Independent component analysis model utilizing de-mixing information for improved non-Gaussian process monitoring

•We focus on the de-mixing matrix, which is rarely studied in ICA model, to extract data information for fault detection.•Multi-block strategy is employed to deal with big data in a novel way.•The numerous data is divided through a similarity index Generalized Dice’s coefficient.•Bayesian inference...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 94; pp. 188 - 200
Main Authors Wang, Bei, Yan, Xuefeng, Jiang, Qingchao
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.04.2016
Pergamon Press Inc
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2016.01.021

Cover

Abstract •We focus on the de-mixing matrix, which is rarely studied in ICA model, to extract data information for fault detection.•Multi-block strategy is employed to deal with big data in a novel way.•The numerous data is divided through a similarity index Generalized Dice’s coefficient.•Bayesian inference is also employed to combine the results with noise weakened.•The way of fault diagnosis is modified with selected variables checked. The de-mixing matrix generated from independent component analysis (ICA) can reveal information about the relations between variables and independent components, but the traditional ICA model does not preserve the whole de-mixing information for the purpose of feature extraction and dimensionality reduction, so that some important information may be abandoned. Multi-block strategy has been improved to be an efficient method to deal with numerous data. However, the manner of dividing original data is still subject for discussion and the priori knowledge is necessary for process division. This paper proposes a totally data-driven ICA model that divides de-mixing matrix based on the Generalized Dice’s coefficient and combines the results from sub-blocks using Bayesian inference. All information in de-mixing matrix is fully utilized and the ability of monitoring non-Gaussian process is improved. Meanwhile, a corresponding contribution plot is developed for fault diagnosis to find the root causes. The performance of the proposed method is illustrated through a numerical example and the Tennessee Eastman benchmark case study.
AbstractList The de-mixing matrix generated from independent component analysis (ICA) can reveal information about the relations between variables and independent components, but the traditional ICA model does not preserve the whole de-mixing information for the purpose of feature extraction and dimensionality reduction, so that some important information may be abandoned. Multi-block strategy has been improved to be an efficient method to deal with numerous data. However, the manner of dividing original data is still subject for discussion and the priori knowledge is necessary for process division. This paper proposes a totally data-driven ICA model that divides de-mixing matrix based on the Generalized Dice's coefficient and combines the results from sub-blocks using Bayesian inference. All information in de-mixing matrix is fully utilized and the ability of monitoring non-Gaussian process is improved. Meanwhile, a corresponding contribution plot is developed for fault diagnosis to find the root causes. The performance of the proposed method is illustrated through a numerical example and the Tennessee Eastman benchmark case study.
•We focus on the de-mixing matrix, which is rarely studied in ICA model, to extract data information for fault detection.•Multi-block strategy is employed to deal with big data in a novel way.•The numerous data is divided through a similarity index Generalized Dice’s coefficient.•Bayesian inference is also employed to combine the results with noise weakened.•The way of fault diagnosis is modified with selected variables checked. The de-mixing matrix generated from independent component analysis (ICA) can reveal information about the relations between variables and independent components, but the traditional ICA model does not preserve the whole de-mixing information for the purpose of feature extraction and dimensionality reduction, so that some important information may be abandoned. Multi-block strategy has been improved to be an efficient method to deal with numerous data. However, the manner of dividing original data is still subject for discussion and the priori knowledge is necessary for process division. This paper proposes a totally data-driven ICA model that divides de-mixing matrix based on the Generalized Dice’s coefficient and combines the results from sub-blocks using Bayesian inference. All information in de-mixing matrix is fully utilized and the ability of monitoring non-Gaussian process is improved. Meanwhile, a corresponding contribution plot is developed for fault diagnosis to find the root causes. The performance of the proposed method is illustrated through a numerical example and the Tennessee Eastman benchmark case study.
Author Wang, Bei
Yan, Xuefeng
Jiang, Qingchao
Author_xml – sequence: 1
  givenname: Bei
  surname: Wang
  fullname: Wang, Bei
– sequence: 2
  givenname: Xuefeng
  surname: Yan
  fullname: Yan, Xuefeng
  email: xfyan@ecust.edu.cn
– sequence: 3
  givenname: Qingchao
  surname: Jiang
  fullname: Jiang, Qingchao
BookMark eNp9kUFr3DAQhUVJoZu0P6A3Qy-92B3ZlmXTUwlNGgjkkp6FIo3KLLa0kezQ9Nd3tttTDkEgPcT3HsO8c3EWU0QhPkpoJMjhy75xhE3LsgHZQCvfiJ0c9VSDUnAmdtANUI-dat-J81L2ANCrSe7E4030eEC-4lq5tBw4lpWNdn4uVKoleZyrbaWZ_lD8VXmsF_p9VBRDyotdKcWKVUXLIacn9BVPVl_brRSyseI_h-WYE2lNmY3vxdtg54If_r8X4ufV9_vLH_Xt3fXN5bfb2nVqXGvpJDzo0U-9str3LnTD4HVvUXkXoLW-D-EBdTsh-NFZO3bTZK0aQqdUaEF1F-LzKZdHeNywrGah4nCebcS0FSNH4KN03zP66QW6T1vmFTCltVYAgxyZkifK5VRKxmAOmRabn40EcyzB7A2XYI4lGJCGS2CPfuFxtP7b2Zotza86v56cyDt6IsymMBIdesroVuMTveL-C7HHpi4
CODEN CINDDL
CitedBy_id crossref_primary_10_1002_cjce_24470
crossref_primary_10_1109_ACCESS_2020_3037730
crossref_primary_10_1252_jcej_20we045
crossref_primary_10_1002_cjce_25085
crossref_primary_10_1088_2631_8695_acbd14
crossref_primary_10_1016_j_cie_2017_12_027
crossref_primary_10_1007_s11771_018_3961_y
crossref_primary_10_1016_j_cie_2024_110064
crossref_primary_10_1109_TIM_2022_3186081
crossref_primary_10_1016_j_cie_2017_08_035
crossref_primary_10_3390_en13030620
crossref_primary_10_1007_s00521_022_08017_3
crossref_primary_10_1007_s13369_023_08010_5
crossref_primary_10_1007_s11705_017_1675_6
crossref_primary_10_1016_j_isatra_2022_09_019
crossref_primary_10_1088_1361_6501_ad688e
crossref_primary_10_1016_j_cie_2022_108171
crossref_primary_10_1007_s00500_020_04673_6
crossref_primary_10_1007_s00521_021_06575_6
crossref_primary_10_1109_TCST_2019_2936793
Cites_doi 10.1016/0098-1354(94)00057-U
10.1016/S0893-6080(00)00026-5
10.2307/1932409
10.1109/TIE.2015.2466557
10.1016/j.chemolab.2015.09.010
10.1109/TIE.2014.2301773
10.1142/S0129065797000458
10.1016/j.cherd.2011.09.011
10.1002/aic.10978
10.1016/j.cie.2015.02.025
10.1016/j.jprocont.2011.11.005
10.1016/S0925-2312(00)00358-1
10.1016/j.chemolab.2012.04.008
10.1016/j.jprocont.2010.03.003
10.1021/ie061083g
10.1002/aic.14335
10.1007/s11814-013-0295-1
10.1080/0740817X.2014.955357
10.1016/j.jprocont.2003.09.004
10.1002/aic.11515
10.1016/j.jprocont.2010.10.005
10.1039/C3AY41907J
10.1002/cem.2687
10.1002/cjce.5450850414
10.1016/j.cie.2015.06.020
10.1049/ip-f-2.1993.0054
10.1016/j.conengprac.2007.02.007
10.1016/j.compchemeng.2010.05.004
10.1080/0951192X.2013.874579
10.1109/TIE.2014.2303781
10.1016/j.jprocont.2012.06.009
10.1016/j.jprocont.2013.09.008
10.1016/0098-1354(93)80018-I
10.1109/TIE.2014.2308133
10.1016/j.eswa.2010.06.101
10.1002/qre.1708
10.1016/j.cie.2015.05.012
10.1080/00207543.2013.870362
10.1109/TCST.2010.2071415
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Pergamon Press Inc. Apr 2016
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Apr 2016
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cie.2016.01.021
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
EndPage 200
ExternalDocumentID 4005924971
10_1016_j_cie_2016_01_021
S0360835216300146
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c358t-1c10b78d945a7d4cf366d74ae5dcf02ad4ffbe729e0d8caa8399aa56f355f2053
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Wed Oct 01 13:23:21 EDT 2025
Sun Sep 07 03:16:40 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Wed Oct 01 00:49:28 EDT 2025
Sun Apr 06 06:54:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-block strategy
De-mixing matrix
Generalized Dice’s coefficient
Independent component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-1c10b78d945a7d4cf366d74ae5dcf02ad4ffbe729e0d8caa8399aa56f355f2053
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1777500618
PQPubID 9545
PageCount 13
ParticipantIDs proquest_miscellaneous_1808085744
proquest_journals_1777500618
crossref_primary_10_1016_j_cie_2016_01_021
crossref_citationtrail_10_1016_j_cie_2016_01_021
elsevier_sciencedirect_doi_10_1016_j_cie_2016_01_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2016
2016-04-00
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & industrial engineering
PublicationYear 2016
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Kuncheva (b0140) 2004
Rashid, Yu (b0190) 2012; 115
Liu, Qin, Chai (b0170) 2014; 61
Berger (b0015) 2013
Diao, Zhao, Yao (b0055) 2014
Zhang, Liu, Ji (b0245) 2009; 4
Downs, Vogel (b0065) 1993; 17
Wang, Zhang, Cao, Zhu (b0215) 2012; 22
Hyvärinen, Karhunen, Oja (b0110) 2004; Vol. 46
Bishop, C. M. & Nasrabadi, N. M. (2006).
Sørensen (b0195) 1948; 5
Bro, Smilde (b0025) 2014; 6
Ge, Song (b0070) 2007; 46
Zhang, Ren, Yao, Zou, Wang (b0255) 2015; 85
Huang, Yan (b0100) 2015; 148
Yin, Ding, Haghani, Hao, Zhang (b0225) 2012; 22
Lázaro, Moreno, Santiago, da Silva Neto (b0145) 2015; 87
Jiang, Yan, Huang (b0130) 2016; 63
Jiang, Yan, Lv, Guo (b0135) 2014; 52
Murguía, Villaseñor (b0180) 2003
Stefatos, Hamza (b0200) 2010; 37
Jiang, Yan (b0125) 2014; 60
Jiang, Yan (b0120) 2013; 23
Xu, Zhao, Ma, Hu (b0220) 2013; 2013
Yin, Ding, Xie, Luo (b0230) 2014; 61
Zhang, Ma (b0250) 2012; 90
Ghosh, Ng, Srinivasan (b0080) 2011; 35
Back, Weigend (b0010) 1997; 8
Hyvarinen (b0105) 1999; 2
Yin, Li, Gao, Kaynak (b0235) 2015; 62
Lyman, Georgakis (b0175) 1995; 19
Lee, Yoo, Lee (b0160) 2004; 14
Harrou, Kadri, Chaabane, Tahon, Sun (b0095) 2015; 88
Alcala, Qin (b0005) 2011; 21
Dice (b0060) 1945; 26
Lee, Qin, Lee (b0150) 2006; 52
Yu, Qin (b0240) 2008; 54
Li, Alcala, Qin, Zhou (b0165) 2011; 19
Lee, Qin, Lee (b0155) 2007; 85
Detroja, Gudi, Patwardhan (b0050) 2007; 15
Hao, Gebraeel, Shi (b0090) 2015; 47
Grasso, Colosimo, Semeraro, Pacella (b0085) 2015; 31
Hyvärinen, Oja (b0115) 2000; 13
Cheng, Huang (b0035) 2014; 27
Wang, Yan, Jiang, Lv (b0210) 2015; 29
Cheung, Xu (b0040) 2001; 41
Wang, Jiang, Yan (b0205) 2014; 31
Ge, Zhang, Song (b0075) 2010; 20
Niaki, Khedmati, Soleymanian (b0185) 2014
Cardoso, Souloumiac (b0030) 1993
Chiang, Braatz, Russell (b0045) 2001
(Vol. 1), New York.
Lázaro (10.1016/j.cie.2016.01.021_b0145) 2015; 87
Rashid (10.1016/j.cie.2016.01.021_b0190) 2012; 115
Liu (10.1016/j.cie.2016.01.021_b0170) 2014; 61
Berger (10.1016/j.cie.2016.01.021_b0015) 2013
10.1016/j.cie.2016.01.021_b0020
Bro (10.1016/j.cie.2016.01.021_b0025) 2014; 6
Lee (10.1016/j.cie.2016.01.021_b0155) 2007; 85
Ge (10.1016/j.cie.2016.01.021_b0070) 2007; 46
Kuncheva (10.1016/j.cie.2016.01.021_b0140) 2004
Wang (10.1016/j.cie.2016.01.021_b0205) 2014; 31
Yin (10.1016/j.cie.2016.01.021_b0235) 2015; 62
Xu (10.1016/j.cie.2016.01.021_b0220) 2013; 2013
Zhang (10.1016/j.cie.2016.01.021_b0250) 2012; 90
Ge (10.1016/j.cie.2016.01.021_b0075) 2010; 20
Detroja (10.1016/j.cie.2016.01.021_b0050) 2007; 15
Zhang (10.1016/j.cie.2016.01.021_b0245) 2009; 4
Zhang (10.1016/j.cie.2016.01.021_b0255) 2015; 85
Alcala (10.1016/j.cie.2016.01.021_b0005) 2011; 21
Jiang (10.1016/j.cie.2016.01.021_b0125) 2014; 60
Jiang (10.1016/j.cie.2016.01.021_b0130) 2016; 63
Lyman (10.1016/j.cie.2016.01.021_b0175) 1995; 19
Murguía (10.1016/j.cie.2016.01.021_b0180) 2003
Sørensen (10.1016/j.cie.2016.01.021_b0195) 1948; 5
Hao (10.1016/j.cie.2016.01.021_b0090) 2015; 47
Niaki (10.1016/j.cie.2016.01.021_b0185) 2014
Wang (10.1016/j.cie.2016.01.021_b0215) 2012; 22
Jiang (10.1016/j.cie.2016.01.021_b0135) 2014; 52
Hyvärinen (10.1016/j.cie.2016.01.021_b0110) 2004; Vol. 46
Back (10.1016/j.cie.2016.01.021_b0010) 1997; 8
Stefatos (10.1016/j.cie.2016.01.021_b0200) 2010; 37
Wang (10.1016/j.cie.2016.01.021_b0210) 2015; 29
Cheng (10.1016/j.cie.2016.01.021_b0035) 2014; 27
Harrou (10.1016/j.cie.2016.01.021_b0095) 2015; 88
Cheung (10.1016/j.cie.2016.01.021_b0040) 2001; 41
Ghosh (10.1016/j.cie.2016.01.021_b0080) 2011; 35
Cardoso (10.1016/j.cie.2016.01.021_b0030) 1993
Hyvärinen (10.1016/j.cie.2016.01.021_b0115) 2000; 13
Yin (10.1016/j.cie.2016.01.021_b0230) 2014; 61
Chiang (10.1016/j.cie.2016.01.021_b0045) 2001
Lee (10.1016/j.cie.2016.01.021_b0160) 2004; 14
Yin (10.1016/j.cie.2016.01.021_b0225) 2012; 22
Grasso (10.1016/j.cie.2016.01.021_b0085) 2015; 31
Dice (10.1016/j.cie.2016.01.021_b0060) 1945; 26
Lee (10.1016/j.cie.2016.01.021_b0150) 2006; 52
Li (10.1016/j.cie.2016.01.021_b0165) 2011; 19
Huang (10.1016/j.cie.2016.01.021_b0100) 2015; 148
Downs (10.1016/j.cie.2016.01.021_b0065) 1993; 17
Hyvarinen (10.1016/j.cie.2016.01.021_b0105) 1999; 2
Diao (10.1016/j.cie.2016.01.021_b0055) 2014
Yu (10.1016/j.cie.2016.01.021_b0240) 2008; 54
Jiang (10.1016/j.cie.2016.01.021_b0120) 2013; 23
References_xml – volume: 8
  start-page: 473
  year: 1997
  end-page: 484
  ident: b0010
  article-title: A first application of independent component analysis to extracting structure from stock returns
  publication-title: International Journal of Neural Systems
– reference: (Vol. 1), New York.
– start-page: 1
  year: 2014
  end-page: 17
  ident: b0055
  article-title: A dynamic quality control approach by improving dominant factors based on improved principal component analysis
  publication-title: International Journal of Production Research
– year: 2004
  ident: b0140
  article-title: Combining pattern classifiers: Methods and algorithms
– volume: 61
  start-page: 6418
  year: 2014
  end-page: 6428
  ident: b0230
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 22
  start-page: 1567
  year: 2012
  end-page: 1581
  ident: b0225
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
  publication-title: Journal of Process Control
– volume: 61
  start-page: 6429
  year: 2014
  end-page: 6437
  ident: b0170
  article-title: Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 19
  start-page: 321
  year: 1995
  end-page: 331
  ident: b0175
  article-title: Plant-wide control of the Tennessee Eastman problem
  publication-title: Computers & Chemical Engineering
– volume: 148
  start-page: 115
  year: 2015
  end-page: 127
  ident: b0100
  article-title: Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 20
  start-page: 676
  year: 2010
  end-page: 688
  ident: b0075
  article-title: Nonlinear process monitoring based on linear subspace and Bayesian inference
  publication-title: Journal of Process Control
– volume: 19
  start-page: 1114
  year: 2011
  end-page: 1127
  ident: b0165
  article-title: Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 85
  start-page: 132
  year: 2015
  end-page: 144
  ident: b0255
  article-title: Phase I analysis of multivariate profiles based on regression adjustment
  publication-title: Computers & Industrial Engineering
– volume: 21
  start-page: 322
  year: 2011
  end-page: 330
  ident: b0005
  article-title: Analysis and generalization of fault diagnosis methods for process monitoring
  publication-title: Journal of Process Control
– volume: 5
  start-page: 1
  year: 1948
  end-page: 34
  ident: b0195
  article-title: {A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons}
  publication-title: Biologiske Skrifter
– volume: 87
  start-page: 140
  year: 2015
  end-page: 149
  ident: b0145
  article-title: Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systems
  publication-title: Computers & Industrial Engineering
– volume: 46
  start-page: 2054
  year: 2007
  end-page: 2063
  ident: b0070
  article-title: Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
  publication-title: Industrial & Engineering Chemistry Research
– volume: 4
  start-page: 532
  year: 2009
  end-page: 536
  ident: b0245
  article-title: Vector similarity measurement method
  publication-title: Technical Acoustics
– year: 2014
  ident: b0185
  article-title: Statistical monitoring of autocorrelated simple linear profiles based on principal components analysis
  publication-title: Communications in Statistics-Theory and Methods
– volume: 88
  start-page: 63
  year: 2015
  end-page: 77
  ident: b0095
  article-title: Improved principal component analysis for anomaly detection: Application to an emergency department
  publication-title: Computers & Industrial Engineering
– volume: 14
  start-page: 467
  year: 2004
  end-page: 485
  ident: b0160
  article-title: Statistical process monitoring with independent component analysis
  publication-title: Journal of Process Control
– volume: 23
  start-page: 1320
  year: 2013
  end-page: 1331
  ident: b0120
  article-title: Non-Gaussian chemical process monitoring with adaptively weighted independent component analysis and its applications
  publication-title: Journal of Process Control
– volume: 47
  start-page: 487
  year: 2015
  end-page: 504
  ident: b0090
  article-title: Simultaneous signal separation and prognostics of multi-component systems: The case of identical components
  publication-title: IIE Transactions
– volume: 27
  start-page: 1055
  year: 2014
  end-page: 1066
  ident: b0035
  article-title: Applying ICA monitoring and profile monitoring to statistical process control of manufacturing variability at multiple locations within the same unit
  publication-title: International Journal of Computer Integrated Manufacturing
– year: 2001
  ident: b0045
  article-title: Fault detection and diagnosis in industrial systems
– volume: 54
  start-page: 1811
  year: 2008
  end-page: 1829
  ident: b0240
  article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
  publication-title: AIChE Journal
– volume: 85
  start-page: 526
  year: 2007
  end-page: 536
  ident: b0155
  article-title: Fault detection of non-linear processes using kernel independent component analysis
  publication-title: The Canadian Journal of Chemical Engineering
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: b0065
  article-title: A plant-wide industrial process control problem
  publication-title: Computers & Chemical Engineering
– volume: 35
  start-page: 342
  year: 2011
  end-page: 355
  ident: b0080
  article-title: Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods
  publication-title: Computers & Chemical Engineering
– volume: 31
  start-page: 75
  year: 2015
  end-page: 96
  ident: b0085
  article-title: A comparison study of distribution – Free multivariate SPC methods for multimode data
  publication-title: Quality and Reliability Engineering International
– volume: 52
  start-page: 3501
  year: 2006
  end-page: 3514
  ident: b0150
  article-title: Fault detection and diagnosis based on modified independent component analysis
  publication-title: AIChE Journal
– volume: 22
  start-page: 477
  year: 2012
  end-page: 487
  ident: b0215
  article-title: Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error
  publication-title: Journal of Process Control
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: b0060
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: Vol. 46
  year: 2004
  ident: b0110
  publication-title: Independent component analysis
– volume: 60
  start-page: 949
  year: 2014
  end-page: 965
  ident: b0125
  article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
  publication-title: AIChE Journal
– start-page: 415
  year: 2003
  end-page: 421
  ident: b0180
  article-title: Estimating the effect of the similarity coefficient and the cluster algorithm on biogeographic classifications
  publication-title: Annales Botanici Fennici
– volume: 62
  start-page: 657
  year: 2015
  end-page: 667
  ident: b0235
  article-title: Data-based techniques focused on modern industry: An overview
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 41
  start-page: 145
  year: 2001
  end-page: 152
  ident: b0040
  article-title: Independent component ordering in ICA time series analysis
  publication-title: Neurocomputing
– volume: 37
  start-page: 8606
  year: 2010
  end-page: 8617
  ident: b0200
  article-title: Dynamic independent component analysis approach for fault detection and diagnosis
  publication-title: Expert Systems with Applications
– start-page: 362
  year: 1993
  end-page: 370
  ident: b0030
  article-title: Blind beamforming for non-Gaussian signals
  publication-title: IEE Proceedings F (Radar and Signal Processing)
– volume: 63
  start-page: 377
  year: 2016
  end-page: 386
  ident: b0130
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 31
  start-page: 930
  year: 2014
  end-page: 943
  ident: b0205
  article-title: Fault detection and identification using a Kullback–Leibler divergence based multi-block principal component analysis and bayesian inference
  publication-title: Korean Journal of Chemical Engineering
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: b0115
  article-title: Independent component analysis: Algorithms and applications
  publication-title: Neural Networks
– volume: 6
  start-page: 2812
  year: 2014
  end-page: 2831
  ident: b0025
  article-title: Principal component analysis
  publication-title: Analytical Methods
– volume: 15
  start-page: 1468
  year: 2007
  end-page: 1483
  ident: b0050
  article-title: Plant-wide detection and diagnosis using correspondence analysis
  publication-title: Control Engineering Practice
– reference: Bishop, C. M. & Nasrabadi, N. M. (2006).
– volume: 115
  start-page: 44
  year: 2012
  end-page: 58
  ident: b0190
  article-title: A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 52
  start-page: 3273
  year: 2014
  end-page: 3286
  ident: b0135
  article-title: Independent component analysis-based non-Gaussian process monitoring with preselecting optimal components and support vector data description
  publication-title: International Journal of Production Research
– volume: 2
  start-page: 94
  year: 1999
  end-page: 128
  ident: b0105
  article-title: Survey on independent component analysis
  publication-title: Neural Computing Surveys
– volume: 29
  start-page: 165
  year: 2015
  end-page: 178
  ident: b0210
  article-title: Generalized Dice’s coefficient-based multi-block principal component analysis with Bayesian inference for plant-wide process monitoring
  publication-title: Journal of Chemometrics
– volume: 2013
  year: 2013
  ident: b0220
  article-title: Fault diagnosis of complex industrial process using KICA and sparse SVM
  publication-title: Mathematical Problems in Engineering
– volume: 90
  start-page: 667
  year: 2012
  end-page: 676
  ident: b0250
  article-title: Decentralized fault diagnosis using multiblock kernel independent component analysis
  publication-title: Chemical Engineering Research and Design
– year: 2013
  ident: b0015
  article-title: Statistical decision theory and Bayesian analysis
– volume: 19
  start-page: 321
  year: 1995
  ident: 10.1016/j.cie.2016.01.021_b0175
  article-title: Plant-wide control of the Tennessee Eastman problem
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/0098-1354(94)00057-U
– volume: 13
  start-page: 411
  year: 2000
  ident: 10.1016/j.cie.2016.01.021_b0115
  article-title: Independent component analysis: Algorithms and applications
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.cie.2016.01.021_b0060
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 63
  start-page: 377
  year: 2016
  ident: 10.1016/j.cie.2016.01.021_b0130
  article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2015.2466557
– volume: 148
  start-page: 115
  year: 2015
  ident: 10.1016/j.cie.2016.01.021_b0100
  article-title: Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2015.09.010
– volume: 61
  start-page: 6418
  year: 2014
  ident: 10.1016/j.cie.2016.01.021_b0230
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2014.2301773
– volume: 8
  start-page: 473
  year: 1997
  ident: 10.1016/j.cie.2016.01.021_b0010
  article-title: A first application of independent component analysis to extracting structure from stock returns
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065797000458
– volume: 90
  start-page: 667
  year: 2012
  ident: 10.1016/j.cie.2016.01.021_b0250
  article-title: Decentralized fault diagnosis using multiblock kernel independent component analysis
  publication-title: Chemical Engineering Research and Design
  doi: 10.1016/j.cherd.2011.09.011
– volume: 52
  start-page: 3501
  year: 2006
  ident: 10.1016/j.cie.2016.01.021_b0150
  article-title: Fault detection and diagnosis based on modified independent component analysis
  publication-title: AIChE Journal
  doi: 10.1002/aic.10978
– volume: 85
  start-page: 132
  year: 2015
  ident: 10.1016/j.cie.2016.01.021_b0255
  article-title: Phase I analysis of multivariate profiles based on regression adjustment
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2015.02.025
– volume: 22
  start-page: 477
  year: 2012
  ident: 10.1016/j.cie.2016.01.021_b0215
  article-title: Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2011.11.005
– volume: 41
  start-page: 145
  year: 2001
  ident: 10.1016/j.cie.2016.01.021_b0040
  article-title: Independent component ordering in ICA time series analysis
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(00)00358-1
– volume: 115
  start-page: 44
  year: 2012
  ident: 10.1016/j.cie.2016.01.021_b0190
  article-title: A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2012.04.008
– volume: 20
  start-page: 676
  year: 2010
  ident: 10.1016/j.cie.2016.01.021_b0075
  article-title: Nonlinear process monitoring based on linear subspace and Bayesian inference
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2010.03.003
– volume: 46
  start-page: 2054
  year: 2007
  ident: 10.1016/j.cie.2016.01.021_b0070
  article-title: Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie061083g
– volume: 2
  start-page: 94
  year: 1999
  ident: 10.1016/j.cie.2016.01.021_b0105
  article-title: Survey on independent component analysis
  publication-title: Neural Computing Surveys
– volume: 60
  start-page: 949
  year: 2014
  ident: 10.1016/j.cie.2016.01.021_b0125
  article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
  publication-title: AIChE Journal
  doi: 10.1002/aic.14335
– volume: 31
  start-page: 930
  year: 2014
  ident: 10.1016/j.cie.2016.01.021_b0205
  article-title: Fault detection and identification using a Kullback–Leibler divergence based multi-block principal component analysis and bayesian inference
  publication-title: Korean Journal of Chemical Engineering
  doi: 10.1007/s11814-013-0295-1
– volume: 47
  start-page: 487
  year: 2015
  ident: 10.1016/j.cie.2016.01.021_b0090
  article-title: Simultaneous signal separation and prognostics of multi-component systems: The case of identical components
  publication-title: IIE Transactions
  doi: 10.1080/0740817X.2014.955357
– volume: 14
  start-page: 467
  year: 2004
  ident: 10.1016/j.cie.2016.01.021_b0160
  article-title: Statistical process monitoring with independent component analysis
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2003.09.004
– volume: 5
  start-page: 1
  year: 1948
  ident: 10.1016/j.cie.2016.01.021_b0195
  article-title: {A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons}
  publication-title: Biologiske Skrifter
– volume: 4
  start-page: 532
  year: 2009
  ident: 10.1016/j.cie.2016.01.021_b0245
  article-title: Vector similarity measurement method
  publication-title: Technical Acoustics
– volume: 54
  start-page: 1811
  year: 2008
  ident: 10.1016/j.cie.2016.01.021_b0240
  article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
  publication-title: AIChE Journal
  doi: 10.1002/aic.11515
– start-page: 1
  year: 2014
  ident: 10.1016/j.cie.2016.01.021_b0055
  article-title: A dynamic quality control approach by improving dominant factors based on improved principal component analysis
  publication-title: International Journal of Production Research
– year: 2014
  ident: 10.1016/j.cie.2016.01.021_b0185
  article-title: Statistical monitoring of autocorrelated simple linear profiles based on principal components analysis
  publication-title: Communications in Statistics-Theory and Methods
– year: 2013
  ident: 10.1016/j.cie.2016.01.021_b0015
– ident: 10.1016/j.cie.2016.01.021_b0020
– volume: 21
  start-page: 322
  year: 2011
  ident: 10.1016/j.cie.2016.01.021_b0005
  article-title: Analysis and generalization of fault diagnosis methods for process monitoring
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2010.10.005
– volume: 6
  start-page: 2812
  year: 2014
  ident: 10.1016/j.cie.2016.01.021_b0025
  article-title: Principal component analysis
  publication-title: Analytical Methods
  doi: 10.1039/C3AY41907J
– year: 2004
  ident: 10.1016/j.cie.2016.01.021_b0140
– volume: 29
  start-page: 165
  year: 2015
  ident: 10.1016/j.cie.2016.01.021_b0210
  article-title: Generalized Dice’s coefficient-based multi-block principal component analysis with Bayesian inference for plant-wide process monitoring
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.2687
– start-page: 415
  year: 2003
  ident: 10.1016/j.cie.2016.01.021_b0180
  article-title: Estimating the effect of the similarity coefficient and the cluster algorithm on biogeographic classifications
  publication-title: Annales Botanici Fennici
– volume: 85
  start-page: 526
  year: 2007
  ident: 10.1016/j.cie.2016.01.021_b0155
  article-title: Fault detection of non-linear processes using kernel independent component analysis
  publication-title: The Canadian Journal of Chemical Engineering
  doi: 10.1002/cjce.5450850414
– volume: 88
  start-page: 63
  year: 2015
  ident: 10.1016/j.cie.2016.01.021_b0095
  article-title: Improved principal component analysis for anomaly detection: Application to an emergency department
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2015.06.020
– volume: 2013
  year: 2013
  ident: 10.1016/j.cie.2016.01.021_b0220
  article-title: Fault diagnosis of complex industrial process using KICA and sparse SVM
  publication-title: Mathematical Problems in Engineering
– start-page: 362
  year: 1993
  ident: 10.1016/j.cie.2016.01.021_b0030
  article-title: Blind beamforming for non-Gaussian signals
  publication-title: IEE Proceedings F (Radar and Signal Processing)
  doi: 10.1049/ip-f-2.1993.0054
– volume: 15
  start-page: 1468
  year: 2007
  ident: 10.1016/j.cie.2016.01.021_b0050
  article-title: Plant-wide detection and diagnosis using correspondence analysis
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2007.02.007
– volume: Vol. 46
  year: 2004
  ident: 10.1016/j.cie.2016.01.021_b0110
– volume: 35
  start-page: 342
  year: 2011
  ident: 10.1016/j.cie.2016.01.021_b0080
  article-title: Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2010.05.004
– volume: 27
  start-page: 1055
  year: 2014
  ident: 10.1016/j.cie.2016.01.021_b0035
  article-title: Applying ICA monitoring and profile monitoring to statistical process control of manufacturing variability at multiple locations within the same unit
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2013.874579
– volume: 61
  start-page: 6429
  year: 2014
  ident: 10.1016/j.cie.2016.01.021_b0170
  article-title: Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2014.2303781
– volume: 22
  start-page: 1567
  year: 2012
  ident: 10.1016/j.cie.2016.01.021_b0225
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2012.06.009
– volume: 23
  start-page: 1320
  year: 2013
  ident: 10.1016/j.cie.2016.01.021_b0120
  article-title: Non-Gaussian chemical process monitoring with adaptively weighted independent component analysis and its applications
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2013.09.008
– volume: 17
  start-page: 245
  year: 1993
  ident: 10.1016/j.cie.2016.01.021_b0065
  article-title: A plant-wide industrial process control problem
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/0098-1354(93)80018-I
– volume: 62
  start-page: 657
  year: 2015
  ident: 10.1016/j.cie.2016.01.021_b0235
  article-title: Data-based techniques focused on modern industry: An overview
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2014.2308133
– volume: 37
  start-page: 8606
  year: 2010
  ident: 10.1016/j.cie.2016.01.021_b0200
  article-title: Dynamic independent component analysis approach for fault detection and diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.06.101
– volume: 31
  start-page: 75
  year: 2015
  ident: 10.1016/j.cie.2016.01.021_b0085
  article-title: A comparison study of distribution – Free multivariate SPC methods for multimode data
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.1708
– volume: 87
  start-page: 140
  year: 2015
  ident: 10.1016/j.cie.2016.01.021_b0145
  article-title: Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2015.05.012
– year: 2001
  ident: 10.1016/j.cie.2016.01.021_b0045
– volume: 52
  start-page: 3273
  year: 2014
  ident: 10.1016/j.cie.2016.01.021_b0135
  article-title: Independent component analysis-based non-Gaussian process monitoring with preselecting optimal components and support vector data description
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.870362
– volume: 19
  start-page: 1114
  year: 2011
  ident: 10.1016/j.cie.2016.01.021_b0165
  article-title: Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2010.2071415
SSID ssj0004591
Score 2.2627695
Snippet •We focus on the de-mixing matrix, which is rarely studied in ICA model, to extract data information for fault detection.•Multi-block strategy is employed to...
The de-mixing matrix generated from independent component analysis (ICA) can reveal information about the relations between variables and independent...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 188
SubjectTerms Bayesian analysis
Benchmarks
De-mixing matrix
Fault diagnosis
Feature extraction
Generalized Dice’s coefficient
Independent component analysis
Inference
Mathematical models
Monitoring
Multi-block strategy
Non-Gaussian
Preserves
Reduction
Studies
Title Independent component analysis model utilizing de-mixing information for improved non-Gaussian process monitoring
URI https://dx.doi.org/10.1016/j.cie.2016.01.021
https://www.proquest.com/docview/1777500618
https://www.proquest.com/docview/1808085744
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-q2GU7MOiG6PiQJ-00yTRpndg5omql3TQugMTNcmJbCoK0W1sJceBv573EqQCJHrg5iT-SPL_nX-L3fg_gR4Z2X6bCcukGGReiiLgpMsEVYo_MOFySHQU4_z1PJ1fi93Vy3YFRGwtDbpXB9jc2vbbW4Uw_vM3-vCz7F2h7a_wQE2sUKjxFsAtJWQxOHuNnjOFN1jyszKl2u7NZ-3hht-TdlTbMnfFba9MrK10vPeMd2A6YkZ02t7ULHVd14XPAjyxo56ILn56RC36Bf9N1htslI8_xWUUlE1hIWJ0Dh-G8uy0fsAGzjt-V91QKZKokMoYlVtY_HnCoalbxM7NaUOAlmzchBtgPWQUa8ytcjX9djiY8JFjgxTBRSx4XcZRLZTORGGlF4YdpaqUwLrGFjwbGCu9zh_DbRVYVxqDkMmOS1CNI8QNU3z3YwpHdPjBvnRJDK_DzRAhvTZ5b7CSXVmVOqcT3IGpfrS4C-zglwbjVrZvZDZ53mqSho1ijNHrwc91k3lBvbKosWnnpF_NH49KwqdlhK1sdlHehYykRRyHQUT34vr6Makd7KaZysxXWIT5OleDTfnvfyAfwkY4aJ6BD2Fr-X7kjxDfL_LiewMfw4XT6Z3L-BNIZ_HQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQ9AKUglqeROFUym-w6sXNECFgocAEkbpYT21IQZLfdXaniwG9nJnFWUAkO3CzHj8TjGX-Ox98A7Gdo92UqLJeul3EhioibIhNcIfbIjMMl2dEF58urdHArzu-Suzk4au_CkFtlsP2NTa-tdcjphtHsjsqye422t8YPMbFGocJ_gQWR9CTtwA6e41eU4U3YPCzNqXh7tFk7eWG75N6VNtSd8XuL039mul57TpZhMYBGdti81w-Yc9UKLAUAyYJ6jlfg-yt2wZ_w52wW4nbCyHV8WFHKBBoSVgfBYTjxHsonrMCs44_lP0oFNlWSGcMUK-s_D9hVNaz4qZmO6eYlGzV3DLAdMgvU5yrcnhzfHA14iLDAi36iJjwu4iiXymYiMdKKwvfT1EphXGILH_WMFd7nDvG3i6wqjEHRZcYkqUeU4nuov2swjz27dWDeOiX6VuD-RAhvTZ5bbCSXVmVOqcR3IGqHVheBfpyiYDzo1s_sHvOdJmnoKNYojQ78mlUZNdwbHxUWrbz0mwmkcW34qNpWK1sdtHesYykRSCHSUR3Ymz1GvaPDFFO54RTLECGnSvBrNz7X8y58HdxcXuiLs6vfm_CNnjQeQVswP_k7ddsIdib5Tj2ZXwCeVf4J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+component+analysis+model+utilizing+de-mixing+information+for+improved+non-Gaussian+process+monitoring&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Wang%2C+Bei&rft.au=Yan%2C+Xuefeng&rft.au=Jiang%2C+Qingchao&rft.date=2016-04-01&rft.issn=0360-8352&rft.volume=94&rft.spage=188&rft.epage=200&rft_id=info:doi/10.1016%2Fj.cie.2016.01.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2016_01_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon