A New Cascade-Correlation Growing Deep Learning Neural Network Algorithm
In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the cascade correlation algorithm. Cascade correlation is an important algorithm that is used to solve the actual problem by artificial neural ne...
        Saved in:
      
    
          | Published in | Algorithms Vol. 14; no. 5; p. 158 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.05.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1999-4893 1999-4893  | 
| DOI | 10.3390/a14050158 | 
Cover
| Abstract | In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the cascade correlation algorithm. Cascade correlation is an important algorithm that is used to solve the actual problem by artificial neural networks as a new architecture and supervised learning algorithm. This process optimizes the architectures of the network which intends to accelerate the learning process and produce better performance in generalization. Many researchers have to date proposed several growing algorithms to optimize the feedforward neural network architectures. The proposed algorithm has been tested on various medical data sets. The results prove that the proposed algorithm is a better method to evaluate the accuracy and flexibility resulting from it. | 
    
|---|---|
| AbstractList | In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the cascade correlation algorithm. Cascade correlation is an important algorithm that is used to solve the actual problem by artificial neural networks as a new architecture and supervised learning algorithm. This process optimizes the architectures of the network which intends to accelerate the learning process and produce better performance in generalization. Many researchers have to date proposed several growing algorithms to optimize the feedforward neural network architectures. The proposed algorithm has been tested on various medical data sets. The results prove that the proposed algorithm is a better method to evaluate the accuracy and flexibility resulting from it. | 
    
| Author | Farghally, Mohammed F. Mohamed, Soha Abd El-Moamen Mohamed, Marghany Hassan  | 
    
| Author_xml | – sequence: 1 givenname: Soha Abd El-Moamen orcidid: 0000-0002-2230-5310 surname: Mohamed fullname: Mohamed, Soha Abd El-Moamen – sequence: 2 givenname: Marghany Hassan surname: Mohamed fullname: Mohamed, Marghany Hassan – sequence: 3 givenname: Mohammed F. surname: Farghally fullname: Farghally, Mohammed F.  | 
    
| BookMark | eNp1kE9LAzEQxYMo2FYPfoMFTwprM5vNbnIsVdtCqRc9h0k2qVu3m5rdUvrt7R8pInp6M8ObHzOvS85rX1tCboA-MCZpHyGlnAIXZ6QDUso4FZKd_6gvSbdpFpRmXGbQIeNBNLObaIiNwcLGQx-CrbAtfR2Ngt-U9Tx6tHYVTS2Get_N7DpgtZN248NHNKjmPpTt-_KKXDisGnv9rT3y9vz0OhzH05fRZDiYxoZx0cZgBKZaozSQFo6JhOegsRCJoQlmWifOSCycTDJwOmM8KQAgly6TnCNkgvXI5MgtPC7UKpRLDFvlsVSHgQ9zhaEtTWUVpBoKYByttqnDXKcyzZwDSQXPC7Zn3R9Z63qF2w1W1QkIVO3zVKc8d-bbo3kV_OfaNq1a-HWod7-qhDNgImd5snP1jy4TfNME65Qp20OebcCy-pN792vj_xu-AKGkkPY | 
    
| CitedBy_id | crossref_primary_10_3390_w15061126 crossref_primary_10_1007_s10668_024_05138_8 crossref_primary_10_1016_j_est_2024_113353 crossref_primary_10_1080_15623599_2023_2239445 crossref_primary_10_3390_ijms25073860 crossref_primary_10_3390_axioms12020164 crossref_primary_10_1002_oca_3108 crossref_primary_10_1007_s10661_022_10799_x  | 
    
| Cites_doi | 10.1007/s10710-017-9314-z 10.1016/0893-6080(94)90061-2 10.1142/S0129065794000074 10.1016/0893-6080(91)90032-Z 10.1080/01621459.1981.10477729 10.1109/72.363426 10.1080/09540098908915647 10.1007/978-3-642-79119-2_7 10.1007/978-3-642-04512-7_1 10.1007/978-3-642-04512-7_12 10.1186/s12885-017-3877-1 10.1109/TNNLS.2019.2918225 10.1109/72.207612 10.1049/ip-cta:19951969 10.1155/2014/781670 10.1016/j.neucom.2017.08.040 10.1016/0893-6080(94)90058-2 10.1007/978-1-4419-9226-0_5 10.1088/0305-4470/22/12/019 10.1118/1.3528204 10.1109/72.839013 10.1007/s00521-019-04196-8 10.1162/neco.1991.3.2.213 10.3390/informatics6010001 10.1109/72.623214 10.1109/72.572102  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/a14050158 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1999-4893 | 
    
| ExternalDocumentID | oai_doaj_org_article_14b1d135aebe4fa7b4946ff190857d38 10.3390/a14050158 10_3390_a14050158  | 
    
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A ICD IPNFZ ITC RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c358t-1c8a4bba9c14df382571bad82c02a6bb2fc9adf9261fb6352d11179f6955a1683 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1999-4893 | 
    
| IngestDate | Fri Oct 03 12:45:32 EDT 2025 Sun Oct 26 03:46:49 EDT 2025 Fri Jul 25 12:03:36 EDT 2025 Thu Oct 16 04:42:16 EDT 2025 Thu Apr 24 23:03:51 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c358t-1c8a4bba9c14df382571bad82c02a6bb2fc9adf9261fb6352d11179f6955a1683 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2230-5310 | 
    
| OpenAccessLink | https://doaj.org/article/14b1d135aebe4fa7b4946ff190857d38 | 
    
| PQID | 2531387372 | 
    
| PQPubID | 2032439 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_14b1d135aebe4fa7b4946ff190857d38 unpaywall_primary_10_3390_a14050158 proquest_journals_2531387372 crossref_citationtrail_10_3390_a14050158 crossref_primary_10_3390_a14050158  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-05-01 | 
    
| PublicationDateYYYYMMDD | 2021-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Algorithms | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Ash (ref_18) 1989; 1 Platt (ref_25) 1991; 3 Armato (ref_32) 2011; 38 Zemouri (ref_2) 2019; 32 ref_14 ref_36 ref_35 ref_11 ref_33 ref_30 Kwok (ref_13) 1997; 8 Strack (ref_34) 2014; 2014 Hirose (ref_20) 1991; 4 Setiono (ref_17) 1995; 6 Kwok (ref_31) 1997; 8 Irsoy (ref_1) 2019; 31 Friedman (ref_24) 1981; 76 Bartlett (ref_19) 1994; 7 Nabhan (ref_27) 1994; 7 Sheedvash (ref_16) 1993; 4 Sharma (ref_4) 2010; 2 Fahlman (ref_23) 1990; 2 ref_22 ref_21 Burgess (ref_10) 1994; 5 Parekh (ref_12) 2000; 11 ref_29 ref_28 ref_26 Mezard (ref_8) 1989; 22 Cao (ref_3) 2018; 275 ref_5 ref_7 Frean (ref_9) 1990; 2 Chung (ref_15) 1995; 142 ref_6  | 
    
| References_xml | – ident: ref_7 – volume: 2 start-page: 7847 year: 2010 ident: ref_4 article-title: Constructive neural networks: A review publication-title: Int. J. Eng. Sci. Technol. – ident: ref_29 doi: 10.1007/s10710-017-9314-z – volume: 7 start-page: 129 year: 1994 ident: ref_19 article-title: Dynamic node architecture learning: An information theoretic approach publication-title: Neural Netw. doi: 10.1016/0893-6080(94)90061-2 – ident: ref_5 – volume: 5 start-page: 59 year: 1994 ident: ref_10 article-title: A constructive algorithm that converges for real-valued input patterns publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065794000074 – volume: 4 start-page: 61 year: 1991 ident: ref_20 article-title: Backpropagation algorithm which varies the number of hidden units publication-title: Neural Netw. doi: 10.1016/0893-6080(91)90032-Z – ident: ref_26 – volume: 76 start-page: 817 year: 1981 ident: ref_24 article-title: Projection pursuit regression publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1981.10477729 – volume: 6 start-page: 273 year: 1995 ident: ref_17 article-title: Use of a quasi-Newton method in a feedforward neural network construction algorithm publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.363426 – volume: 1 start-page: 365 year: 1989 ident: ref_18 article-title: Dynamic node creation in backpropagation networks publication-title: Connect. Sci. doi: 10.1080/09540098908915647 – ident: ref_11 – ident: ref_14 doi: 10.1007/978-3-642-79119-2_7 – volume: 2 start-page: 524 year: 1990 ident: ref_23 article-title: The cascade-correlation learning architecture publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_6 doi: 10.1007/978-3-642-04512-7_1 – ident: ref_28 doi: 10.1007/978-3-642-04512-7_12 – ident: ref_35 doi: 10.1186/s12885-017-3877-1 – volume: 31 start-page: 1124 year: 2019 ident: ref_1 article-title: Continuously constructive deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2918225 – ident: ref_21 – volume: 4 start-page: 242 year: 1993 ident: ref_16 article-title: Recursive dynamic node creation in multilayer neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.207612 – volume: 142 start-page: 486 year: 1995 ident: ref_15 article-title: Network-grwoth approach to design of feedforward neural networks publication-title: IEE Proc. Control. Theory Appl. doi: 10.1049/ip-cta:19951969 – volume: 2014 start-page: 781670 year: 2014 ident: ref_34 article-title: Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records publication-title: BioMed Res. Int. doi: 10.1155/2014/781670 – volume: 275 start-page: 278 year: 2018 ident: ref_3 article-title: A review on neural networks with random weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.040 – volume: 7 start-page: 89 year: 1994 ident: ref_27 article-title: Toward generating neural network structures for function approximation publication-title: Neural Netw. doi: 10.1016/0893-6080(94)90058-2 – ident: ref_33 – ident: ref_36 doi: 10.1007/978-1-4419-9226-0_5 – volume: 22 start-page: 2191 year: 1989 ident: ref_8 article-title: Learning in feedforward layered networks: The Tiling algorithm publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/22/12/019 – volume: 38 start-page: 915 year: 2011 ident: ref_32 article-title: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans publication-title: Med. Phys. doi: 10.1118/1.3528204 – volume: 11 start-page: 436 year: 2000 ident: ref_12 article-title: Constructive neural-network learning algorithms for pattern classification publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.839013 – volume: 2 start-page: 198 year: 1990 ident: ref_9 article-title: The Upstart algorithm: A method for constructing and training feed-forward neural networks publication-title: Neural Netw. – volume: 32 start-page: 18143 year: 2019 ident: ref_2 article-title: A new growing pruning deep learning neural network algorithm (GP-DLNN) publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04196-8 – ident: ref_22 – volume: 3 start-page: 213 year: 1991 ident: ref_25 article-title: A resource-allocating network for function interpolation publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.213 – ident: ref_30 doi: 10.3390/informatics6010001 – volume: 8 start-page: 1131 year: 1997 ident: ref_31 article-title: Objective functions for training new hidden units in constructive neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.623214 – volume: 8 start-page: 630 year: 1997 ident: ref_13 article-title: Constructive algorithms for structure learning in feedforward neural networks for regression problems publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.572102  | 
    
| SSID | ssj0065961 | 
    
| Score | 2.2751648 | 
    
| Snippet | In this paper, a proposed algorithm that dynamically changes the neural network structure is presented. The structure is changed based on some features in the... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 158 | 
    
| SubjectTerms | Algorithms Artificial neural networks cascade correlation Classification Computer architecture constructive neural networks Correlation Deep learning Machine learning Neural networks Neurons  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BOMCl0BbU8NKq7aGXFdmn7QNCIUAjJKKqKhI3ax_e9JAmAYKq_ntm7XUACXq1Vit7ZnZmPnv8fQBfJauwSlWOqkIoKnVPUMt8oMbygjuuc-Hj38hXIz28lpc36mYFRu2_MHGsss2JdaL2MxffkR9xDBaRR1GVk_ktjapR8etqK6FhkrSCP64pxlZhjUdmrA6snZ6Pfvxsc7NWhWYNv5BAsH9kEF4oLIj5i6pUk_e_6DjXH6Zz8--vmUyeFZ-LLXiXukbSb9z8Hlaq6QfYbBUZSDqgH2HYJ5i1yMDcx7F3OojSG82wG_mOeBvLFDmrqjlJrKpjErk5cONRMwxO-pMxPvPi959tuL44_zUY0qSVQJ1Q-YIylxtprSkckz4IxH0Zs8bn3PW40dby4ArjQ4GAKVhsMrhnkQwu6EIpw9AlO9CZzqbVJyDS92QQCJMqZaV0wQSdY5MRXGYzw5ztwrfWVqVLROJRz2JSIqCIZi2XZu3C5-XSecOe8dqi02jw5YJIeF1fmN2Ny3R-EKFgCDGhDAadDCazspA6BGxncpV5gZvst-4q0ym8L59ipgtfli58-052_7_JHmzwONFSjzvuQ2dx91AdYEuysIcpzh4BCInfZA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wAXdnmJwi6ygAOXbOpnnBMqhaVCouJApeUU-RGX1Xbbqk1B8OsZJ27FIpAQ12hiOZrPnvmc8TcALwStMUrVLpMll5lQA55Z6kNmLCuZY0pzH28jf5io8VS8P5fn6cBtk8oqkYpftJt0e0U-qqPkVOQyp1LnKx9efU0nSVQxivEHIXUTDpTEXLwHB9PJx-Hn9ldyereTE-LI7XODbEJi_NPXglCr1X8twby1XazM929mPv8l1pwdQrWbZVdicnm6beyp-_GbgOP_f8YR3ElpKBl2uLkLN-rFPTjctXggacXfh_GQ4DZIRmYT6-izUezl0VXPkXdI4DHukTd1vSJJpnVGotgHDjzpqsvJcD5bri-aL1cPYHr29tNonKXmC5njUjcZddoIa03pqPCBI5EsqDVeMzdgRlnLgiuNDyUysGAxa2GeRnW5oEopDUUfP4TeYrmoHwERfiACR95VSyuECyYojVlLcIUtDHW2Dy933qhcUiaPDTLmFTKU6Lhq77g-PNubrjo5jj8ZvY4u3RtEBe32wXI9q9KCRMqDmKRcGkSxCKawohQqBMyPtCw8x0GOd4Co0rLeVAx3LK5jZ58-PN-D5O8zefxPVk_gNouVMm0Z5TH0mvW2PsFUp7FPE55_Ahlg9l0 priority: 102 providerName: Unpaywall  | 
    
| Title | A New Cascade-Correlation Growing Deep Learning Neural Network Algorithm | 
    
| URI | https://www.proquest.com/docview/2531387372 https://www.mdpi.com/1999-4893/14/5/158/pdf?version=1621415179 https://doaj.org/article/14b1d135aebe4fa7b4946ff190857d38  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSyNBEC00HvSy6ycb1w2NevAymP6c7mPMGoNgEDGgp6G7Z1oXsjFogvjvrZ6ZBAXFi8cZamaaqumqelD9HsChoAVWqcIn0nCZCNXmiaN5SKxjhnmmNM_jaeSLgeoPxfmNvHkj9RVnwip64Mpxx1Tgs5RLi18TwaZOGKFCwDqmZZrz8phvW5s5mKpysJJG0YpHiCOoP7YIIyQWPv2u-pQk_e86y9XZeGJfnu1o9KbI9NbhR90dkk61qg1YKsab8HOuvEDqjbgF_Q7B7ES69imOtyfdKLFRDbWRM8TVWI7I36KYkJo99Y5EDg588aAa-iad0d3D47_p_f9tGPZOr7v9pNZESDyXeppQr61wzhpPRR444ruUOptr5tvMKudY8MbmwSAwCg6bCZbTSPoWlJHSUnT9DjTGD-PiFxCRt0XgCIcK6YTwwQalsZkIPnWppd414Wjuq8zXhOFRt2KUIXCIbs0Wbm3C_sJ0UrFkfGR0Eh2-MIjE1uUNDHdWhzv7KtxN2JuHK6t321PGMJFwHQV3mnCwCOHnK9n9jpX8hjUW51vK4cc9aEwfZ8UfbFCmrgXLunfWgpWT08HlVav8M_FqOLjs3L4CcJTltQ | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5RONBL31VDabvqQ-plRfZp7wFVIUBDgaiqQOJm9pke0iSQIMSf62_rrL1Oi9T2xtVajezZ8cx89uz3IfRe0ABVKjgiNZdEqC4nlvpIjGWaOaZK7tNp5OOhGpyKL2fybAX9bM_CpLHKNifWidpPXfpGvsUgWHiZRFU-zS5IUo1Kf1dbCQ2TpRX8dk0xlg92HIaba4Bw8-2DXdjvD4zt7530BySrDBDHZbkg1JVGWGu0o8JHDoipoNb4krkuM8paFp02PmqAGtFCeWaeJhq1qLSUhsLDgN17aE1woQH8re3sDb9-a2uBklrRhs-Ic93dMgBnJBTg8lYVrMUCbnW461eTmbm5NuPxH8Vu_xF6kLtU3GvC6jFaCZMn6GGrAIFzQniKBj0MWRL3zTyN2ZN-kvpohuvwZ8D3UBbxbggznFlcRzhxgYDhYTN8jnvjEfh48f3HM3R6J157jlYn00l4gbDwXRE5wLIgrRAumqhKaGqiK2xhqLMd9LH1VeUycXnSzxhXAGCSW6ulWzvo7XLprGHr-NuineTw5YJEsF1fmF6Oqvy-AiKCkKVcGghyEU1hhRYqRmifSll4DkY22-2q8ls_r37HaAe9W27hv-9k4_9G3qD1wcnxUXV0MDx8ie6zNE1Tj1puotXF5VV4Be3Qwr7OMYfR-V2H-S_W4xyF | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIkEvlKcaKGDxkLhYiZ-7PlQoJKQphYgDlXpbbK8dDiEJTaqqf41fx3gfgUrArdeVNdodfzuP3fH3AbySLGCWCp4qIxSVuieoY2Wk1nHDPde5KNNp5E8TPT6RH07V6Rb8bM_CpLHKNiZWgbpc-PSNvMsRLCJPoird2IxFfB6O3i5_0KQglf60tnIaNUSOw-UFtm-rg6Mh7vVrzkfvvwzGtFEYoF6ofE2Zz610zhrPZBkFdksZc7bMue9xq53j0RtbRoNtRnSYmnnJEoVa1EYpy_BB0O4NuJklFvd0Sn102GYBrYxmNZOREKbXtdjIKEy9-ZX8V8kEXKltb5_Pl_byws5mf6S50V2409SnpF8D6h5shfl92G21H0gTCh7AuE8wPpKBXaUBezpIIh_1WB05xM4eEyIZhrAkDX_rlCQWEDQ8qcfOSX82RY-uv31_CCfX4rNHsD1fzMMeEFn2ZBTYkAXlpPTRRp1jORN95jLLvOvAm9ZXhW8oy5NyxqzA1iW5tdi4tQMvNkuXNU_H3xa9Sw7fLEjU2tWFxdm0aN5U7IUQrEwoi_CW0WZOGqljxMIpV1kp0Mh-u11F876vit_o7MDLzRb--04e_9_Ic7iF4C4-Hk2On8AOT2M01YzlPmyvz87DU6yD1u5ZBTgCX68b4b8AD1YaHw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wAXdnmJwi6ygAOXbOpnnBMqhaVCouJApeUU-RGX1Xbbqk1B8OsZJ27FIpAQ12hiOZrPnvmc8TcALwStMUrVLpMll5lQA55Z6kNmLCuZY0pzH28jf5io8VS8P5fn6cBtk8oqkYpftJt0e0U-qqPkVOQyp1LnKx9efU0nSVQxivEHIXUTDpTEXLwHB9PJx-Hn9ldyereTE-LI7XODbEJi_NPXglCr1X8twby1XazM929mPv8l1pwdQrWbZVdicnm6beyp-_GbgOP_f8YR3ElpKBl2uLkLN-rFPTjctXggacXfh_GQ4DZIRmYT6-izUezl0VXPkXdI4DHukTd1vSJJpnVGotgHDjzpqsvJcD5bri-aL1cPYHr29tNonKXmC5njUjcZddoIa03pqPCBI5EsqDVeMzdgRlnLgiuNDyUysGAxa2GeRnW5oEopDUUfP4TeYrmoHwERfiACR95VSyuECyYojVlLcIUtDHW2Dy933qhcUiaPDTLmFTKU6Lhq77g-PNubrjo5jj8ZvY4u3RtEBe32wXI9q9KCRMqDmKRcGkSxCKawohQqBMyPtCw8x0GOd4Co0rLeVAx3LK5jZ58-PN-D5O8zefxPVk_gNouVMm0Z5TH0mvW2PsFUp7FPE55_Ahlg9l0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Cascade-Correlation+Growing+Deep+Learning+Neural+Network+Algorithm&rft.jtitle=Algorithms&rft.au=Soha+Abd+El-Moamen+Mohamed&rft.au=Marghany+Hassan+Mohamed&rft.au=Mohammed+F.+Farghally&rft.date=2021-05-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=14&rft.issue=5&rft.spage=158&rft_id=info:doi/10.3390%2Fa14050158&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_14b1d135aebe4fa7b4946ff190857d38 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |