Adaptive R-peak Detection Algorithm based on Brown Exponential Smoothing Model

ECG is one of the most effective medical tests for heart disease diagnosis, and R-peak detection is the first step in ECG interpretation. For wearable ECG signals, the difficulty of R-peak detection mainly lies in the interference of dynamic strong noise, and the limited hardware computational resou...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Hao, Zihao, Zhang, Xiaoming, Lai, Zhengxi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3218308

Cover

Abstract ECG is one of the most effective medical tests for heart disease diagnosis, and R-peak detection is the first step in ECG interpretation. For wearable ECG signals, the difficulty of R-peak detection mainly lies in the interference of dynamic strong noise, and the limited hardware computational resources limit the use of some complex algorithms. Therefore, an adaptive threshold R-peak detection algorithm based on Brown's exponential smoothing model is proposed in this paper. The algorithm selects features based on the morphological characteristics and occurrence law of R-peaks, updates the threshold parameters using the Brown exponential smoothing model, optimizes the smoothing coefficients in it using the relative error least squares method, corrects the smoothing ability of the observation error and the response speed to the change of the observation, so that the updated threshold can be more consistent with the R-peak detection. Finally the algorithm achieves 99.6% precision, 99.7% recall and 99.65% F1 score on the self-constructed ECG dataset, and compares with other R-peak detection algorithms to determine the superiority of the proposed algorithm in some performance metrics. It is demonstrated experimentally that the algorithm can adapt well to the strong noise environment and obtain satisfactory R-peak detection accuracy.
AbstractList ECG is one of the most effective medical tests for heart disease diagnosis, and R-peak detection is the first step in ECG interpretation. For wearable ECG signals, the difficulty of R-peak detection mainly lies in the interference of dynamic strong noise, and the limited hardware computational resources limit the use of some complex algorithms. Therefore, an adaptive threshold R-peak detection algorithm based on Brown's exponential smoothing model is proposed in this paper. The algorithm selects features based on the morphological characteristics and occurrence law of R-peaks, updates the threshold parameters using the Brown exponential smoothing model, optimizes the smoothing coefficients in it using the relative error least squares method, corrects the smoothing ability of the observation error and the response speed to the change of the observation, so that the updated threshold can be more consistent with the R-peak detection. Finally the algorithm achieves 99.6% precision, 99.7% recall and 99.65% F1 score on the self-constructed ECG dataset, and compares with other R-peak detection algorithms to determine the superiority of the proposed algorithm in some performance metrics. It is demonstrated experimentally that the algorithm can adapt well to the strong noise environment and obtain satisfactory R-peak detection accuracy.
Author Zhang, Xiaoming
Lai, Zhengxi
Hao, Zihao
Author_xml – sequence: 1
  givenname: Zihao
  orcidid: 0000-0002-1028-1876
  surname: Hao
  fullname: Hao, Zihao
  organization: National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, China
– sequence: 2
  givenname: Xiaoming
  surname: Zhang
  fullname: Zhang, Xiaoming
  organization: National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, China
– sequence: 3
  givenname: Zhengxi
  surname: Lai
  fullname: Lai, Zhengxi
  organization: Shenzhen ImyFit Technology Co., Ltd, Shenzhen, China
BookMark eNplkUFv1DAQhS3USpTSX9BLJM5ZYk_sOMdl2UKlAlK3PVvjZLz1ko2DnaX035MlVYVgLrae_D49v3nDTvrQE2OXvFhwXtTvl6vVerNZiEKIBQiuodCv2Jngqs5Bgjr56_6aXaS0K6bRkySrM_Z12eIw-p-U3eYD4ffsI43UjD702bLbhujHh31mMVGbTdKHGB77bP1rmBL0o8cu2-xDGB98v82-hJa6t-zUYZfo4vk8Z_dX67vV5_zm26fr1fImb0DqMRekADgJcLpoKw7UaCtk6yy25JRTAivSwFGqokTtsC4rjU60QiourSvhnF3P3DbgzgzR7zE-mYDe_BFC3BqMo286MspyrS1a21hRImItJTiQpLiwAiqYWOXMOvQDPj1i170AeWGOFRtsGkrJHCs2zxVPtnezbYjhx4HSaHbhEPvp10ZUUEItND8GhflVE0NKkdx_7Hl9_7IvZ5cnohdHXQOUpYLf-jqV7w
CODEN IAECCG
Cites_doi 10.1016/j.eswa.2019.05.033
10.1109/TIM.2021.3051412
10.1007/s11432-020-3150-2
10.1016/j.cmpb.2011.12.004
10.1109/ACCESS.2020.2997473
10.1109/JSEN.2015.2450773
10.2307/2342487
10.1109/ACCESS.2021.3067179
10.1016/j.compeleceng.2007.10.005
10.1109/TBME.2013.2240452
10.1016/j.bspc.2019.101827
10.1007/s11042-021-10994-x
10.1007/s13246-018-0670-7
10.1109/TBME.1983.325067
10.1109/TBME.2004.824131
10.1109/TBME.2003.821031
10.1016/j.bbe.2022.02.007
10.1109/TBME.1979.326461
10.1109/TBME.1985.325532
10.1109/JBHI.2022.3178109
10.1109/TBME.2015.2422378
10.1016/j.amc.2011.03.001
10.1016/j.gheart.2018.09.511
10.1016/j.eswa.2021.115528
10.1016/j.bspc.2021.102519
10.1007/s11042-020-10500-9
10.4015/S1016237219500145
10.1109/TBME.2016.2602283
10.1109/TBME.1971.4502834
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2022.3218308
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
Open Access Journals (via IEEE Xplore)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journal Directory
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_6b188babbcb24aaa9553f35e612b2373
10.1109/access.2022.3218308
10_1109_ACCESS_2022_3218308
9933446
Genre orig-research
GrantInformation_xml – fundername: Key R & D projects in Shanxi
  grantid: 201903D121169
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c358t-2e6331e23f80d713ec8b25dfbadef6f62a7e831a5604a8fa9478af2d25615bf43
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Tue Oct 14 18:58:32 EDT 2025
Tue Aug 19 18:15:09 EDT 2025
Sun Jun 29 13:22:58 EDT 2025
Wed Oct 01 03:26:25 EDT 2025
Wed Aug 27 02:29:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-2e6331e23f80d713ec8b25dfbadef6f62a7e831a5604a8fa9478af2d25615bf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1028-1876
0000-0001-8784-0544
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/09933446.pdf
PQID 2734392814
PQPubID 4845423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_6b188babbcb24aaa9553f35e612b2373
crossref_primary_10_1109_ACCESS_2022_3218308
ieee_primary_9933446
proquest_journals_2734392814
unpaywall_primary_10_1109_access_2022_3218308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
rahul (ref23) 2021; 67
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref26
menrad (ref7) 1981
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1016/j.eswa.2019.05.033
– ident: ref5
  doi: 10.1109/TIM.2021.3051412
– ident: ref10
  doi: 10.1007/s11432-020-3150-2
– ident: ref15
  doi: 10.1016/j.cmpb.2011.12.004
– ident: ref27
  doi: 10.1109/ACCESS.2020.2997473
– ident: ref19
  doi: 10.1109/JSEN.2015.2450773
– ident: ref30
  doi: 10.2307/2342487
– ident: ref21
  doi: 10.1109/ACCESS.2021.3067179
– ident: ref13
  doi: 10.1016/j.compeleceng.2007.10.005
– ident: ref4
  doi: 10.1109/TBME.2013.2240452
– ident: ref17
  doi: 10.1016/j.bspc.2019.101827
– ident: ref29
  doi: 10.1007/s11042-021-10994-x
– ident: ref2
  doi: 10.1007/s13246-018-0670-7
– ident: ref18
  doi: 10.1109/TBME.1983.325067
– ident: ref26
  doi: 10.1109/TBME.2004.824131
– ident: ref14
  doi: 10.1109/TBME.2003.821031
– ident: ref22
  doi: 10.1016/j.bbe.2022.02.007
– ident: ref8
  doi: 10.1109/TBME.1979.326461
– ident: ref9
  doi: 10.1109/TBME.1985.325532
– ident: ref11
  doi: 10.1109/JBHI.2022.3178109
– ident: ref20
  doi: 10.1109/TBME.2015.2422378
– ident: ref12
  doi: 10.1016/j.amc.2011.03.001
– ident: ref1
  doi: 10.1016/j.gheart.2018.09.511
– ident: ref28
  doi: 10.1016/j.eswa.2021.115528
– volume: 67
  year: 2021
  ident: ref23
  article-title: Dynamic thresholding based efficient QRS complex detection with low computational overhead
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102519
– ident: ref16
  doi: 10.1007/s11042-020-10500-9
– ident: ref24
  doi: 10.4015/S1016237219500145
– ident: ref3
  doi: 10.1109/TBME.2016.2602283
– start-page: 64
  year: 1981
  ident: ref7
  article-title: Dual microprocessor system for cardiovascular data acquisition, processing and recording
  publication-title: Proc IEEE Int Conf Ind Electron Control Instrum
– ident: ref6
  doi: 10.1109/TBME.1971.4502834
SSID ssj0000816957
Score 2.2385628
Snippet ECG is one of the most effective medical tests for heart disease diagnosis, and R-peak detection is the first step in ECG interpretation. For wearable ECG...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Adaptive algorithms
Adaptive threshold
Algorithms
Biomedical monitoring
Brown exponential smoothing model
Detection algorithms
Electrocardiography
Error correction
Heart diseases
Heuristic algorithms
Interference
Least squares method
Performance measurement
R-peak detection
Smoothing
Smoothing methods
Wearable ECG signal
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ChKrSoaQvygSNp46_EPm6XrVZI9ABU6s0ax3YrdZtdlV0B_56xk65S9cCFaxRNJvMcz3uR9YaQj-CxJ1Y6lLXDFSyDMyVUPpaujo1RIhiWjbS_XtbzK_nlWl2PRn2lM2G9PXBfuLPaMa0dONc6LgHAKCWiUAE7s-OiyT6flTYjMZX3YM1qo5rBZohV5mwyneIboSDk_FQkXpAGSo5aUXbsH0asPGGbLzfdCv78gsVi1Hgu9sjuwBjppM_0DXkRurfk9chHcJ9cTjys0r5Fv5W4x93Rz2Gdj1h1dLK4WaL-v72n59ivPMVLWXnT2e_VsktHhTD29_slAoahaBqNtjggVxezH9N5OQxKKFuh9LrkoRaCBS6irjyqztBqx5WPDnyIdaw5NEELBshuJOgIRjYaIvdId5hyUYp3ZKfDZx4SqkLlJHDVojCUGMD4IFsPkbXOaGQHBfn0WDO76v0wbNYRlbF9iW0qsR1KXJDzVNftrcnMOl9AiO0Asf0XxAXZT6hsgyClEqhiC3LyiJIdPryfNrn1IOXTTBak3CL3LFXI0yifpHr0P1I9Jq9SzP4fzQnZWT9swntkLWv3IS_Qv5FL5uA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgU1UFAOHJtt4kdiH5elVYXUHoBKvUXj2AbUbTYqWfH49YydbLQFDtwiyxrb-caZb5zxDMAbtGQTc-Wy0pAGC2d0hrn1mSl9pSV3uoiJtM8vyrNL8f5KXu3A0XQXxjkXg8_cLDzGf_l21azDUdkx2VJO7ssu7FaqHO5qTecpoYCEltWYWKjI9fF8saA1kAvI2IwHJhBKSG4Zn5ijfyyqcodf3lu3Hf78jsvllqk5fQTnm0kOESbXs3VvZs2vP_I3_u8qHsPDkXOm80FJnsCOa5_Cg61MhPtwMbfYhS9f-iHrHF6n71wfg7TadL78vLr92n-5SYPFsyk1Rd89PfnRrdoQbESyP96sCHISlYbiastncHl68mlxlo2lFrKGS9VnzJWcF45xr3JLfqtrlGHSeoPW-dKXDCuneIHEjwQqj1pUCj2zRJgKabzgz2GvpTEPIJUuNwKZbMi1FCRAWycai75ojFbELxI42mBQd0NGjTp6IrmuB8jqAFk9QpbA24DT1DWkw44N9E7rcXfVpSmUMmhMY5hARC0l91w6om-G8YonsB9wmISMECRwuEG9Hrfutzrk-yHSqAqRQDZpwl9TxVjP8s5UX_x7lJdwP_Qazm0OYa-_XbtXxGR68zqq8G-_2vBS
  priority: 102
  providerName: IEEE
Title Adaptive R-peak Detection Algorithm based on Brown Exponential Smoothing Model
URI https://ieeexplore.ieee.org/document/9933446
https://www.proquest.com/docview/2734392814
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09933446.pdf
https://doaj.org/article/6b188babbcb24aaa9553f35e612b2373
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Journal Directory
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoKxy4EiyiV-xj-nSqkJihYCVyimyYxuqptmoZEXh1zP2eldbOMEtsqyJkxl7vrHH3yD0WhnwiYWwGddgwdRqmanCuExzV0lGrCwDkfb7BT9b0nfn7DxuuIW7MNbakHxmc_8YzvIvbHdTzTj25GlyxsHFQ5AwA2hDCAQz-WDcXXTAGWDxCTpYLj7UX3xFuZLLjISzyZeRWHOmQg1CCAoxzonHBr6o5J47Cqz9sczKLcR5b90P6ucP1XV7zuf0IWq2w97knFzm61Hn7a8_GB3__7seoQcRl6b1xpAeozu2f4Lu77EVHqJFbdTgV8f0YwYr6WX61o4hkatP6-7r6vpi_HaVHoNXNCk0hfg-PbkZVr1PSALZn65WYBYgKvUF2LqnaHl68nl-lsVyDFlLmBgzbDkhpcXEicJAbGtboTEzTitjHXccq8oKUirAUFQJpySthHLYAKgqmXaUPEOTHt75HKXMFpoqzFoIPykIkMbS1ihXtloKwCAJerPVSjNsWDeaEK0UsqnnczDNxiuxiUpM0LHX3K6rp8wODfCXmzgDG65LIbTSutWYKqUkY8QRZgHiaUwqkqBDr5mdkKiGBB1t7aCJ0_t74zmBAFiKkiYo29nGX0Pd2Nutob74x_5HaDJer-0rQD6jnoYdg2m4pDiNpv4bf8QASQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBVEoEAOHJtt4kfWPi5LqwW6e4BW6s2yYxtQt9moZMXj1zN2stEWOHCLrGRs5xtnvnHGMwCvtUWbmAuXlQY1mDkjM51bn5nSjyWnThYxkfZ8Uc7O2fsLfrEDh8NZGOdcDD5zo3AZ_-XbVbUOW2VHaEspui-34DZnjPHutNawoxJKSEg-7lMLFbk8mkynOAt0AgkZ0cAFQhHJLfMTs_T3ZVVuMMy9dd3on9_1crllbE7uw3wzzC7G5HK0bs2o-vVHBsf_nccDuNezznTSqclD2HH1I7i7lYtwHxYTq5vw7Us_Zo3Tl-lb18YwrTqdLD-vrr-2X67SYPNsik3Re0-PfzSrOoQboexPVysEHUWlobza8jGcnxyfTWdZX2whqygXbUZcSWnhCPUit-i5ukoYwq032jpf-pLosRO00MiQmBZeSzYW2hOLlKngxjP6BHZr7PMppNzlhmnCK3QuGQqQ1rHKal9URgpkGAkcbjBQTZdTQ0VfJJeqg0wFyFQPWQJvAk7DrSEhdmzAd6r69aVKUwhhtDGVIUxrLTmnnnKHBM4QOqYJ7AccBiE9BAkcbFBX_eL9pkLGH6SNomAJZIMm_DVUHSta3hjqs3_38gr2ZmfzU3X6bvHhOdwJT3S7OAew216v3QvkNa15GdX5N3f9858
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVge0Ac-CqIQEE5cCTZxF9xjunSqkJihYCVysmyY5tWTbNRyaotv56x17vawglukWVNnMyz503svEHonTIQEwthM64BwdTqOlOFcZnmrqoZsXUZhLQ_zfnJgn48Zafxg1v4F8ZaGw6f2dxfhr38c9vdVFOOvXhaPeUQ4iFJmAK1IQSSmXww7j7a4wy4-ATtLeafm---olzJ64yEvcnXUVhzqkINQkgKMc6J5wa-qOROOAqq_bHMyh3G-WDVD-r2WnXdTvA5fozkZtjrMycX-WrUefvrD0XH_3-uJ-hR5KVpswbSU3TP9s_Qwx21wn00b4wa_OqYfslgJb1IP9gxHOTq06b7sbw6H88u00OIiiaFppDfp0c3w7L3B5LA9tfLJcACTKW-AFv3HC2Oj77NTrJYjiFrCRNjhi0npLSYOFEYyG1tKzRmxmllrOOOY1VZQUoFHIoq4VRNK6EcNkCqSqYdJS_QpId7vkQps4WmCrMW0k8KBmpjaWuUK1tdC-AgCXq_8Yoc1qobMmQrRS2b2QygKb0TZXRigg6957ZdvWR2aIC3LOMMlFyXQmildasxVUrVjBFHmAWKpzGpSIL2vWe2RqIbEnSwwYGM0_un9JpAQCxFSROUbbHx11DXeLsz1Ff_2P8ATcarlX0DzGfUbyO8fwONuv5E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+R-Peak+Detection+Algorithm+Based+on+Brown+Exponential+Smoothing+Model&rft.jtitle=IEEE+access&rft.au=Hao%2C+Zihao&rft.au=Zhang%2C+Xiaoming&rft.au=Lai%2C+Zhengxi&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=114355&rft.epage=114363&rft_id=info:doi/10.1109%2FACCESS.2022.3218308&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3218308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon