok7P3uzDsdU8-9r2aZcCzTKgCiy-Ri9pTy5UBPg4xx9ahMjKASPpG2RgBX4STMcpP4wgU43YccTH2x1wLYG7de2SDMx675G_jsDv6-q2t8viMuSSQVZBGjMX-HuQuxOEcu65XLsKSL-CPIHdzkU_18kZn2cp913tIHtSBKj2odtYjsgb5Y7K1Al_4hMwqcH7aLal0Li0dTHRKkezT6jm2U1OzpJoOkB6Ifr9e4KgTRRpRF_LTH-VzAR2WzZxAsR7sZHuzxWVBe9mSfnG-7KoeEqUH2YWzRfHz6ik5vRPtPiPr-SSHbUJTADA8jUAqy7W0sfGlRfJkHSsAoTvkfaPQxNYA58izkSUu0UHdJ63uO-R1KzqtUD3-JnSIVmkFEIi7_DCZXST1uU4C7XLCyBrLrUEW5zgwIFRorLJCgRYdstPYNKm9wzz5vZc75E1r53__yfP_L_KKbPZPhoNkcDQ6fkHuu5AurKYld8h6MVvASxc2FWa33puUnN_1cbgF5DUptA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZTxRBEO4gJooPxjOuoHY8El8mO0df80AICiPIgiaK4W3s7qkBkmF22Z0N2b_mr6NrLtdEfeN1UulM6uqq6qr6CHkrVCi19a0XSyM8loXK08YwjxsQEAZCR3U34eGR2Dtmn0_4yQr51c3CYFtl5xNrR52NLdbIh84ypVNHFfjDvG2L-LqTbE0uPUSQwpfWDk6jUZEDWFy59G22ub_jZP0uDJPd7x_3vBZhwLMRVxUWXqSL2DPLlAGWh5hf61AZEYAUvlE2xmUv3NEY5WexBBUxm0vGcz9nmkPkzr1Fbkvc4o5T6smnvr7jR5FL_6JmmVEUxf4QShfcMIb91ktXYI0U8Ed4e3deTvTiShfF0k2XPCD32xCVbjc69ZCsQPmI3FtaXPiYTJu1_HS3BtE5t3Q01hlFmE-rZ9hITc2CajpCYCD67XKOQ04UAURdsE9_1A8F9LBu4wSKlWBHm0zn5xVNigX94rzYRTseSreLU8f56uziCTm-Ed4-JavluIRnhGYAYFgmQSjLtLCx8YVF2GQdKwCuB-R9x9DUtqvNEWGjSF2Kg7xPe94PyOuedNLs8_gb0QeUSk-AK7jrD-PpadpadBpolw1KayyzBvGb48AAV6GxynIFmg_IRifTtPULs_S3Fg_Im17O__6T5_8_5BW544wgHe0fHayTNRfLhc2Y5AZZraZzeOHipcq8rBWTkp83bQnXvZknTg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gAcKE91aUEWcOCS5mU7zgktqKsKtQUJFpVTsJ1JtSLNLtkEtPx6xo531SKQkLhF0SRxNGN7ZjzzfYS8EDLJlIlMkGdaBKxMZKC0ZgHXICCJhUpdNeHpmTiesbfn_NzznK58WSWG4nO3SLsKWYxP0pCHcRwylkbhsqxeffeppBi3F56zxPb27uCViEZkZ3b2fvLZnSX7hwc8oRSD-xAa9C_sa67tQg6s_5qHebNvlmr9Q9X1lc1muku-bIY51Jh8Pew7fWh-_obg-B__cZfc8Y4onQyWc4_cgOY-uX0FnvABaQfwfXrkqHLmhp4sVEktmadRK1suTfWaKnpi6X_oh2-9bWWiliYUXXr6yR0H0FNXrAnU5ntRdtr2845O6zV9h2vVpW8CpZP6YtGixOVDMpsefXxzHHiOhsCkXHY2dZVhzFMaJjWwKrEZCpVILWLIRKSlyS1cDkcZLaMyz0CmzFQZ41VUMcUhfURGzaKBPUJLANCszEBIw5QwuY6EseTIKpcAXI3Jy43OCuMBzC2PRl1gIGPVW2zVOybPtqLLAbXjT0KvreK3AhZo291YtBeFn7dFrDDmy4w2zGjL0pzHGrhMtJGGS1B8TA42ZlP42b8qcBfJUNsyxm8835rS30fy-J-k9skt9NaSoRHygIy6tocn6BF1-qm3-l-T5AVt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annual+Electric+Load+Forecasting+by+a+Least+Squares+Support+Vector+Machine+with+a+Fruit+Fly+Optimization+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Li%2C+Hongze&rft.au=Guo%2C+Sen&rft.au=Zhao%2C+Huiru&rft.au=Su%2C+Chenbo&rft.date=2012-11-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=5&rft.issue=11&rft.spage=4430&rft_id=info:doi/10.3390%2Fen5114430&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3337794541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon