Adaptive R-peak Detection Algorithm based on Brown Exponential Smoothing Model
ECG is one of the most effective medical tests for heart disease diagnosis, and R-peak detection is the first step in ECG interpretation. For wearable ECG signals, the difficulty of R-peak detection mainly lies in the interference of dynamic strong noise, and the limited hardware computational resou...
Saved in:
| Published in | IEEE access Vol. 10; p. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2022.3218308 |
Cover
| Abstract | ECG is one of the most effective medical tests for heart disease diagnosis, and R-peak detection is the first step in ECG interpretation. For wearable ECG signals, the difficulty of R-peak detection mainly lies in the interference of dynamic strong noise, and the limited hardware computational resources limit the use of some complex algorithms. Therefore, an adaptive threshold R-peak detection algorithm based on Brown's exponential smoothing model is proposed in this paper. The algorithm selects features based on the morphological characteristics and occurrence law of R-peaks, updates the threshold parameters using the Brown exponential smoothing model, optimizes the smoothing coefficients in it using the relative error least squares method, corrects the smoothing ability of the observation error and the response speed to the change of the observation, so that the updated threshold can be more consistent with the R-peak detection. Finally the algorithm achieves 99.6% precision, 99.7% recall and 99.65% F1 score on the self-constructed ECG dataset, and compares with other R-peak detection algorithms to determine the superiority of the proposed algorithm in some performance metrics. It is demonstrated experimentally that the algorithm can adapt well to the strong noise environment and obtain satisfactory R-peak detection accuracy. |
|---|---|
| AbstractList | ECG is one of the most effective medical tests for heart disease diagnosis, and R-peak detection is the first step in ECG interpretation. For wearable ECG signals, the difficulty of R-peak detection mainly lies in the interference of dynamic strong noise, and the limited hardware computational resources limit the use of some complex algorithms. Therefore, an adaptive threshold R-peak detection algorithm based on Brown's exponential smoothing model is proposed in this paper. The algorithm selects features based on the morphological characteristics and occurrence law of R-peaks, updates the threshold parameters using the Brown exponential smoothing model, optimizes the smoothing coefficients in it using the relative error least squares method, corrects the smoothing ability of the observation error and the response speed to the change of the observation, so that the updated threshold can be more consistent with the R-peak detection. Finally the algorithm achieves 99.6% precision, 99.7% recall and 99.65% F1 score on the self-constructed ECG dataset, and compares with other R-peak detection algorithms to determine the superiority of the proposed algorithm in some performance metrics. It is demonstrated experimentally that the algorithm can adapt well to the strong noise environment and obtain satisfactory R-peak detection accuracy. |
| Author | Zhang, Xiaoming Lai, Zhengxi Hao, Zihao |
| Author_xml | – sequence: 1 givenname: Zihao orcidid: 0000-0002-1028-1876 surname: Hao fullname: Hao, Zihao organization: National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, China – sequence: 2 givenname: Xiaoming surname: Zhang fullname: Zhang, Xiaoming organization: National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, China – sequence: 3 givenname: Zhengxi surname: Lai fullname: Lai, Zhengxi organization: Shenzhen ImyFit Technology Co., Ltd, Shenzhen, China |
| BookMark | eNplkUFv1DAQhS3USpTSX9BLJM5ZYk_sOMdl2UKlAlK3PVvjZLz1ko2DnaX035MlVYVgLrae_D49v3nDTvrQE2OXvFhwXtTvl6vVerNZiEKIBQiuodCv2Jngqs5Bgjr56_6aXaS0K6bRkySrM_Z12eIw-p-U3eYD4ffsI43UjD702bLbhujHh31mMVGbTdKHGB77bP1rmBL0o8cu2-xDGB98v82-hJa6t-zUYZfo4vk8Z_dX67vV5_zm26fr1fImb0DqMRekADgJcLpoKw7UaCtk6yy25JRTAivSwFGqokTtsC4rjU60QiourSvhnF3P3DbgzgzR7zE-mYDe_BFC3BqMo286MspyrS1a21hRImItJTiQpLiwAiqYWOXMOvQDPj1i170AeWGOFRtsGkrJHCs2zxVPtnezbYjhx4HSaHbhEPvp10ZUUEItND8GhflVE0NKkdx_7Hl9_7IvZ5cnohdHXQOUpYLf-jqV7w |
| CODEN | IAECCG |
| Cites_doi | 10.1016/j.eswa.2019.05.033 10.1109/TIM.2021.3051412 10.1007/s11432-020-3150-2 10.1016/j.cmpb.2011.12.004 10.1109/ACCESS.2020.2997473 10.1109/JSEN.2015.2450773 10.2307/2342487 10.1109/ACCESS.2021.3067179 10.1016/j.compeleceng.2007.10.005 10.1109/TBME.2013.2240452 10.1016/j.bspc.2019.101827 10.1007/s11042-021-10994-x 10.1007/s13246-018-0670-7 10.1109/TBME.1983.325067 10.1109/TBME.2004.824131 10.1109/TBME.2003.821031 10.1016/j.bbe.2022.02.007 10.1109/TBME.1979.326461 10.1109/TBME.1985.325532 10.1109/JBHI.2022.3178109 10.1109/TBME.2015.2422378 10.1016/j.amc.2011.03.001 10.1016/j.gheart.2018.09.511 10.1016/j.eswa.2021.115528 10.1016/j.bspc.2021.102519 10.1007/s11042-020-10500-9 10.4015/S1016237219500145 10.1109/TBME.2016.2602283 10.1109/TBME.1971.4502834 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2022.3218308 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present Open Access Journals (via IEEE Xplore) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journal Directory url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_6b188babbcb24aaa9553f35e612b2373 10.1109/access.2022.3218308 10_1109_ACCESS_2022_3218308 9933446 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key R & D projects in Shanxi grantid: 201903D121169 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c358t-2e6331e23f80d713ec8b25dfbadef6f62a7e831a5604a8fa9478af2d25615bf43 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Tue Oct 14 18:58:32 EDT 2025 Tue Aug 19 18:15:09 EDT 2025 Sun Jun 29 13:22:58 EDT 2025 Wed Oct 01 03:26:25 EDT 2025 Wed Aug 27 02:29:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-2e6331e23f80d713ec8b25dfbadef6f62a7e831a5604a8fa9478af2d25615bf43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1028-1876 0000-0001-8784-0544 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/6514899/09933446.pdf |
| PQID | 2734392814 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6b188babbcb24aaa9553f35e612b2373 crossref_primary_10_1109_ACCESS_2022_3218308 ieee_primary_9933446 proquest_journals_2734392814 unpaywall_primary_10_1109_access_2022_3218308 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 rahul (ref23) 2021; 67 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref26 menrad (ref7) 1981 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref25 doi: 10.1016/j.eswa.2019.05.033 – ident: ref5 doi: 10.1109/TIM.2021.3051412 – ident: ref10 doi: 10.1007/s11432-020-3150-2 – ident: ref15 doi: 10.1016/j.cmpb.2011.12.004 – ident: ref27 doi: 10.1109/ACCESS.2020.2997473 – ident: ref19 doi: 10.1109/JSEN.2015.2450773 – ident: ref30 doi: 10.2307/2342487 – ident: ref21 doi: 10.1109/ACCESS.2021.3067179 – ident: ref13 doi: 10.1016/j.compeleceng.2007.10.005 – ident: ref4 doi: 10.1109/TBME.2013.2240452 – ident: ref17 doi: 10.1016/j.bspc.2019.101827 – ident: ref29 doi: 10.1007/s11042-021-10994-x – ident: ref2 doi: 10.1007/s13246-018-0670-7 – ident: ref18 doi: 10.1109/TBME.1983.325067 – ident: ref26 doi: 10.1109/TBME.2004.824131 – ident: ref14 doi: 10.1109/TBME.2003.821031 – ident: ref22 doi: 10.1016/j.bbe.2022.02.007 – ident: ref8 doi: 10.1109/TBME.1979.326461 – ident: ref9 doi: 10.1109/TBME.1985.325532 – ident: ref11 doi: 10.1109/JBHI.2022.3178109 – ident: ref20 doi: 10.1109/TBME.2015.2422378 – ident: ref12 doi: 10.1016/j.amc.2011.03.001 – ident: ref1 doi: 10.1016/j.gheart.2018.09.511 – ident: ref28 doi: 10.1016/j.eswa.2021.115528 – volume: 67 year: 2021 ident: ref23 article-title: Dynamic thresholding based efficient QRS complex detection with low computational overhead publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102519 – ident: ref16 doi: 10.1007/s11042-020-10500-9 – ident: ref24 doi: 10.4015/S1016237219500145 – ident: ref3 doi: 10.1109/TBME.2016.2602283 – start-page: 64 year: 1981 ident: ref7 article-title: Dual microprocessor system for cardiovascular data acquisition, processing and recording publication-title: Proc IEEE Int Conf Ind Electron Control Instrum – ident: ref6 doi: 10.1109/TBME.1971.4502834 |
| SSID | ssj0000816957 |
| Score | 2.2385628 |
| Snippet | ECG is one of the most effective medical tests for heart disease diagnosis, and R-peak detection is the first step in ECG interpretation. For wearable ECG... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Adaptive algorithms Adaptive threshold Algorithms Biomedical monitoring Brown exponential smoothing model Detection algorithms Electrocardiography Error correction Heart diseases Heuristic algorithms Interference Least squares method Performance measurement R-peak detection Smoothing Smoothing methods Wearable ECG signal |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL8ChKrSoaQvygSNp46_EPm6XrVZI9ABU6s0ax3YrdZtdlV0B_56xk65S9cCFaxRNJvMcz3uR9YaQj-CxJ1Y6lLXDFSyDMyVUPpaujo1RIhiWjbS_XtbzK_nlWl2PRn2lM2G9PXBfuLPaMa0dONc6LgHAKCWiUAE7s-OiyT6flTYjMZX3YM1qo5rBZohV5mwyneIboSDk_FQkXpAGSo5aUXbsH0asPGGbLzfdCv78gsVi1Hgu9sjuwBjppM_0DXkRurfk9chHcJ9cTjys0r5Fv5W4x93Rz2Gdj1h1dLK4WaL-v72n59ivPMVLWXnT2e_VsktHhTD29_slAoahaBqNtjggVxezH9N5OQxKKFuh9LrkoRaCBS6irjyqztBqx5WPDnyIdaw5NEELBshuJOgIRjYaIvdId5hyUYp3ZKfDZx4SqkLlJHDVojCUGMD4IFsPkbXOaGQHBfn0WDO76v0wbNYRlbF9iW0qsR1KXJDzVNftrcnMOl9AiO0Asf0XxAXZT6hsgyClEqhiC3LyiJIdPryfNrn1IOXTTBak3CL3LFXI0yifpHr0P1I9Jq9SzP4fzQnZWT9swntkLWv3IS_Qv5FL5uA priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61vQAHXgU1UFAOHJtt4kdiH5elVYXUHoBKvUXj2AbUbTYqWfH49YydbLQFDtwiyxrb-caZb5zxDMAbtGQTc-Wy0pAGC2d0hrn1mSl9pSV3uoiJtM8vyrNL8f5KXu3A0XQXxjkXg8_cLDzGf_l21azDUdkx2VJO7ssu7FaqHO5qTecpoYCEltWYWKjI9fF8saA1kAvI2IwHJhBKSG4Zn5ijfyyqcodf3lu3Hf78jsvllqk5fQTnm0kOESbXs3VvZs2vP_I3_u8qHsPDkXOm80FJnsCOa5_Cg61MhPtwMbfYhS9f-iHrHF6n71wfg7TadL78vLr92n-5SYPFsyk1Rd89PfnRrdoQbESyP96sCHISlYbiastncHl68mlxlo2lFrKGS9VnzJWcF45xr3JLfqtrlGHSeoPW-dKXDCuneIHEjwQqj1pUCj2zRJgKabzgz2GvpTEPIJUuNwKZbMi1FCRAWycai75ojFbELxI42mBQd0NGjTp6IrmuB8jqAFk9QpbA24DT1DWkw44N9E7rcXfVpSmUMmhMY5hARC0l91w6om-G8YonsB9wmISMECRwuEG9Hrfutzrk-yHSqAqRQDZpwl9TxVjP8s5UX_x7lJdwP_Qazm0OYa-_XbtXxGR68zqq8G-_2vBS priority: 102 providerName: IEEE |
| Title | Adaptive R-peak Detection Algorithm based on Brown Exponential Smoothing Model |
| URI | https://ieeexplore.ieee.org/document/9933446 https://www.proquest.com/docview/2734392814 https://ieeexplore.ieee.org/ielx7/6287639/6514899/09933446.pdf https://doaj.org/article/6b188babbcb24aaa9553f35e612b2373 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Journal Directory customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge0AceBVEoKxy4EiyiV-xj-nSqkJihYCVyimyYxuqptmoZEXh1zP2eldbOMEtsqyJkxl7vrHH3yD0WhnwiYWwGddgwdRqmanCuExzV0lGrCwDkfb7BT9b0nfn7DxuuIW7MNbakHxmc_8YzvIvbHdTzTj25GlyxsHFQ5AwA2hDCAQz-WDcXXTAGWDxCTpYLj7UX3xFuZLLjISzyZeRWHOmQg1CCAoxzonHBr6o5J47Cqz9sczKLcR5b90P6ucP1XV7zuf0IWq2w97knFzm61Hn7a8_GB3__7seoQcRl6b1xpAeozu2f4Lu77EVHqJFbdTgV8f0YwYr6WX61o4hkatP6-7r6vpi_HaVHoNXNCk0hfg-PbkZVr1PSALZn65WYBYgKvUF2LqnaHl68nl-lsVyDFlLmBgzbDkhpcXEicJAbGtboTEzTitjHXccq8oKUirAUFQJpySthHLYAKgqmXaUPEOTHt75HKXMFpoqzFoIPykIkMbS1ihXtloKwCAJerPVSjNsWDeaEK0UsqnnczDNxiuxiUpM0LHX3K6rp8wODfCXmzgDG65LIbTSutWYKqUkY8QRZgHiaUwqkqBDr5mdkKiGBB1t7aCJ0_t74zmBAFiKkiYo29nGX0Pd2Nutob74x_5HaDJer-0rQD6jnoYdg2m4pDiNpv4bf8QASQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigceBVEoEAOHJtt4kfWPi5LqwW6e4BW6s2yYxtQt9moZMXj1zN2stEWOHCLrGRs5xtnvnHGMwCvtUWbmAuXlQY1mDkjM51bn5nSjyWnThYxkfZ8Uc7O2fsLfrEDh8NZGOdcDD5zo3AZ_-XbVbUOW2VHaEspui-34DZnjPHutNawoxJKSEg-7lMLFbk8mkynOAt0AgkZ0cAFQhHJLfMTs_T3ZVVuMMy9dd3on9_1crllbE7uw3wzzC7G5HK0bs2o-vVHBsf_nccDuNezznTSqclD2HH1I7i7lYtwHxYTq5vw7Us_Zo3Tl-lb18YwrTqdLD-vrr-2X67SYPNsik3Re0-PfzSrOoQboexPVysEHUWlobza8jGcnxyfTWdZX2whqygXbUZcSWnhCPUit-i5ukoYwq032jpf-pLosRO00MiQmBZeSzYW2hOLlKngxjP6BHZr7PMppNzlhmnCK3QuGQqQ1rHKal9URgpkGAkcbjBQTZdTQ0VfJJeqg0wFyFQPWQJvAk7DrSEhdmzAd6r69aVKUwhhtDGVIUxrLTmnnnKHBM4QOqYJ7AccBiE9BAkcbFBX_eL9pkLGH6SNomAJZIMm_DVUHSta3hjqs3_38gr2ZmfzU3X6bvHhOdwJT3S7OAew216v3QvkNa15GdX5N3f9858 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVge0Ac-CqIQEE5cCTZxF9xjunSqkJihYCVysmyY5tWTbNRyaotv56x17vawglukWVNnMyz503svEHonTIQEwthM64BwdTqOlOFcZnmrqoZsXUZhLQ_zfnJgn48Zafxg1v4F8ZaGw6f2dxfhr38c9vdVFOOvXhaPeUQ4iFJmAK1IQSSmXww7j7a4wy4-ATtLeafm---olzJ64yEvcnXUVhzqkINQkgKMc6J5wa-qOROOAqq_bHMyh3G-WDVD-r2WnXdTvA5fozkZtjrMycX-WrUefvrD0XH_3-uJ-hR5KVpswbSU3TP9s_Qwx21wn00b4wa_OqYfslgJb1IP9gxHOTq06b7sbw6H88u00OIiiaFppDfp0c3w7L3B5LA9tfLJcACTKW-AFv3HC2Oj77NTrJYjiFrCRNjhi0npLSYOFEYyG1tKzRmxmllrOOOY1VZQUoFHIoq4VRNK6EcNkCqSqYdJS_QpId7vkQps4WmCrMW0k8KBmpjaWuUK1tdC-AgCXq_8Yoc1qobMmQrRS2b2QygKb0TZXRigg6957ZdvWR2aIC3LOMMlFyXQmildasxVUrVjBFHmAWKpzGpSIL2vWe2RqIbEnSwwYGM0_un9JpAQCxFSROUbbHx11DXeLsz1Ff_2P8ATcarlX0DzGfUbyO8fwONuv5E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+R-Peak+Detection+Algorithm+Based+on+Brown+Exponential+Smoothing+Model&rft.jtitle=IEEE+access&rft.au=Hao%2C+Zihao&rft.au=Zhang%2C+Xiaoming&rft.au=Lai%2C+Zhengxi&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=114355&rft.epage=114363&rft_id=info:doi/10.1109%2FACCESS.2022.3218308&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3218308 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |