Classification of Knee Joint Vibration Signals Using Bivariate Feature Distribution Estimation and Maximal Posterior Probability Decision Criterion

Analysis of knee joint vibration or vibroarthrographic (VAG) signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee jo...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 15; no. 4; pp. 1375 - 1387
Main Authors Wu, Yunfeng, Cai, Suxian, Yang, Shanshan, Zheng, Fang, Xiang, Ning
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2013
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e15041375

Cover

Abstract Analysis of knee joint vibration or vibroarthrographic (VAG) signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee joint VAG signals helps characterize the pathological condition of degenerative articular cartilages in the knee. This paper used the kernel-based probability density estimation method to model the distributions of the VAG signals recorded from healthy subjects and patients with knee joint disorders. The estimated densities of the VAG signals showed explicit distributions of the normal and abnormal signal groups, along with the corresponding contours in the bivariate feature space. The signal classifications were performed by using the Fisher’s linear discriminant analysis, support vector machine with polynomial kernels, and the maximal posterior probability decision criterion. The maximal posterior probability decision criterion was able to provide the total classification accuracy of 86.67% and the area (Az) of 0.9096 under the receiver operating characteristics curve, which were superior to the results obtained by either the Fisher’s linear discriminant analysis (accuracy: 81.33%, Az: 0.8564) or the support vector machine with polynomial kernels (accuracy: 81.33%, Az: 0.8533). Such results demonstrated the merits of the bivariate feature distribution estimation and the superiority of the maximal posterior probability decision criterion for analysis of knee joint VAG signals.
AbstractList Analysis of knee joint vibration or vibroarthrographic (VAG) signals using signal processing and machine learning algorithms possesses high potential for the noninvasive detection of articular cartilage degeneration, which may reduce unnecessary exploratory surgery. Feature representation of knee joint VAG signals helps characterize the pathological condition of degenerative articular cartilages in the knee. This paper used the kernel-based probability density estimation method to model the distributions of the VAG signals recorded from healthy subjects and patients with knee joint disorders. The estimated densities of the VAG signals showed explicit distributions of the normal and abnormal signal groups, along with the corresponding contours in the bivariate feature space. The signal classifications were performed by using the Fisher’s linear discriminant analysis, support vector machine with polynomial kernels, and the maximal posterior probability decision criterion. The maximal posterior probability decision criterion was able to provide the total classification accuracy of 86.67% and the area (Az) of 0.9096 under the receiver operating characteristics curve, which were superior to the results obtained by either the Fisher’s linear discriminant analysis (accuracy: 81.33%, Az: 0.8564) or the support vector machine with polynomial kernels (accuracy: 81.33%, Az: 0.8533). Such results demonstrated the merits of the bivariate feature distribution estimation and the superiority of the maximal posterior probability decision criterion for analysis of knee joint VAG signals.
Author Zheng, Fang
Wu, Yunfeng
Cai, Suxian
Xiang, Ning
Yang, Shanshan
Author_xml – sequence: 1
  givenname: Yunfeng
  surname: Wu
  fullname: Wu, Yunfeng
– sequence: 2
  givenname: Suxian
  surname: Cai
  fullname: Cai, Suxian
– sequence: 3
  givenname: Shanshan
  surname: Yang
  fullname: Yang, Shanshan
– sequence: 4
  givenname: Fang
  surname: Zheng
  fullname: Zheng, Fang
– sequence: 5
  givenname: Ning
  surname: Xiang
  fullname: Xiang, Ning
BookMark eNp9kcFu1DAQhi1UJNrCgTewxAmkpeM4ieMjbFvaUkQlKFdr4jirWQV7sZ3CPgcvTHaDKlShnmyPv_nG8n_EDnzwjrGXAt5KqeHEiQpKIVX1hB0K0HpRSoCDf_bP2FFKa4BCFqI-ZL-XA6ZEPVnMFDwPPf_oneNXgXzm36iNc_0LrTwOid8m8iv-nu4wEmbHzx3mMTp-SilHasc9fJYyfZ_70Hf8E_6ajgO_CSm7SCHymxhabGmgvOWnzlLaoctI-2v_nD3tp1nuxd_1mN2en31dXiyuP3-4XL67XlhZNXkh-t4WooFCaKGU06Ch6ADKumpboRvZ2KJroZJSyb60tauktsqqQmkQtSprecwuZ28XcG02cXpk3JqAZPaFEFcGYyY7OFNKLFBAU1dal4idRlVLa4XSTadA9ZPrzewa_Qa3P3EY7oUCzC4acx_NBL-a4U0MP0aXslmHMe7-14hKKtWIRuiJej1TNoaUousfNZ48YC3lfQI5Ig3_6fgDY26r4w
CitedBy_id crossref_primary_10_1016_j_medengphy_2014_07_008
crossref_primary_10_1038_srep24115
crossref_primary_10_1186_s12918_016_0353_5
crossref_primary_10_4015_S1016237217500168
crossref_primary_10_1007_s10439_022_02913_4
crossref_primary_10_1371_journal_pone_0088825
crossref_primary_10_1007_s11517_018_1785_4
crossref_primary_10_35784_acs_2023_40
crossref_primary_10_1109_TBME_2020_3024285
crossref_primary_10_1016_j_cmpb_2022_106992
crossref_primary_10_1093_bib_bby091
crossref_primary_10_1088_1742_6596_2130_1_012010
crossref_primary_10_3390_app15010279
crossref_primary_10_1016_j_bspc_2021_102808
crossref_primary_10_1186_s12864_017_4128_1
crossref_primary_10_54856_jiswa_202205209
crossref_primary_10_1016_j_cmpb_2016_03_021
crossref_primary_10_3390_e17042367
crossref_primary_10_1016_j_matpr_2021_07_219
crossref_primary_10_1016_j_medengphy_2025_104322
crossref_primary_10_32628_IJSRST218535
crossref_primary_10_1016_j_saa_2022_121990
crossref_primary_10_1016_j_vibspec_2020_103090
crossref_primary_10_1093_bioinformatics_bty451
crossref_primary_10_1088_0967_3334_35_3_429
crossref_primary_10_1002_minf_201500031
Cites_doi 10.1007/BF00994018
10.1214/aoms/1177704472
10.1007/BF02344681
10.1016/j.bspc.2012.05.004
10.1080/0952813X.2010.506288
10.1016/j.bspc.2009.03.008
10.1109/51.62910
10.1007/s11517-007-0278-7
10.1109/9780470544204
10.1016/j.cmpb.2008.12.012
10.1109/10.844228
10.3390/e15030753
10.1615/CritRevBiomedEng.v38.i2.60
10.3233/BMR-2012-0319
10.1109/TBME.2005.869787
10.1109/10.641334
10.1111/j.1469-1809.1936.tb02137.x
10.1155/2013/904267
10.1109/34.908974
10.1109/34.824819
10.1007/s10439-008-9601-1
10.1114/1.1424916
10.1142/5089
ContentType Journal Article
Copyright Copyright MDPI AG 2013
Copyright_xml – notice: Copyright MDPI AG 2013
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.3390/e15041375
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
Open Access - DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
EndPage 1387
ExternalDocumentID oai_doaj_org_article_43a2a10865994aad9a763cc1798d707f
10.3390/e15041375
3340671681
10_3390_e15041375
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IPNFZ
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
RNS
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
CH8
IAO
ITC
PGMZT
RPM
UNPAY
ID FETCH-LOGICAL-c358t-1ffc2180219177e90902d00465bb19838c2db053373f4c6e539c7c72790167463
IEDL.DBID UNPAY
ISSN 1099-4300
IngestDate Fri Oct 03 12:46:33 EDT 2025
Sun Oct 26 04:15:55 EDT 2025
Fri Jul 25 11:49:12 EDT 2025
Thu Oct 16 04:24:12 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-1ffc2180219177e90902d00465bb19838c2db053373f4c6e539c7c72790167463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/15/4/1375/pdf?version=1424785012
PQID 1537781819
PQPubID 2032401
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_43a2a10865994aad9a763cc1798d707f
unpaywall_primary_10_3390_e15041375
proquest_journals_1537781819
crossref_primary_10_3390_e15041375
crossref_citationtrail_10_3390_e15041375
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2013
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rangayyan (ref_16) 1997; 44
Xiang (ref_23) 2013; 15
Rangayyan (ref_15) 2010; 5
Tanaka (ref_5) 2012; 25
Reddy (ref_7) 2001; 29
Krishnan (ref_11) 2000; 47
Rangayyan (ref_14) 2013; 8
ref_30
ref_19
Rangayyan (ref_12) 2008; 46
Wu (ref_1) 2010; 38
Kim (ref_8) 2009; 94
Frank (ref_3) 1990; 9
Cortes (ref_29) 1995; 20
Wu (ref_10) 2011; 23
Umapathy (ref_17) 2006; 53
Jain (ref_25) 2000; 22
Wu (ref_20) 2013; 8
ref_21
Fisher (ref_24) 1936; 7
ref_2
Cai (ref_18) 2013; 2013
ref_28
Parzen (ref_22) 1962; 33
ref_27
Krishnan (ref_9) 2000; 38
Martinez (ref_26) 2001; 23
Jiang (ref_6) 2000; 47
ref_4
Rangayyan (ref_13) 2009; 37
References_xml – volume: 47
  start-page: 218
  year: 2000
  ident: ref_6
  article-title: Vibration arthrometry in the patients with failed total knee replacement
  publication-title: IEEE Trans. Biomed. Eng.
– ident: ref_28
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_29
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 33
  start-page: 1065
  year: 1962
  ident: ref_22
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704472
– volume: 38
  start-page: 2
  year: 2000
  ident: ref_9
  article-title: Automatic de-noising of knee-joint vibration signals using adaptive time-frequency representations
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344681
– volume: 8
  start-page: 26
  year: 2013
  ident: ref_14
  article-title: Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2012.05.004
– volume: 23
  start-page: 63
  year: 2011
  ident: ref_10
  article-title: Combining least-squares support vector machines for classification of biomedical signals: A case study with knee-joint vibroarthrographic signals
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2010.506288
– volume: 5
  start-page: 53
  year: 2010
  ident: ref_15
  article-title: Screening of knee-joint vibroarthrographic signals using probability density functions estimated with Parzen windows
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2009.03.008
– volume: 9
  start-page: 65
  year: 1990
  ident: ref_3
  article-title: Analysis of knee sound signals for non-invasive diagnosis of cartilage pathology
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.62910
– volume: 46
  start-page: 223
  year: 2008
  ident: ref_12
  article-title: Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-007-0278-7
– ident: ref_21
  doi: 10.1109/9780470544204
– volume: 94
  start-page: 198
  year: 2009
  ident: ref_8
  article-title: An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2008.12.012
– volume: 47
  start-page: 773
  year: 2000
  ident: ref_11
  article-title: Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.844228
– volume: 8
  start-page: 912
  year: 2013
  ident: ref_20
  article-title: Noise cancellation in knee joint vibration signals using a time-delay neural filter and signal power error minimization method
  publication-title: J. Converg. Inf. Technol.
– volume: 15
  start-page: 753
  year: 2013
  ident: ref_23
  article-title: Statistical analysis of gait maturation in children using nonparametric probability density function modeling
  publication-title: Entropy
  doi: 10.3390/e15030753
– volume: 38
  start-page: 201
  year: 2010
  ident: ref_1
  article-title: Computer-aided diagnosis of knee-joint disorders via vibroarthrographic signal analysis: A review
  publication-title: Crit. Rev. Biomed. Eng.
  doi: 10.1615/CritRevBiomedEng.v38.i2.60
– volume: 25
  start-page: 117
  year: 2012
  ident: ref_5
  article-title: Vibroarthrography in patients with knee arthropathy
  publication-title: J. Back Musculoskelet. Rehabil.
  doi: 10.3233/BMR-2012-0319
– ident: ref_4
– volume: 53
  start-page: 517
  year: 2006
  ident: ref_17
  article-title: Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.869787
– volume: 44
  start-page: 1068
  year: 1997
  ident: ref_16
  article-title: Parametric representation and screening of knee joint vibroarthrographic signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.641334
– volume: 7
  start-page: 179
  year: 1936
  ident: ref_24
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref_27
– ident: ref_2
– volume: 2013
  start-page: 904267:1
  year: 2013
  ident: ref_18
  article-title: Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/904267
– volume: 23
  start-page: 228
  year: 2001
  ident: ref_26
  article-title: PCA versus LDA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.908974
– volume: 22
  start-page: 4
  year: 2000
  ident: ref_25
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.824819
– ident: ref_19
– volume: 37
  start-page: 156
  year: 2009
  ident: ref_13
  article-title: Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-008-9601-1
– volume: 29
  start-page: 1106
  year: 2001
  ident: ref_7
  article-title: Noninvasive measurement of acceleration at the knee joint in patients with rheumatoid arthritis and spondyloarthropathy of the knee
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1424916
– ident: ref_30
  doi: 10.1142/5089
SSID ssj0023216
Score 2.1409478
Snippet Analysis of knee joint vibration or vibroarthrographic (VAG) signals using signal processing and machine learning algorithms possesses high potential for the...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1375
SubjectTerms kernel density estimation
knee joint vibration signals
linear discriminant analysis
posterior probability
support vector machine
vibration arthrometry
SummonAdditionalLinks – databaseName: Open Access - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi15EUXH-4qEevBTbJF2ao7rJmCiCTryVNE1lMDqZmz_-Dv9h30u7MUHx4rFtDiHvJfk--t73MXacRTbjTtrAqkIG0oUyMAU3mMvSuci0uOHUjXx90-r2Ze8xflyw-qKasEoeuFq4UykMN2QHFGstjcm1wR1hLels5SpUBZ2-YaJnZKqmWoJ701P67RNIEYaVppBAgn_qEALhyU2FhQs3kRfs_4Yyl6fls_l4M8PhwoVzucZWa6QIZ9UM19mSKzfYpzexpPIev6IwKuCqdA56o0E5gQfivv793eCJhJHBVwTA-eAVKTGiSiDENx07aJNebm11BR3c5lUHI5gyh2vzjo9DIB9fzM_RGG7HuOt9Fe0HtGtTHiCTBPpcbrL-Zef-ohvUvgqBFXEyCaKisJyU34irKaepNDMnohxnWaQTkVieZ9Sjq0QhbcvFQltlEeho37PQElusUY5Kt83AKmUlUqosck4WOk6yGCFliKONkrlSTXYyW-PU1qLj5H0xTJF8UDjSeTia7HA-9LlS2vhp0DkFaj6AxLH9C0yZtE6Z9K-UabK9WZjTese-pHjyK4XoJdJNdjQP_e8z2fmPmeyyFe7tNagSaI81JuOp20eQM8kOfD5_AasF96g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB2V9ACXqggQKS0aAQcuVuP12ps9oIrQVFVRowoo6s1ar9dVpMgObgL0d_QPM7NZmyIBR69HlrXzsTP2zHsAb4rYFsJJG1lVyUi6kYxMJQzZsnQuNpkwgqeRz2fZ6aU8u0qvtmDWzcJwW2UXE32gLhvL38gPyTOVotMl1kfLbxGzRvHf1Y5CwwRqhfKdhxh7ANuCkbEGsD2Zzi4-9SVYIuJsgy-UULF_6CgdoijOTYb3TiUP3v9HxvlwXS_N7Q-zWNw7fE52YSdkjfh-o-bHsOXqJ3DnCS251cfvLjYVfqydw7NmXq_wK9fBfv3z_JpBktF3B-Bk_p3KY8owkbO_devwmLFzA-0VTsnlN9OMaOoSz81Pulwgc_qSrTYtXrQUAXxH7S0eB4IeZMIEvl0_hcuT6ZcPp1HgWIhsko5XUVxVVjAKHNdtymlu0yy5aE6LItbjZGxFWfC8rkoqaTOXJtoqS0mP9vMLWfIMBnVTu-eAVikrqbwqYudkpdNxkVJ6OSJpo2Sp1BDednuc2wBAzjwYi5wKEVZH3qtjCK960eUGdeNvQhNWVC_AQNl-oWmv8-B3uUyMMMwmlWotjSm1oYBqLcO0lWqkqiHsd2rOg_fe5L9tbQive9X_-032_v-QF_BIeBIN7vfZh8GqXbsDSmVWxctgn78Av_P0dw
  priority: 102
  providerName: ProQuest
Title Classification of Knee Joint Vibration Signals Using Bivariate Feature Distribution Estimation and Maximal Posterior Probability Decision Criterion
URI https://www.proquest.com/docview/1537781819
https://www.mdpi.com/1099-4300/15/4/1375/pdf?version=1424785012
https://doaj.org/article/43a2a10865994aad9a763cc1798d707f
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagfYAXBgJEYVQW8MBLll92nDyhlbWbhlZVQFF5CrbjTBVVUmXpxvg3-Ie5c9yKIZCQeImU5BIl8uX8nXP3fYS8UqFWkWHa06JkHjMB82QZSfBlZkwok0hG2I18Nk1O5ux0wRdO5_TClVVCKr60QRr_2ngsDgI_5D7zw1hwf12Uby7dUhJ2aYmUB6gy3E84gPEe6c-ns8PP9h-nu7jjE4ohufcNwB-Gt7kxC1my_hsI886mWsvrK7la_TLZTPbIl-1jdjUmXw82rTrQ339jcPyP97hP7jkgSg87z3lAbpnqIflhNTKxesgOGK1L-q4yhp7Wy6qlnzC1tsc_LM-Rd5naggM6Wl5Cxg2glSKg3DSGHiEdr1PSomOIIl2DJJVVQc_kN9hdUZQJBvevGzprIKjYIt1reuQ0fyhqMODp6hGZT8Yf3554TrbB0zFPWy8sSx0hsRymgsJkWPlZYB7OlQqzNE51VChsARZxyXRieJxpoQFHZbYlIokfk15VV-YJoVoIzSBjU6ExrMx4qjgg1gCspWCFEAPyejuMuXac5iitscoht8ERz3cjPiAvdqbrjsjjT0Yj9IWdAXJv2wN1c567TzlnsYwkClTxLGNSFpmEGK01Mr8VIhDlgOxvPSl3AeEih4lFCABHYTYgL3fe9fcnefpPVs_I3cjKc2Al0T7ptc3GPAeQ1KohuZ1OjoekPxpPZ--HdqkBtseLcOg-kZ89ZQ_4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYYPLCXiWmbVsbA2g9pLxGN7cT1A5rWtahQWqENJt4yx3FQpSrpQgvr38H_s7-NO9fJmLTtjcc4lhXl7Lv7krvvI-RdGpqUWWECI3MRCNsWgc6Zhr0srA11zDTDbuTROB6ci-OL6GKN_Kp7YbCssvaJzlFnpcFv5PtwMqWE6BKqj7MfAapG4d_VWkJDe2mF7MBRjPnGjqFd3gCEuzo46oG93zN22D_7PAi8ykBgeNSZB2GeG4Y8aIhcpFVYqJghbIzSFBA57xiWpdixKnkuTGwjrow0EPaVq-CPOaz7iGwILhSAv41uf3z6pYF8nIXxis-Ic9Xet5B-QdTAosZ7UdCJBfyR4W4uiple3ujp9F6wO9wiT3yWSj-tttVTsmaLZ-TWCWhiaZGzJi1zOiyspcflpJjTb4i73fjXySWSMlNXjUC7k2uA45DRUsw2F5WlPeTq9TJbtA8uZtU9SXWR0ZH-CZdTihrCcDbKip5W4HFcBe-S9rwgEEWBBrxdPCfnD_K2X5D1oizsS0KNlEYAnEtDa0Wuok4aQTrbhtlaikzKFvlQv-PEeMJz1N2YJgB80BxJY44WedNMna1YPv42qYuGaiYgMbcbKKvLxJ_zRHDNNKpXRUoJrTOlwYEbg7RwmWzLvEV2ajMn3ltcJb_3dou8bUz_7yfZ_v8ie2RzcDY6SU6OxsNX5DFzAh5Ya7RD1ufVwr6GNGqe7vq9Ssn3hz4ed9EWLfY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VIgEbBAJEoMAVD4mNlXg89mQWqKKkoW1oVQmKunPH45kqUmQHN6HNd_Rv-nXcO35QJGDXZZyRFfk-T3zuPYy9zUKTcStMYKQTgbADEWjHNfqysDbUCdecppH3D5KdI7F3HB-vsat2FoZolW1O9Ik6Lw39R97HyJQSq0uo-q6hRRyOxpvzHwEpSNGb1lZOo3aRiV2dI3w7-7A7Qlu_43y8_e3TTtAoDAQmioeLIHTOcNqBRqhFWkUkxZwgY5xliMajoeF5RtOqMnLCJDaOlJEGS77y7P0kwvveYrclbXGnKfXx5w7sRTxM6k1GUaQGfYuNF9YLojNeq39eJuCP3vbuspjr1bmeza6VufEDdr_pT-Fj7VAP2ZotHrFLL51JpCJvRygdTAprYa-cFgv4TojbX_86PaV1zOB5CLA1_YlAHHtZoD5zWVkY0ZbeRmALtjG51HOToIsc9vUFfpwBqQdjVJQVHFaYazx3dwWjRgoISJqBvi4es6MbedZP2HpRFvYpAyOlEQjkstBa4VQ8zGJsZAd4WkuRS9lj79tnnJpm1TkpbsxShDxkjrQzR4-97o7O6_0efzu0RYbqDtBKbn-hrE7TJsJTEWmuSbcqVkponSuNqdsYWgiXy4F0PbbRmjlt8sRZ-ture-xNZ_p__5Jn_7_JK3YHgyL9snswec7uca_cQSSjDba-qJb2BfZPi-yld1RgJzcdGb8AgxYrkA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELXQ9gAXCgLEloKswoFLmg_bcXJCLW1VFbWqBIvKKdiOXa1YJas029L-jf5hZhzvqkUgIXGMM4kceTJ-k8y8R8g7nRqdWW4iIx2PuE14pFymwJe5tanKM5VhN_LxSX444Udn4izonF6EskpIxac-SONfm4izJIlTEfM4ZVLE89p9uAyfkrBLSxYiQZXhtVwAGB-RtcnJ6c43_48zXDzwCTFI7mML8Ifjbe7tQp6s_x7CfLho5ur6Ss1mdzabg3XyfTnNocbkx_ai19vm5jcGx_94jifkcQCidGfwnKfkgW2ekVuvkYnVQ37BaOvop8ZaetROm55-xdTaj3-eniPvMvUFB3R3egkZN4BWioBy0Vm6h3S8QUmL7kMUGRokqWpqeqx-wuGMokwwuH_b0dMOgoov0r2me0Hzh6IGA55unpPJwf6Xj4dRkG2IDBNFH6XOmQyJ5TAVlLbEys8a83ChdVoWrDBZrbEFWDLHTW4FK400gKNK3xKRsxdk1LSNfUmokdJwyNh0ai13pSi0AMSagLWSvJZyTN4vl7EygdMcpTVmFeQ2uOLVasXHZGtlOh-IPP5ktIu-sDJA7m0_0HbnVXiVK85UplCgSpQlV6ouFcRoY5D5rZaJdGOyufSkKgSEiwo2FikBHKXlmLxdedffZ7LxT1avyKPMy3NgJdEmGfXdwr4GkNTrN-FF-AXh0QuS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Knee+Joint+Vibration+Signals+Using+Bivariate+Feature+Distribution+Estimation+and+Maximal+Posterior+Probability+Decision+Criterion&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Yunfeng&rft.au=Cai%2C+Suxian&rft.au=Yang%2C+Shanshan&rft.au=Zheng%2C+Fang&rft.date=2013-04-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=15&rft.issue=4&rft.spage=1375&rft.epage=1387&rft_id=info:doi/10.3390%2Fe15041375&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e15041375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon