A New Cascade-Correlation Growing Deep Learning Neural Network Algorithm

In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the cascade correlation algorithm. Cascade correlation is an important algorithm that is used to solve the actual problem by artificial neural ne...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 14; no. 5; p. 158
Main Authors Mohamed, Soha Abd El-Moamen, Mohamed, Marghany Hassan, Farghally, Mohammed F.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2021
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a14050158

Cover

Abstract In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the cascade correlation algorithm. Cascade correlation is an important algorithm that is used to solve the actual problem by artificial neural networks as a new architecture and supervised learning algorithm. This process optimizes the architectures of the network which intends to accelerate the learning process and produce better performance in generalization. Many researchers have to date proposed several growing algorithms to optimize the feedforward neural network architectures. The proposed algorithm has been tested on various medical data sets. The results prove that the proposed algorithm is a better method to evaluate the accuracy and flexibility resulting from it.
AbstractList In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the cascade correlation algorithm. Cascade correlation is an important algorithm that is used to solve the actual problem by artificial neural networks as a new architecture and supervised learning algorithm. This process optimizes the architectures of the network which intends to accelerate the learning process and produce better performance in generalization. Many researchers have to date proposed several growing algorithms to optimize the feedforward neural network architectures. The proposed algorithm has been tested on various medical data sets. The results prove that the proposed algorithm is a better method to evaluate the accuracy and flexibility resulting from it.
Author Farghally, Mohammed F.
Mohamed, Soha Abd El-Moamen
Mohamed, Marghany Hassan
Author_xml – sequence: 1
  givenname: Soha Abd El-Moamen
  orcidid: 0000-0002-2230-5310
  surname: Mohamed
  fullname: Mohamed, Soha Abd El-Moamen
– sequence: 2
  givenname: Marghany Hassan
  surname: Mohamed
  fullname: Mohamed, Marghany Hassan
– sequence: 3
  givenname: Mohammed F.
  surname: Farghally
  fullname: Farghally, Mohammed F.
BookMark eNp1kE9LAzEQxYMo2FYPfoMFTwprM5vNbnIsVdtCqRc9h0k2qVu3m5rdUvrt7R8pInp6M8ObHzOvS85rX1tCboA-MCZpHyGlnAIXZ6QDUso4FZKd_6gvSbdpFpRmXGbQIeNBNLObaIiNwcLGQx-CrbAtfR2Ngt-U9Tx6tHYVTS2Get_N7DpgtZN248NHNKjmPpTt-_KKXDisGnv9rT3y9vz0OhzH05fRZDiYxoZx0cZgBKZaozSQFo6JhOegsRCJoQlmWifOSCycTDJwOmM8KQAgly6TnCNkgvXI5MgtPC7UKpRLDFvlsVSHgQ9zhaEtTWUVpBoKYByttqnDXKcyzZwDSQXPC7Zn3R9Z63qF2w1W1QkIVO3zVKc8d-bbo3kV_OfaNq1a-HWod7-qhDNgImd5snP1jy4TfNME65Qp20OebcCy-pN792vj_xu-AKGkkPY
CitedBy_id crossref_primary_10_3390_w15061126
crossref_primary_10_1007_s10668_024_05138_8
crossref_primary_10_1016_j_est_2024_113353
crossref_primary_10_1080_15623599_2023_2239445
crossref_primary_10_3390_ijms25073860
crossref_primary_10_3390_axioms12020164
crossref_primary_10_1002_oca_3108
crossref_primary_10_1007_s10661_022_10799_x
Cites_doi 10.1007/s10710-017-9314-z
10.1016/0893-6080(94)90061-2
10.1142/S0129065794000074
10.1016/0893-6080(91)90032-Z
10.1080/01621459.1981.10477729
10.1109/72.363426
10.1080/09540098908915647
10.1007/978-3-642-79119-2_7
10.1007/978-3-642-04512-7_1
10.1007/978-3-642-04512-7_12
10.1186/s12885-017-3877-1
10.1109/TNNLS.2019.2918225
10.1109/72.207612
10.1049/ip-cta:19951969
10.1155/2014/781670
10.1016/j.neucom.2017.08.040
10.1016/0893-6080(94)90058-2
10.1007/978-1-4419-9226-0_5
10.1088/0305-4470/22/12/019
10.1118/1.3528204
10.1109/72.839013
10.1007/s00521-019-04196-8
10.1162/neco.1991.3.2.213
10.3390/informatics6010001
10.1109/72.623214
10.1109/72.572102
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a14050158
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_14b1d135aebe4fa7b4946ff190857d38
10.3390/a14050158
10_3390_a14050158
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
C1A
ICD
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c358t-1c8a4bba9c14df382571bad82c02a6bb2fc9adf9261fb6352d11179f6955a1683
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Fri Oct 03 12:45:32 EDT 2025
Sun Oct 26 03:46:49 EDT 2025
Fri Jul 25 12:03:36 EDT 2025
Thu Oct 16 04:42:16 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-1c8a4bba9c14df382571bad82c02a6bb2fc9adf9261fb6352d11179f6955a1683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2230-5310
OpenAccessLink https://doaj.org/article/14b1d135aebe4fa7b4946ff190857d38
PQID 2531387372
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_14b1d135aebe4fa7b4946ff190857d38
unpaywall_primary_10_3390_a14050158
proquest_journals_2531387372
crossref_citationtrail_10_3390_a14050158
crossref_primary_10_3390_a14050158
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ash (ref_18) 1989; 1
Platt (ref_25) 1991; 3
Armato (ref_32) 2011; 38
Zemouri (ref_2) 2019; 32
ref_14
ref_36
ref_35
ref_11
ref_33
ref_30
Kwok (ref_13) 1997; 8
Strack (ref_34) 2014; 2014
Hirose (ref_20) 1991; 4
Setiono (ref_17) 1995; 6
Kwok (ref_31) 1997; 8
Irsoy (ref_1) 2019; 31
Friedman (ref_24) 1981; 76
Bartlett (ref_19) 1994; 7
Nabhan (ref_27) 1994; 7
Sheedvash (ref_16) 1993; 4
Sharma (ref_4) 2010; 2
Fahlman (ref_23) 1990; 2
ref_22
ref_21
Burgess (ref_10) 1994; 5
Parekh (ref_12) 2000; 11
ref_29
ref_28
ref_26
Mezard (ref_8) 1989; 22
Cao (ref_3) 2018; 275
ref_5
ref_7
Frean (ref_9) 1990; 2
Chung (ref_15) 1995; 142
ref_6
References_xml – ident: ref_7
– volume: 2
  start-page: 7847
  year: 2010
  ident: ref_4
  article-title: Constructive neural networks: A review
  publication-title: Int. J. Eng. Sci. Technol.
– ident: ref_29
  doi: 10.1007/s10710-017-9314-z
– volume: 7
  start-page: 129
  year: 1994
  ident: ref_19
  article-title: Dynamic node architecture learning: An information theoretic approach
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(94)90061-2
– ident: ref_5
– volume: 5
  start-page: 59
  year: 1994
  ident: ref_10
  article-title: A constructive algorithm that converges for real-valued input patterns
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065794000074
– volume: 4
  start-page: 61
  year: 1991
  ident: ref_20
  article-title: Backpropagation algorithm which varies the number of hidden units
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90032-Z
– ident: ref_26
– volume: 76
  start-page: 817
  year: 1981
  ident: ref_24
  article-title: Projection pursuit regression
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1981.10477729
– volume: 6
  start-page: 273
  year: 1995
  ident: ref_17
  article-title: Use of a quasi-Newton method in a feedforward neural network construction algorithm
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.363426
– volume: 1
  start-page: 365
  year: 1989
  ident: ref_18
  article-title: Dynamic node creation in backpropagation networks
  publication-title: Connect. Sci.
  doi: 10.1080/09540098908915647
– ident: ref_11
– ident: ref_14
  doi: 10.1007/978-3-642-79119-2_7
– volume: 2
  start-page: 524
  year: 1990
  ident: ref_23
  article-title: The cascade-correlation learning architecture
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_6
  doi: 10.1007/978-3-642-04512-7_1
– ident: ref_28
  doi: 10.1007/978-3-642-04512-7_12
– ident: ref_35
  doi: 10.1186/s12885-017-3877-1
– volume: 31
  start-page: 1124
  year: 2019
  ident: ref_1
  article-title: Continuously constructive deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2918225
– ident: ref_21
– volume: 4
  start-page: 242
  year: 1993
  ident: ref_16
  article-title: Recursive dynamic node creation in multilayer neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.207612
– volume: 142
  start-page: 486
  year: 1995
  ident: ref_15
  article-title: Network-grwoth approach to design of feedforward neural networks
  publication-title: IEE Proc. Control. Theory Appl.
  doi: 10.1049/ip-cta:19951969
– volume: 2014
  start-page: 781670
  year: 2014
  ident: ref_34
  article-title: Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/781670
– volume: 275
  start-page: 278
  year: 2018
  ident: ref_3
  article-title: A review on neural networks with random weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.040
– volume: 7
  start-page: 89
  year: 1994
  ident: ref_27
  article-title: Toward generating neural network structures for function approximation
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(94)90058-2
– ident: ref_33
– ident: ref_36
  doi: 10.1007/978-1-4419-9226-0_5
– volume: 22
  start-page: 2191
  year: 1989
  ident: ref_8
  article-title: Learning in feedforward layered networks: The Tiling algorithm
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/22/12/019
– volume: 38
  start-page: 915
  year: 2011
  ident: ref_32
  article-title: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– volume: 11
  start-page: 436
  year: 2000
  ident: ref_12
  article-title: Constructive neural-network learning algorithms for pattern classification
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.839013
– volume: 2
  start-page: 198
  year: 1990
  ident: ref_9
  article-title: The Upstart algorithm: A method for constructing and training feed-forward neural networks
  publication-title: Neural Netw.
– volume: 32
  start-page: 18143
  year: 2019
  ident: ref_2
  article-title: A new growing pruning deep learning neural network algorithm (GP-DLNN)
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04196-8
– ident: ref_22
– volume: 3
  start-page: 213
  year: 1991
  ident: ref_25
  article-title: A resource-allocating network for function interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.213
– ident: ref_30
  doi: 10.3390/informatics6010001
– volume: 8
  start-page: 1131
  year: 1997
  ident: ref_31
  article-title: Objective functions for training new hidden units in constructive neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.623214
– volume: 8
  start-page: 630
  year: 1997
  ident: ref_13
  article-title: Constructive algorithms for structure learning in feedforward neural networks for regression problems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.572102
SSID ssj0065961
Score 2.2751648
Snippet In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 158
SubjectTerms Algorithms
Artificial neural networks
cascade correlation
Classification
Computer architecture
constructive neural networks
Correlation
Deep learning
Machine learning
Neural networks
Neurons
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BOMCl0BbU8NKq7aGXFdmn7QNCIUAjJKKqKhI3ax_e9JAmAYKq_ntm7XUACXq1Vit7ZnZmPnv8fQBfJauwSlWOqkIoKnVPUMt8oMbygjuuc-Hj38hXIz28lpc36mYFRu2_MHGsss2JdaL2MxffkR9xDBaRR1GVk_ktjapR8etqK6FhkrSCP64pxlZhjUdmrA6snZ6Pfvxsc7NWhWYNv5BAsH9kEF4oLIj5i6pUk_e_6DjXH6Zz8--vmUyeFZ-LLXiXukbSb9z8Hlaq6QfYbBUZSDqgH2HYJ5i1yMDcx7F3OojSG82wG_mOeBvLFDmrqjlJrKpjErk5cONRMwxO-pMxPvPi959tuL44_zUY0qSVQJ1Q-YIylxtprSkckz4IxH0Zs8bn3PW40dby4ArjQ4GAKVhsMrhnkQwu6EIpw9AlO9CZzqbVJyDS92QQCJMqZaV0wQSdY5MRXGYzw5ztwrfWVqVLROJRz2JSIqCIZi2XZu3C5-XSecOe8dqi02jw5YJIeF1fmN2Ny3R-EKFgCDGhDAadDCazspA6BGxncpV5gZvst-4q0ym8L59ipgtfli58-052_7_JHmzwONFSjzvuQ2dx91AdYEuysIcpzh4BCInfZA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wAXdnmJwi6ygAOXbOpnnBMqhaVCouJApeUU-RGX1Xbbqk1B8OsZJ27FIpAQ12hiOZrPnvmc8TcALwStMUrVLpMll5lQA55Z6kNmLCuZY0pzH28jf5io8VS8P5fn6cBtk8oqkYpftJt0e0U-qqPkVOQyp1LnKx9efU0nSVQxivEHIXUTDpTEXLwHB9PJx-Hn9ldyereTE-LI7XODbEJi_NPXglCr1X8twby1XazM929mPv8l1pwdQrWbZVdicnm6beyp-_GbgOP_f8YR3ElpKBl2uLkLN-rFPTjctXggacXfh_GQ4DZIRmYT6-izUezl0VXPkXdI4DHukTd1vSJJpnVGotgHDjzpqsvJcD5bri-aL1cPYHr29tNonKXmC5njUjcZddoIa03pqPCBI5EsqDVeMzdgRlnLgiuNDyUysGAxa2GeRnW5oEopDUUfP4TeYrmoHwERfiACR95VSyuECyYojVlLcIUtDHW2Dy933qhcUiaPDTLmFTKU6Lhq77g-PNubrjo5jj8ZvY4u3RtEBe32wXI9q9KCRMqDmKRcGkSxCKawohQqBMyPtCw8x0GOd4Co0rLeVAx3LK5jZ58-PN-D5O8zefxPVk_gNouVMm0Z5TH0mvW2PsFUp7FPE55_Ahlg9l0
  priority: 102
  providerName: Unpaywall
Title A New Cascade-Correlation Growing Deep Learning Neural Network Algorithm
URI https://www.proquest.com/docview/2531387372
https://www.mdpi.com/1999-4893/14/5/158/pdf?version=1621415179
https://doaj.org/article/14b1d135aebe4fa7b4946ff190857d38
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSyNBEC00HvSy6ycb1w2NevAymP6c7mPMGoNgEDGgp6G7Z1oXsjFogvjvrZ6ZBAXFi8cZamaaqumqelD9HsChoAVWqcIn0nCZCNXmiaN5SKxjhnmmNM_jaeSLgeoPxfmNvHkj9RVnwip64Mpxx1Tgs5RLi18TwaZOGKFCwDqmZZrz8phvW5s5mKpysJJG0YpHiCOoP7YIIyQWPv2u-pQk_e86y9XZeGJfnu1o9KbI9NbhR90dkk61qg1YKsab8HOuvEDqjbgF_Q7B7ES69imOtyfdKLFRDbWRM8TVWI7I36KYkJo99Y5EDg588aAa-iad0d3D47_p_f9tGPZOr7v9pNZESDyXeppQr61wzhpPRR444ruUOptr5tvMKudY8MbmwSAwCg6bCZbTSPoWlJHSUnT9DjTGD-PiFxCRt0XgCIcK6YTwwQalsZkIPnWppd414Wjuq8zXhOFRt2KUIXCIbs0Wbm3C_sJ0UrFkfGR0Eh2-MIjE1uUNDHdWhzv7KtxN2JuHK6t321PGMJFwHQV3mnCwCOHnK9n9jpX8hjUW51vK4cc9aEwfZ8UfbFCmrgXLunfWgpWT08HlVav8M_FqOLjs3L4CcJTltQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5RONBL31VDabvqQ-plRfZp7wFVIUBDgaiqQOJm9pke0iSQIMSf62_rrL1Oi9T2xtVajezZ8cx89uz3IfRe0ABVKjgiNZdEqC4nlvpIjGWaOaZK7tNp5OOhGpyKL2fybAX9bM_CpLHKNifWidpPXfpGvsUgWHiZRFU-zS5IUo1Kf1dbCQ2TpRX8dk0xlg92HIaba4Bw8-2DXdjvD4zt7530BySrDBDHZbkg1JVGWGu0o8JHDoipoNb4krkuM8paFp02PmqAGtFCeWaeJhq1qLSUhsLDgN17aE1woQH8re3sDb9-a2uBklrRhs-Ic93dMgBnJBTg8lYVrMUCbnW461eTmbm5NuPxH8Vu_xF6kLtU3GvC6jFaCZMn6GGrAIFzQniKBj0MWRL3zTyN2ZN-kvpohuvwZ8D3UBbxbggznFlcRzhxgYDhYTN8jnvjEfh48f3HM3R6J157jlYn00l4gbDwXRE5wLIgrRAumqhKaGqiK2xhqLMd9LH1VeUycXnSzxhXAGCSW6ulWzvo7XLprGHr-NuineTw5YJEsF1fmF6Oqvy-AiKCkKVcGghyEU1hhRYqRmifSll4DkY22-2q8ls_r37HaAe9W27hv-9k4_9G3qD1wcnxUXV0MDx8ie6zNE1Tj1puotXF5VV4Be3Qwr7OMYfR-V2H-S_W4xyF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIkEvlKcaKGDxkLhYiZ-7PlQoJKQphYgDlXpbbK8dDiEJTaqqf41fx3gfgUrArdeVNdodfzuP3fH3AbySLGCWCp4qIxSVuieoY2Wk1nHDPde5KNNp5E8TPT6RH07V6Rb8bM_CpLHKNiZWgbpc-PSNvMsRLCJPoird2IxFfB6O3i5_0KQglf60tnIaNUSOw-UFtm-rg6Mh7vVrzkfvvwzGtFEYoF6ofE2Zz610zhrPZBkFdksZc7bMue9xq53j0RtbRoNtRnSYmnnJEoVa1EYpy_BB0O4NuJklFvd0Sn102GYBrYxmNZOREKbXtdjIKEy9-ZX8V8kEXKltb5_Pl_byws5mf6S50V2409SnpF8D6h5shfl92G21H0gTCh7AuE8wPpKBXaUBezpIIh_1WB05xM4eEyIZhrAkDX_rlCQWEDQ8qcfOSX82RY-uv31_CCfX4rNHsD1fzMMeEFn2ZBTYkAXlpPTRRp1jORN95jLLvOvAm9ZXhW8oy5NyxqzA1iW5tdi4tQMvNkuXNU_H3xa9Sw7fLEjU2tWFxdm0aN5U7IUQrEwoi_CW0WZOGqljxMIpV1kp0Mh-u11F876vit_o7MDLzRb--04e_9_Ic7iF4C4-Hk2On8AOT2M01YzlPmyvz87DU6yD1u5ZBTgCX68b4b8AD1YaHw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wAXdnmJwi6ygAOXbOpnnBMqhaVCouJApeUU-RGX1Xbbqk1B8OsZJ27FIpAQ12hiOZrPnvmc8TcALwStMUrVLpMll5lQA55Z6kNmLCuZY0pzH28jf5io8VS8P5fn6cBtk8oqkYpftJt0e0U-qqPkVOQyp1LnKx9efU0nSVQxivEHIXUTDpTEXLwHB9PJx-Hn9ldyereTE-LI7XODbEJi_NPXglCr1X8twby1XazM929mPv8l1pwdQrWbZVdicnm6beyp-_GbgOP_f8YR3ElpKBl2uLkLN-rFPTjctXggacXfh_GQ4DZIRmYT6-izUezl0VXPkXdI4DHukTd1vSJJpnVGotgHDjzpqsvJcD5bri-aL1cPYHr29tNonKXmC5njUjcZddoIa03pqPCBI5EsqDVeMzdgRlnLgiuNDyUysGAxa2GeRnW5oEopDUUfP4TeYrmoHwERfiACR95VSyuECyYojVlLcIUtDHW2Dy933qhcUiaPDTLmFTKU6Lhq77g-PNubrjo5jj8ZvY4u3RtEBe32wXI9q9KCRMqDmKRcGkSxCKawohQqBMyPtCw8x0GOd4Co0rLeVAx3LK5jZ58-PN-D5O8zefxPVk_gNouVMm0Z5TH0mvW2PsFUp7FPE55_Ahlg9l0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Cascade-Correlation+Growing+Deep+Learning+Neural+Network+Algorithm&rft.jtitle=Algorithms&rft.au=Soha+Abd+El-Moamen+Mohamed&rft.au=Marghany+Hassan+Mohamed&rft.au=Mohammed+F.+Farghally&rft.date=2021-05-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=14&rft.issue=5&rft.spage=158&rft_id=info:doi/10.3390%2Fa14050158&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_14b1d135aebe4fa7b4946ff190857d38
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon