Classification of Knee Joint Vibration Signals Using Bivariate Feature Distribution Estimation and Maximal Posterior Probability Decision Criterion
Analysis of knee joint vibration or vibroarthrographic (VAG) signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee jo...
        Saved in:
      
    
          | Published in | Entropy (Basel, Switzerland) Vol. 15; no. 4; pp. 1375 - 1387 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.04.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1099-4300 1099-4300  | 
| DOI | 10.3390/e15041375 | 
Cover
| Abstract | Analysis of knee joint vibration or vibroarthrographic (VAG) signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee joint VAG signals helps characterize the pathological condition of degenerative articular cartilages in the knee. This paper used the kernel-based probability density estimation method to model the distributions of the VAG signals recorded from healthy subjects and patients with knee joint disorders. The estimated densities of the VAG signals showed explicit distributions of the normal and abnormal signal groups, along with the corresponding contours in the bivariate feature space. The signal classifications were performed by using the Fisher’s linear discriminant analysis, support vector machine with polynomial kernels, and the maximal posterior probability decision criterion. The maximal posterior probability decision criterion was able to provide the total classification accuracy of 86.67% and the area (Az) of 0.9096 under the receiver operating characteristics curve, which were superior to the results obtained by either the Fisher’s linear discriminant analysis (accuracy: 81.33%, Az: 0.8564) or the support vector machine with polynomial kernels (accuracy: 81.33%, Az: 0.8533). Such results demonstrated the merits of the bivariate feature distribution estimation and the superiority of the maximal posterior probability decision criterion for analysis of knee joint VAG signals. | 
    
|---|---|
| AbstractList | Analysis of knee joint vibration or vibroarthrographic (VAG) signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee joint VAG signals helps characterize the pathological condition of degenerative articular cartilages in the knee. This paper used the kernel-based probability density estimation method to model the distributions of the VAG signals recorded from healthy subjects and patients with knee joint disorders. The estimated densities of the VAG signals showed explicit distributions of the normal and abnormal signal groups, along with the corresponding contours in the bivariate feature space. The signal classifications were performed by using the Fisher’s linear discriminant analysis, support vector machine with polynomial kernels, and the maximal posterior probability decision criterion. The maximal posterior probability decision criterion was able to provide the total classification accuracy of 86.67% and the area (Az) of 0.9096 under the receiver operating characteristics curve, which were superior to the results obtained by either the Fisher’s linear discriminant analysis (accuracy: 81.33%, Az: 0.8564) or the support vector machine with polynomial kernels (accuracy: 81.33%, Az: 0.8533). Such results demonstrated the merits of the bivariate feature distribution estimation and the superiority of the maximal posterior probability decision criterion for analysis of knee joint VAG signals. | 
    
| Author | Zheng, Fang Wu, Yunfeng Cai, Suxian Xiang, Ning Yang, Shanshan  | 
    
| Author_xml | – sequence: 1 givenname: Yunfeng surname: Wu fullname: Wu, Yunfeng – sequence: 2 givenname: Suxian surname: Cai fullname: Cai, Suxian – sequence: 3 givenname: Shanshan surname: Yang fullname: Yang, Shanshan – sequence: 4 givenname: Fang surname: Zheng fullname: Zheng, Fang – sequence: 5 givenname: Ning surname: Xiang fullname: Xiang, Ning  | 
    
| BookMark | eNp9kcFu1DAQhi1UJNrCgTewxAmkpeM4ieMjbFvaUkQlKFdr4jirWQV7sZ3CPgcvTHaDKlShnmyPv_nG8n_EDnzwjrGXAt5KqeHEiQpKIVX1hB0K0HpRSoCDf_bP2FFKa4BCFqI-ZL-XA6ZEPVnMFDwPPf_oneNXgXzm36iNc_0LrTwOid8m8iv-nu4wEmbHzx3mMTp-SilHasc9fJYyfZ_70Hf8E_6ajgO_CSm7SCHymxhabGmgvOWnzlLaoctI-2v_nD3tp1nuxd_1mN2en31dXiyuP3-4XL67XlhZNXkh-t4WooFCaKGU06Ch6ADKumpboRvZ2KJroZJSyb60tauktsqqQmkQtSprecwuZ28XcG02cXpk3JqAZPaFEFcGYyY7OFNKLFBAU1dal4idRlVLa4XSTadA9ZPrzewa_Qa3P3EY7oUCzC4acx_NBL-a4U0MP0aXslmHMe7-14hKKtWIRuiJej1TNoaUousfNZ48YC3lfQI5Ig3_6fgDY26r4w | 
    
| CitedBy_id | crossref_primary_10_1016_j_medengphy_2014_07_008 crossref_primary_10_1038_srep24115 crossref_primary_10_1186_s12918_016_0353_5 crossref_primary_10_4015_S1016237217500168 crossref_primary_10_1007_s10439_022_02913_4 crossref_primary_10_1371_journal_pone_0088825 crossref_primary_10_1007_s11517_018_1785_4 crossref_primary_10_35784_acs_2023_40 crossref_primary_10_1109_TBME_2020_3024285 crossref_primary_10_1016_j_cmpb_2022_106992 crossref_primary_10_1093_bib_bby091 crossref_primary_10_1088_1742_6596_2130_1_012010 crossref_primary_10_3390_app15010279 crossref_primary_10_1016_j_bspc_2021_102808 crossref_primary_10_1186_s12864_017_4128_1 crossref_primary_10_54856_jiswa_202205209 crossref_primary_10_1016_j_cmpb_2016_03_021 crossref_primary_10_3390_e17042367 crossref_primary_10_1016_j_matpr_2021_07_219 crossref_primary_10_1016_j_medengphy_2025_104322 crossref_primary_10_32628_IJSRST218535 crossref_primary_10_1016_j_saa_2022_121990 crossref_primary_10_1016_j_vibspec_2020_103090 crossref_primary_10_1093_bioinformatics_bty451 crossref_primary_10_1088_0967_3334_35_3_429 crossref_primary_10_1002_minf_201500031  | 
    
| Cites_doi | 10.1007/BF00994018 10.1214/aoms/1177704472 10.1007/BF02344681 10.1016/j.bspc.2012.05.004 10.1080/0952813X.2010.506288 10.1016/j.bspc.2009.03.008 10.1109/51.62910 10.1007/s11517-007-0278-7 10.1109/9780470544204 10.1016/j.cmpb.2008.12.012 10.1109/10.844228 10.3390/e15030753 10.1615/CritRevBiomedEng.v38.i2.60 10.3233/BMR-2012-0319 10.1109/TBME.2005.869787 10.1109/10.641334 10.1111/j.1469-1809.1936.tb02137.x 10.1155/2013/904267 10.1109/34.908974 10.1109/34.824819 10.1007/s10439-008-9601-1 10.1114/1.1424916 10.1142/5089  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright MDPI AG 2013 | 
    
| Copyright_xml | – notice: Copyright MDPI AG 2013 | 
    
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/e15041375 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall Open Access - DOAJ  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 1099-4300 | 
    
| EndPage | 1387 | 
    
| ExternalDocumentID | oai_doaj_org_article_43a2a10865994aad9a763cc1798d707f 10.3390/e15041375 3340671681 10_3390_e15041375  | 
    
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IPNFZ J9A KQ8 L6V M7S MODMG M~E OK1 OVT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG RNS TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A CH8 IAO ITC PGMZT RPM UNPAY  | 
    
| ID | FETCH-LOGICAL-c358t-1ffc2180219177e90902d00465bb19838c2db053373f4c6e539c7c72790167463 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1099-4300 | 
    
| IngestDate | Fri Oct 03 12:46:33 EDT 2025 Sun Oct 26 04:15:55 EDT 2025 Fri Jul 25 11:49:12 EDT 2025 Thu Oct 16 04:24:12 EDT 2025 Thu Apr 24 23:10:18 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c358t-1ffc2180219177e90902d00465bb19838c2db053373f4c6e539c7c72790167463 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/15/4/1375/pdf?version=1424785012 | 
    
| PQID | 1537781819 | 
    
| PQPubID | 2032401 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_43a2a10865994aad9a763cc1798d707f unpaywall_primary_10_3390_e15041375 proquest_journals_1537781819 crossref_primary_10_3390_e15041375 crossref_citationtrail_10_3390_e15041375  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-04-01 | 
    
| PublicationDateYYYYMMDD | 2013-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Entropy (Basel, Switzerland) | 
    
| PublicationYear | 2013 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Rangayyan (ref_16) 1997; 44 Xiang (ref_23) 2013; 15 Rangayyan (ref_15) 2010; 5 Tanaka (ref_5) 2012; 25 Reddy (ref_7) 2001; 29 Krishnan (ref_11) 2000; 47 Rangayyan (ref_14) 2013; 8 ref_30 ref_19 Rangayyan (ref_12) 2008; 46 Wu (ref_1) 2010; 38 Kim (ref_8) 2009; 94 Frank (ref_3) 1990; 9 Cortes (ref_29) 1995; 20 Wu (ref_10) 2011; 23 Umapathy (ref_17) 2006; 53 Jain (ref_25) 2000; 22 Wu (ref_20) 2013; 8 ref_21 Fisher (ref_24) 1936; 7 ref_2 Cai (ref_18) 2013; 2013 ref_28 Parzen (ref_22) 1962; 33 ref_27 Krishnan (ref_9) 2000; 38 Martinez (ref_26) 2001; 23 Jiang (ref_6) 2000; 47 ref_4 Rangayyan (ref_13) 2009; 37  | 
    
| References_xml | – volume: 47 start-page: 218 year: 2000 ident: ref_6 article-title: Vibration arthrometry in the patients with failed total knee replacement publication-title: IEEE Trans. Biomed. Eng. – ident: ref_28 – volume: 20 start-page: 273 year: 1995 ident: ref_29 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 33 start-page: 1065 year: 1962 ident: ref_22 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – volume: 38 start-page: 2 year: 2000 ident: ref_9 article-title: Automatic de-noising of knee-joint vibration signals using adaptive time-frequency representations publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02344681 – volume: 8 start-page: 26 year: 2013 ident: ref_14 article-title: Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2012.05.004 – volume: 23 start-page: 63 year: 2011 ident: ref_10 article-title: Combining least-squares support vector machines for classification of biomedical signals: A case study with knee-joint vibroarthrographic signals publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2010.506288 – volume: 5 start-page: 53 year: 2010 ident: ref_15 article-title: Screening of knee-joint vibroarthrographic signals using probability density functions estimated with Parzen windows publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2009.03.008 – volume: 9 start-page: 65 year: 1990 ident: ref_3 article-title: Analysis of knee sound signals for non-invasive diagnosis of cartilage pathology publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.62910 – volume: 46 start-page: 223 year: 2008 ident: ref_12 article-title: Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-007-0278-7 – ident: ref_21 doi: 10.1109/9780470544204 – volume: 94 start-page: 198 year: 2009 ident: ref_8 article-title: An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2008.12.012 – volume: 47 start-page: 773 year: 2000 ident: ref_11 article-title: Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.844228 – volume: 8 start-page: 912 year: 2013 ident: ref_20 article-title: Noise cancellation in knee joint vibration signals using a time-delay neural filter and signal power error minimization method publication-title: J. Converg. Inf. Technol. – volume: 15 start-page: 753 year: 2013 ident: ref_23 article-title: Statistical analysis of gait maturation in children using nonparametric probability density function modeling publication-title: Entropy doi: 10.3390/e15030753 – volume: 38 start-page: 201 year: 2010 ident: ref_1 article-title: Computer-aided diagnosis of knee-joint disorders via vibroarthrographic signal analysis: A review publication-title: Crit. Rev. Biomed. Eng. doi: 10.1615/CritRevBiomedEng.v38.i2.60 – volume: 25 start-page: 117 year: 2012 ident: ref_5 article-title: Vibroarthrography in patients with knee arthropathy publication-title: J. Back Musculoskelet. Rehabil. doi: 10.3233/BMR-2012-0319 – ident: ref_4 – volume: 53 start-page: 517 year: 2006 ident: ref_17 article-title: Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.869787 – volume: 44 start-page: 1068 year: 1997 ident: ref_16 article-title: Parametric representation and screening of knee joint vibroarthrographic signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.641334 – volume: 7 start-page: 179 year: 1936 ident: ref_24 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: ref_27 – ident: ref_2 – volume: 2013 start-page: 904267:1 year: 2013 ident: ref_18 article-title: Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion publication-title: Comput. Math. Methods Med. doi: 10.1155/2013/904267 – volume: 23 start-page: 228 year: 2001 ident: ref_26 article-title: PCA versus LDA publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.908974 – volume: 22 start-page: 4 year: 2000 ident: ref_25 article-title: Statistical pattern recognition: A review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.824819 – ident: ref_19 – volume: 37 start-page: 156 year: 2009 ident: ref_13 article-title: Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-008-9601-1 – volume: 29 start-page: 1106 year: 2001 ident: ref_7 article-title: Noninvasive measurement of acceleration at the knee joint in patients with rheumatoid arthritis and spondyloarthropathy of the knee publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1424916 – ident: ref_30 doi: 10.1142/5089  | 
    
| SSID | ssj0023216 | 
    
| Score | 2.1409478 | 
    
| Snippet | Analysis of knee joint vibration or vibroarthrographic (VAG) signals using signal processing and machine learning algorithms possesses high potential for the... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1375 | 
    
| SubjectTerms | kernel density estimation knee joint vibration signals linear discriminant analysis posterior probability support vector machine vibration arthrometry  | 
    
| SummonAdditionalLinks | – databaseName: Open Access - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi15EUXH-4qEevBTbJF2ao7rJmCiCTryVNE1lMDqZmz_-Dv9h30u7MUHx4rFtDiHvJfk--t73MXacRTbjTtrAqkIG0oUyMAU3mMvSuci0uOHUjXx90-r2Ze8xflyw-qKasEoeuFq4UykMN2QHFGstjcm1wR1hLels5SpUBZ2-YaJnZKqmWoJ701P67RNIEYaVppBAgn_qEALhyU2FhQs3kRfs_4Yyl6fls_l4M8PhwoVzucZWa6QIZ9UM19mSKzfYpzexpPIev6IwKuCqdA56o0E5gQfivv793eCJhJHBVwTA-eAVKTGiSiDENx07aJNebm11BR3c5lUHI5gyh2vzjo9DIB9fzM_RGG7HuOt9Fe0HtGtTHiCTBPpcbrL-Zef-ohvUvgqBFXEyCaKisJyU34irKaepNDMnohxnWaQTkVieZ9Sjq0QhbcvFQltlEeho37PQElusUY5Kt83AKmUlUqosck4WOk6yGCFliKONkrlSTXYyW-PU1qLj5H0xTJF8UDjSeTia7HA-9LlS2vhp0DkFaj6AxLH9C0yZtE6Z9K-UabK9WZjTese-pHjyK4XoJdJNdjQP_e8z2fmPmeyyFe7tNagSaI81JuOp20eQM8kOfD5_AasF96g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB2V9ACXqggQKS0aAQcuVuP12ps9oIrQVFVRowoo6s1ar9dVpMgObgL0d_QPM7NZmyIBR69HlrXzsTP2zHsAb4rYFsJJG1lVyUi6kYxMJQzZsnQuNpkwgqeRz2fZ6aU8u0qvtmDWzcJwW2UXE32gLhvL38gPyTOVotMl1kfLbxGzRvHf1Y5CwwRqhfKdhxh7ANuCkbEGsD2Zzi4-9SVYIuJsgy-UULF_6CgdoijOTYb3TiUP3v9HxvlwXS_N7Q-zWNw7fE52YSdkjfh-o-bHsOXqJ3DnCS251cfvLjYVfqydw7NmXq_wK9fBfv3z_JpBktF3B-Bk_p3KY8owkbO_devwmLFzA-0VTsnlN9OMaOoSz81Pulwgc_qSrTYtXrQUAXxH7S0eB4IeZMIEvl0_hcuT6ZcPp1HgWIhsko5XUVxVVjAKHNdtymlu0yy5aE6LItbjZGxFWfC8rkoqaTOXJtoqS0mP9vMLWfIMBnVTu-eAVikrqbwqYudkpdNxkVJ6OSJpo2Sp1BDednuc2wBAzjwYi5wKEVZH3qtjCK960eUGdeNvQhNWVC_AQNl-oWmv8-B3uUyMMMwmlWotjSm1oYBqLcO0lWqkqiHsd2rOg_fe5L9tbQive9X_-032_v-QF_BIeBIN7vfZh8GqXbsDSmVWxctgn78Av_P0dw priority: 102 providerName: ProQuest  | 
    
| Title | Classification of Knee Joint Vibration Signals Using Bivariate Feature Distribution Estimation and Maximal Posterior Probability Decision Criterion | 
    
| URI | https://www.proquest.com/docview/1537781819 https://www.mdpi.com/1099-4300/15/4/1375/pdf?version=1424785012 https://doaj.org/article/43a2a10865994aad9a763cc1798d707f  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagfYAXBgJEYVQW8MBLll92nDyhlbWbhlZVQFF5CrbjTBVVUmXpxvg3-Ie5c9yKIZCQeImU5BIl8uX8nXP3fYS8UqFWkWHa06JkHjMB82QZSfBlZkwok0hG2I18Nk1O5ux0wRdO5_TClVVCKr60QRr_2ngsDgI_5D7zw1hwf12Uby7dUhJ2aYmUB6gy3E84gPEe6c-ns8PP9h-nu7jjE4ohufcNwB-Gt7kxC1my_hsI886mWsvrK7la_TLZTPbIl-1jdjUmXw82rTrQ339jcPyP97hP7jkgSg87z3lAbpnqIflhNTKxesgOGK1L-q4yhp7Wy6qlnzC1tsc_LM-Rd5naggM6Wl5Cxg2glSKg3DSGHiEdr1PSomOIIl2DJJVVQc_kN9hdUZQJBvevGzprIKjYIt1reuQ0fyhqMODp6hGZT8Yf3554TrbB0zFPWy8sSx0hsRymgsJkWPlZYB7OlQqzNE51VChsARZxyXRieJxpoQFHZbYlIokfk15VV-YJoVoIzSBjU6ExrMx4qjgg1gCspWCFEAPyejuMuXac5iitscoht8ERz3cjPiAvdqbrjsjjT0Yj9IWdAXJv2wN1c567TzlnsYwkClTxLGNSFpmEGK01Mr8VIhDlgOxvPSl3AeEih4lFCABHYTYgL3fe9fcnefpPVs_I3cjKc2Al0T7ptc3GPAeQ1KohuZ1OjoekPxpPZ--HdqkBtseLcOg-kZ89ZQ_4 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYYPLCXiWmbVsbA2g9pLxGN7cT1A5rWtahQWqENJt4yx3FQpSrpQgvr38H_s7-NO9fJmLTtjcc4lhXl7Lv7krvvI-RdGpqUWWECI3MRCNsWgc6Zhr0srA11zDTDbuTROB6ci-OL6GKN_Kp7YbCssvaJzlFnpcFv5PtwMqWE6BKqj7MfAapG4d_VWkJDe2mF7MBRjPnGjqFd3gCEuzo46oG93zN22D_7PAi8ykBgeNSZB2GeG4Y8aIhcpFVYqJghbIzSFBA57xiWpdixKnkuTGwjrow0EPaVq-CPOaz7iGwILhSAv41uf3z6pYF8nIXxis-Ic9Xet5B-QdTAosZ7UdCJBfyR4W4uiple3ujp9F6wO9wiT3yWSj-tttVTsmaLZ-TWCWhiaZGzJi1zOiyspcflpJjTb4i73fjXySWSMlNXjUC7k2uA45DRUsw2F5WlPeTq9TJbtA8uZtU9SXWR0ZH-CZdTihrCcDbKip5W4HFcBe-S9rwgEEWBBrxdPCfnD_K2X5D1oizsS0KNlEYAnEtDa0Wuok4aQTrbhtlaikzKFvlQv-PEeMJz1N2YJgB80BxJY44WedNMna1YPv42qYuGaiYgMbcbKKvLxJ_zRHDNNKpXRUoJrTOlwYEbg7RwmWzLvEV2ajMn3ltcJb_3dou8bUz_7yfZ_v8ie2RzcDY6SU6OxsNX5DFzAh5Ya7RD1ufVwr6GNGqe7vq9Ssn3hz4ed9EWLfY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VIgEbBAJEoMAVD4mNlXg89mQWqKKkoW1oVQmKunPH45kqUmQHN6HNd_Rv-nXcO35QJGDXZZyRFfk-T3zuPYy9zUKTcStMYKQTgbADEWjHNfqysDbUCdecppH3D5KdI7F3HB-vsat2FoZolW1O9Ik6Lw39R97HyJQSq0uo-q6hRRyOxpvzHwEpSNGb1lZOo3aRiV2dI3w7-7A7Qlu_43y8_e3TTtAoDAQmioeLIHTOcNqBRqhFWkUkxZwgY5xliMajoeF5RtOqMnLCJDaOlJEGS77y7P0kwvveYrclbXGnKfXx5w7sRTxM6k1GUaQGfYuNF9YLojNeq39eJuCP3vbuspjr1bmeza6VufEDdr_pT-Fj7VAP2ZotHrFLL51JpCJvRygdTAprYa-cFgv4TojbX_86PaV1zOB5CLA1_YlAHHtZoD5zWVkY0ZbeRmALtjG51HOToIsc9vUFfpwBqQdjVJQVHFaYazx3dwWjRgoISJqBvi4es6MbedZP2HpRFvYpAyOlEQjkstBa4VQ8zGJsZAd4WkuRS9lj79tnnJpm1TkpbsxShDxkjrQzR4-97o7O6_0efzu0RYbqDtBKbn-hrE7TJsJTEWmuSbcqVkponSuNqdsYWgiXy4F0PbbRmjlt8sRZ-ture-xNZ_p__5Jn_7_JK3YHgyL9snswec7uca_cQSSjDba-qJb2BfZPi-yld1RgJzcdGb8AgxYrkA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXQ9gAXCgLEloKswoFLmg_bcXJCLW1VFbWqBIvKKdiOXa1YJas029L-jf5hZhzvqkUgIXGMM4kceTJ-k8y8R8g7nRqdWW4iIx2PuE14pFymwJe5tanKM5VhN_LxSX444Udn4izonF6EskpIxac-SONfm4izJIlTEfM4ZVLE89p9uAyfkrBLSxYiQZXhtVwAGB-RtcnJ6c43_48zXDzwCTFI7mML8Ifjbe7tQp6s_x7CfLho5ur6Ss1mdzabg3XyfTnNocbkx_ai19vm5jcGx_94jifkcQCidGfwnKfkgW2ekVuvkYnVQ37BaOvop8ZaetROm55-xdTaj3-eniPvMvUFB3R3egkZN4BWioBy0Vm6h3S8QUmL7kMUGRokqWpqeqx-wuGMokwwuH_b0dMOgoov0r2me0Hzh6IGA55unpPJwf6Xj4dRkG2IDBNFH6XOmQyJ5TAVlLbEys8a83ChdVoWrDBZrbEFWDLHTW4FK400gKNK3xKRsxdk1LSNfUmokdJwyNh0ai13pSi0AMSagLWSvJZyTN4vl7EygdMcpTVmFeQ2uOLVasXHZGtlOh-IPP5ktIu-sDJA7m0_0HbnVXiVK85UplCgSpQlV6ouFcRoY5D5rZaJdGOyufSkKgSEiwo2FikBHKXlmLxdedffZ7LxT1avyKPMy3NgJdEmGfXdwr4GkNTrN-FF-AXh0QuS | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Knee+Joint+Vibration+Signals+Using+Bivariate+Feature+Distribution+Estimation+and+Maximal+Posterior+Probability+Decision+Criterion&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Yunfeng&rft.au=Cai%2C+Suxian&rft.au=Yang%2C+Shanshan&rft.au=Zheng%2C+Fang&rft.date=2013-04-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=15&rft.issue=4&rft.spage=1375&rft.epage=1387&rft_id=info:doi/10.3390%2Fe15041375&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e15041375 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |