Independent component analysis model utilizing de-mixing information for improved non-Gaussian process monitoring
•We focus on the de-mixing matrix, which is rarely studied in ICA model, to extract data information for fault detection.•Multi-block strategy is employed to deal with big data in a novel way.•The numerous data is divided through a similarity index Generalized Dice’s coefficient.•Bayesian inference...
Saved in:
| Published in | Computers & industrial engineering Vol. 94; pp. 188 - 200 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
01.04.2016
Pergamon Press Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-8352 1879-0550 |
| DOI | 10.1016/j.cie.2016.01.021 |
Cover
| Abstract | •We focus on the de-mixing matrix, which is rarely studied in ICA model, to extract data information for fault detection.•Multi-block strategy is employed to deal with big data in a novel way.•The numerous data is divided through a similarity index Generalized Dice’s coefficient.•Bayesian inference is also employed to combine the results with noise weakened.•The way of fault diagnosis is modified with selected variables checked.
The de-mixing matrix generated from independent component analysis (ICA) can reveal information about the relations between variables and independent components, but the traditional ICA model does not preserve the whole de-mixing information for the purpose of feature extraction and dimensionality reduction, so that some important information may be abandoned. Multi-block strategy has been improved to be an efficient method to deal with numerous data. However, the manner of dividing original data is still subject for discussion and the priori knowledge is necessary for process division. This paper proposes a totally data-driven ICA model that divides de-mixing matrix based on the Generalized Dice’s coefficient and combines the results from sub-blocks using Bayesian inference. All information in de-mixing matrix is fully utilized and the ability of monitoring non-Gaussian process is improved. Meanwhile, a corresponding contribution plot is developed for fault diagnosis to find the root causes. The performance of the proposed method is illustrated through a numerical example and the Tennessee Eastman benchmark case study. |
|---|---|
| AbstractList | The de-mixing matrix generated from independent component analysis (ICA) can reveal information about the relations between variables and independent components, but the traditional ICA model does not preserve the whole de-mixing information for the purpose of feature extraction and dimensionality reduction, so that some important information may be abandoned. Multi-block strategy has been improved to be an efficient method to deal with numerous data. However, the manner of dividing original data is still subject for discussion and the priori knowledge is necessary for process division. This paper proposes a totally data-driven ICA model that divides de-mixing matrix based on the Generalized Dice's coefficient and combines the results from sub-blocks using Bayesian inference. All information in de-mixing matrix is fully utilized and the ability of monitoring non-Gaussian process is improved. Meanwhile, a corresponding contribution plot is developed for fault diagnosis to find the root causes. The performance of the proposed method is illustrated through a numerical example and the Tennessee Eastman benchmark case study. •We focus on the de-mixing matrix, which is rarely studied in ICA model, to extract data information for fault detection.•Multi-block strategy is employed to deal with big data in a novel way.•The numerous data is divided through a similarity index Generalized Dice’s coefficient.•Bayesian inference is also employed to combine the results with noise weakened.•The way of fault diagnosis is modified with selected variables checked. The de-mixing matrix generated from independent component analysis (ICA) can reveal information about the relations between variables and independent components, but the traditional ICA model does not preserve the whole de-mixing information for the purpose of feature extraction and dimensionality reduction, so that some important information may be abandoned. Multi-block strategy has been improved to be an efficient method to deal with numerous data. However, the manner of dividing original data is still subject for discussion and the priori knowledge is necessary for process division. This paper proposes a totally data-driven ICA model that divides de-mixing matrix based on the Generalized Dice’s coefficient and combines the results from sub-blocks using Bayesian inference. All information in de-mixing matrix is fully utilized and the ability of monitoring non-Gaussian process is improved. Meanwhile, a corresponding contribution plot is developed for fault diagnosis to find the root causes. The performance of the proposed method is illustrated through a numerical example and the Tennessee Eastman benchmark case study. |
| Author | Wang, Bei Yan, Xuefeng Jiang, Qingchao |
| Author_xml | – sequence: 1 givenname: Bei surname: Wang fullname: Wang, Bei – sequence: 2 givenname: Xuefeng surname: Yan fullname: Yan, Xuefeng email: xfyan@ecust.edu.cn – sequence: 3 givenname: Qingchao surname: Jiang fullname: Jiang, Qingchao |
| BookMark | eNp9kUFr3DAQhUVJoZu0P6A3Qy-92B3ZlmXTUwlNGgjkkp6FIo3KLLa0kezQ9Nd3tttTDkEgPcT3HsO8c3EWU0QhPkpoJMjhy75xhE3LsgHZQCvfiJ0c9VSDUnAmdtANUI-dat-J81L2ANCrSe7E4030eEC-4lq5tBw4lpWNdn4uVKoleZyrbaWZ_lD8VXmsF_p9VBRDyotdKcWKVUXLIacn9BVPVl_brRSyseI_h-WYE2lNmY3vxdtg54If_r8X4ufV9_vLH_Xt3fXN5bfb2nVqXGvpJDzo0U-9str3LnTD4HVvUXkXoLW-D-EBdTsh-NFZO3bTZK0aQqdUaEF1F-LzKZdHeNywrGah4nCebcS0FSNH4KN03zP66QW6T1vmFTCltVYAgxyZkifK5VRKxmAOmRabn40EcyzB7A2XYI4lGJCGS2CPfuFxtP7b2Zotza86v56cyDt6IsymMBIdesroVuMTveL-C7HHpi4 |
| CODEN | CINDDL |
| CitedBy_id | crossref_primary_10_1002_cjce_24470 crossref_primary_10_1109_ACCESS_2020_3037730 crossref_primary_10_1252_jcej_20we045 crossref_primary_10_1002_cjce_25085 crossref_primary_10_1088_2631_8695_acbd14 crossref_primary_10_1016_j_cie_2017_12_027 crossref_primary_10_1007_s11771_018_3961_y crossref_primary_10_1016_j_cie_2024_110064 crossref_primary_10_1109_TIM_2022_3186081 crossref_primary_10_1016_j_cie_2017_08_035 crossref_primary_10_3390_en13030620 crossref_primary_10_1007_s00521_022_08017_3 crossref_primary_10_1007_s13369_023_08010_5 crossref_primary_10_1007_s11705_017_1675_6 crossref_primary_10_1016_j_isatra_2022_09_019 crossref_primary_10_1088_1361_6501_ad688e crossref_primary_10_1016_j_cie_2022_108171 crossref_primary_10_1007_s00500_020_04673_6 crossref_primary_10_1007_s00521_021_06575_6 crossref_primary_10_1109_TCST_2019_2936793 |
| Cites_doi | 10.1016/0098-1354(94)00057-U 10.1016/S0893-6080(00)00026-5 10.2307/1932409 10.1109/TIE.2015.2466557 10.1016/j.chemolab.2015.09.010 10.1109/TIE.2014.2301773 10.1142/S0129065797000458 10.1016/j.cherd.2011.09.011 10.1002/aic.10978 10.1016/j.cie.2015.02.025 10.1016/j.jprocont.2011.11.005 10.1016/S0925-2312(00)00358-1 10.1016/j.chemolab.2012.04.008 10.1016/j.jprocont.2010.03.003 10.1021/ie061083g 10.1002/aic.14335 10.1007/s11814-013-0295-1 10.1080/0740817X.2014.955357 10.1016/j.jprocont.2003.09.004 10.1002/aic.11515 10.1016/j.jprocont.2010.10.005 10.1039/C3AY41907J 10.1002/cem.2687 10.1002/cjce.5450850414 10.1016/j.cie.2015.06.020 10.1049/ip-f-2.1993.0054 10.1016/j.conengprac.2007.02.007 10.1016/j.compchemeng.2010.05.004 10.1080/0951192X.2013.874579 10.1109/TIE.2014.2303781 10.1016/j.jprocont.2012.06.009 10.1016/j.jprocont.2013.09.008 10.1016/0098-1354(93)80018-I 10.1109/TIE.2014.2308133 10.1016/j.eswa.2010.06.101 10.1002/qre.1708 10.1016/j.cie.2015.05.012 10.1080/00207543.2013.870362 10.1109/TCST.2010.2071415 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Pergamon Press Inc. Apr 2016 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Apr 2016 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cie.2016.01.021 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| EndPage | 200 |
| ExternalDocumentID | 4005924971 10_1016_j_cie_2016_01_021 S0360835216300146 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSH SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7SC 8FD AGCQF JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c358t-1c10b78d945a7d4cf366d74ae5dcf02ad4ffbe729e0d8caa8399aa56f355f2053 |
| IEDL.DBID | .~1 |
| ISSN | 0360-8352 |
| IngestDate | Wed Oct 01 13:23:21 EDT 2025 Sun Sep 07 03:16:40 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Wed Oct 01 00:49:28 EDT 2025 Sun Apr 06 06:54:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-block strategy De-mixing matrix Generalized Dice’s coefficient Independent component analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-1c10b78d945a7d4cf366d74ae5dcf02ad4ffbe729e0d8caa8399aa56f355f2053 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1777500618 |
| PQPubID | 9545 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1808085744 proquest_journals_1777500618 crossref_primary_10_1016_j_cie_2016_01_021 crossref_citationtrail_10_1016_j_cie_2016_01_021 elsevier_sciencedirect_doi_10_1016_j_cie_2016_01_021 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2016 2016-04-00 20160401 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
| References | Kuncheva (b0140) 2004 Rashid, Yu (b0190) 2012; 115 Liu, Qin, Chai (b0170) 2014; 61 Berger (b0015) 2013 Diao, Zhao, Yao (b0055) 2014 Zhang, Liu, Ji (b0245) 2009; 4 Downs, Vogel (b0065) 1993; 17 Wang, Zhang, Cao, Zhu (b0215) 2012; 22 Hyvärinen, Karhunen, Oja (b0110) 2004; Vol. 46 Bishop, C. M. & Nasrabadi, N. M. (2006). Sørensen (b0195) 1948; 5 Bro, Smilde (b0025) 2014; 6 Ge, Song (b0070) 2007; 46 Zhang, Ren, Yao, Zou, Wang (b0255) 2015; 85 Huang, Yan (b0100) 2015; 148 Yin, Ding, Haghani, Hao, Zhang (b0225) 2012; 22 Lázaro, Moreno, Santiago, da Silva Neto (b0145) 2015; 87 Jiang, Yan, Huang (b0130) 2016; 63 Jiang, Yan, Lv, Guo (b0135) 2014; 52 Murguía, Villaseñor (b0180) 2003 Stefatos, Hamza (b0200) 2010; 37 Jiang, Yan (b0125) 2014; 60 Jiang, Yan (b0120) 2013; 23 Xu, Zhao, Ma, Hu (b0220) 2013; 2013 Yin, Ding, Xie, Luo (b0230) 2014; 61 Zhang, Ma (b0250) 2012; 90 Ghosh, Ng, Srinivasan (b0080) 2011; 35 Back, Weigend (b0010) 1997; 8 Hyvarinen (b0105) 1999; 2 Yin, Li, Gao, Kaynak (b0235) 2015; 62 Lyman, Georgakis (b0175) 1995; 19 Lee, Yoo, Lee (b0160) 2004; 14 Harrou, Kadri, Chaabane, Tahon, Sun (b0095) 2015; 88 Alcala, Qin (b0005) 2011; 21 Dice (b0060) 1945; 26 Lee, Qin, Lee (b0150) 2006; 52 Yu, Qin (b0240) 2008; 54 Li, Alcala, Qin, Zhou (b0165) 2011; 19 Lee, Qin, Lee (b0155) 2007; 85 Detroja, Gudi, Patwardhan (b0050) 2007; 15 Hao, Gebraeel, Shi (b0090) 2015; 47 Grasso, Colosimo, Semeraro, Pacella (b0085) 2015; 31 Hyvärinen, Oja (b0115) 2000; 13 Cheng, Huang (b0035) 2014; 27 Wang, Yan, Jiang, Lv (b0210) 2015; 29 Cheung, Xu (b0040) 2001; 41 Wang, Jiang, Yan (b0205) 2014; 31 Ge, Zhang, Song (b0075) 2010; 20 Niaki, Khedmati, Soleymanian (b0185) 2014 Cardoso, Souloumiac (b0030) 1993 Chiang, Braatz, Russell (b0045) 2001 (Vol. 1), New York. Lázaro (10.1016/j.cie.2016.01.021_b0145) 2015; 87 Rashid (10.1016/j.cie.2016.01.021_b0190) 2012; 115 Liu (10.1016/j.cie.2016.01.021_b0170) 2014; 61 Berger (10.1016/j.cie.2016.01.021_b0015) 2013 10.1016/j.cie.2016.01.021_b0020 Bro (10.1016/j.cie.2016.01.021_b0025) 2014; 6 Lee (10.1016/j.cie.2016.01.021_b0155) 2007; 85 Ge (10.1016/j.cie.2016.01.021_b0070) 2007; 46 Kuncheva (10.1016/j.cie.2016.01.021_b0140) 2004 Wang (10.1016/j.cie.2016.01.021_b0205) 2014; 31 Yin (10.1016/j.cie.2016.01.021_b0235) 2015; 62 Xu (10.1016/j.cie.2016.01.021_b0220) 2013; 2013 Zhang (10.1016/j.cie.2016.01.021_b0250) 2012; 90 Ge (10.1016/j.cie.2016.01.021_b0075) 2010; 20 Detroja (10.1016/j.cie.2016.01.021_b0050) 2007; 15 Zhang (10.1016/j.cie.2016.01.021_b0245) 2009; 4 Zhang (10.1016/j.cie.2016.01.021_b0255) 2015; 85 Alcala (10.1016/j.cie.2016.01.021_b0005) 2011; 21 Jiang (10.1016/j.cie.2016.01.021_b0125) 2014; 60 Jiang (10.1016/j.cie.2016.01.021_b0130) 2016; 63 Lyman (10.1016/j.cie.2016.01.021_b0175) 1995; 19 Murguía (10.1016/j.cie.2016.01.021_b0180) 2003 Sørensen (10.1016/j.cie.2016.01.021_b0195) 1948; 5 Hao (10.1016/j.cie.2016.01.021_b0090) 2015; 47 Niaki (10.1016/j.cie.2016.01.021_b0185) 2014 Wang (10.1016/j.cie.2016.01.021_b0215) 2012; 22 Jiang (10.1016/j.cie.2016.01.021_b0135) 2014; 52 Hyvärinen (10.1016/j.cie.2016.01.021_b0110) 2004; Vol. 46 Back (10.1016/j.cie.2016.01.021_b0010) 1997; 8 Stefatos (10.1016/j.cie.2016.01.021_b0200) 2010; 37 Wang (10.1016/j.cie.2016.01.021_b0210) 2015; 29 Cheng (10.1016/j.cie.2016.01.021_b0035) 2014; 27 Harrou (10.1016/j.cie.2016.01.021_b0095) 2015; 88 Cheung (10.1016/j.cie.2016.01.021_b0040) 2001; 41 Ghosh (10.1016/j.cie.2016.01.021_b0080) 2011; 35 Cardoso (10.1016/j.cie.2016.01.021_b0030) 1993 Hyvärinen (10.1016/j.cie.2016.01.021_b0115) 2000; 13 Yin (10.1016/j.cie.2016.01.021_b0230) 2014; 61 Chiang (10.1016/j.cie.2016.01.021_b0045) 2001 Lee (10.1016/j.cie.2016.01.021_b0160) 2004; 14 Yin (10.1016/j.cie.2016.01.021_b0225) 2012; 22 Grasso (10.1016/j.cie.2016.01.021_b0085) 2015; 31 Dice (10.1016/j.cie.2016.01.021_b0060) 1945; 26 Lee (10.1016/j.cie.2016.01.021_b0150) 2006; 52 Li (10.1016/j.cie.2016.01.021_b0165) 2011; 19 Huang (10.1016/j.cie.2016.01.021_b0100) 2015; 148 Downs (10.1016/j.cie.2016.01.021_b0065) 1993; 17 Hyvarinen (10.1016/j.cie.2016.01.021_b0105) 1999; 2 Diao (10.1016/j.cie.2016.01.021_b0055) 2014 Yu (10.1016/j.cie.2016.01.021_b0240) 2008; 54 Jiang (10.1016/j.cie.2016.01.021_b0120) 2013; 23 |
| References_xml | – volume: 8 start-page: 473 year: 1997 end-page: 484 ident: b0010 article-title: A first application of independent component analysis to extracting structure from stock returns publication-title: International Journal of Neural Systems – reference: (Vol. 1), New York. – start-page: 1 year: 2014 end-page: 17 ident: b0055 article-title: A dynamic quality control approach by improving dominant factors based on improved principal component analysis publication-title: International Journal of Production Research – year: 2004 ident: b0140 article-title: Combining pattern classifiers: Methods and algorithms – volume: 61 start-page: 6418 year: 2014 end-page: 6428 ident: b0230 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Transactions on Industrial Electronics – volume: 22 start-page: 1567 year: 2012 end-page: 1581 ident: b0225 article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process publication-title: Journal of Process Control – volume: 61 start-page: 6429 year: 2014 end-page: 6437 ident: b0170 article-title: Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes publication-title: IEEE Transactions on Industrial Electronics – volume: 19 start-page: 321 year: 1995 end-page: 331 ident: b0175 article-title: Plant-wide control of the Tennessee Eastman problem publication-title: Computers & Chemical Engineering – volume: 148 start-page: 115 year: 2015 end-page: 127 ident: b0100 article-title: Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 20 start-page: 676 year: 2010 end-page: 688 ident: b0075 article-title: Nonlinear process monitoring based on linear subspace and Bayesian inference publication-title: Journal of Process Control – volume: 19 start-page: 1114 year: 2011 end-page: 1127 ident: b0165 article-title: Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process publication-title: IEEE Transactions on Control Systems Technology – volume: 85 start-page: 132 year: 2015 end-page: 144 ident: b0255 article-title: Phase I analysis of multivariate profiles based on regression adjustment publication-title: Computers & Industrial Engineering – volume: 21 start-page: 322 year: 2011 end-page: 330 ident: b0005 article-title: Analysis and generalization of fault diagnosis methods for process monitoring publication-title: Journal of Process Control – volume: 5 start-page: 1 year: 1948 end-page: 34 ident: b0195 article-title: {A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons} publication-title: Biologiske Skrifter – volume: 87 start-page: 140 year: 2015 end-page: 149 ident: b0145 article-title: Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systems publication-title: Computers & Industrial Engineering – volume: 46 start-page: 2054 year: 2007 end-page: 2063 ident: b0070 article-title: Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors publication-title: Industrial & Engineering Chemistry Research – volume: 4 start-page: 532 year: 2009 end-page: 536 ident: b0245 article-title: Vector similarity measurement method publication-title: Technical Acoustics – year: 2014 ident: b0185 article-title: Statistical monitoring of autocorrelated simple linear profiles based on principal components analysis publication-title: Communications in Statistics-Theory and Methods – volume: 88 start-page: 63 year: 2015 end-page: 77 ident: b0095 article-title: Improved principal component analysis for anomaly detection: Application to an emergency department publication-title: Computers & Industrial Engineering – volume: 14 start-page: 467 year: 2004 end-page: 485 ident: b0160 article-title: Statistical process monitoring with independent component analysis publication-title: Journal of Process Control – volume: 23 start-page: 1320 year: 2013 end-page: 1331 ident: b0120 article-title: Non-Gaussian chemical process monitoring with adaptively weighted independent component analysis and its applications publication-title: Journal of Process Control – volume: 47 start-page: 487 year: 2015 end-page: 504 ident: b0090 article-title: Simultaneous signal separation and prognostics of multi-component systems: The case of identical components publication-title: IIE Transactions – volume: 27 start-page: 1055 year: 2014 end-page: 1066 ident: b0035 article-title: Applying ICA monitoring and profile monitoring to statistical process control of manufacturing variability at multiple locations within the same unit publication-title: International Journal of Computer Integrated Manufacturing – year: 2001 ident: b0045 article-title: Fault detection and diagnosis in industrial systems – volume: 54 start-page: 1811 year: 2008 end-page: 1829 ident: b0240 article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models publication-title: AIChE Journal – volume: 85 start-page: 526 year: 2007 end-page: 536 ident: b0155 article-title: Fault detection of non-linear processes using kernel independent component analysis publication-title: The Canadian Journal of Chemical Engineering – volume: 17 start-page: 245 year: 1993 end-page: 255 ident: b0065 article-title: A plant-wide industrial process control problem publication-title: Computers & Chemical Engineering – volume: 35 start-page: 342 year: 2011 end-page: 355 ident: b0080 article-title: Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods publication-title: Computers & Chemical Engineering – volume: 31 start-page: 75 year: 2015 end-page: 96 ident: b0085 article-title: A comparison study of distribution – Free multivariate SPC methods for multimode data publication-title: Quality and Reliability Engineering International – volume: 52 start-page: 3501 year: 2006 end-page: 3514 ident: b0150 article-title: Fault detection and diagnosis based on modified independent component analysis publication-title: AIChE Journal – volume: 22 start-page: 477 year: 2012 end-page: 487 ident: b0215 article-title: Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error publication-title: Journal of Process Control – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: b0060 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: Vol. 46 year: 2004 ident: b0110 publication-title: Independent component analysis – volume: 60 start-page: 949 year: 2014 end-page: 965 ident: b0125 article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring publication-title: AIChE Journal – start-page: 415 year: 2003 end-page: 421 ident: b0180 article-title: Estimating the effect of the similarity coefficient and the cluster algorithm on biogeographic classifications publication-title: Annales Botanici Fennici – volume: 62 start-page: 657 year: 2015 end-page: 667 ident: b0235 article-title: Data-based techniques focused on modern industry: An overview publication-title: IEEE Transactions on Industrial Electronics – volume: 41 start-page: 145 year: 2001 end-page: 152 ident: b0040 article-title: Independent component ordering in ICA time series analysis publication-title: Neurocomputing – volume: 37 start-page: 8606 year: 2010 end-page: 8617 ident: b0200 article-title: Dynamic independent component analysis approach for fault detection and diagnosis publication-title: Expert Systems with Applications – start-page: 362 year: 1993 end-page: 370 ident: b0030 article-title: Blind beamforming for non-Gaussian signals publication-title: IEE Proceedings F (Radar and Signal Processing) – volume: 63 start-page: 377 year: 2016 end-page: 386 ident: b0130 article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference publication-title: IEEE Transactions on Industrial Electronics – volume: 31 start-page: 930 year: 2014 end-page: 943 ident: b0205 article-title: Fault detection and identification using a Kullback–Leibler divergence based multi-block principal component analysis and bayesian inference publication-title: Korean Journal of Chemical Engineering – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: b0115 article-title: Independent component analysis: Algorithms and applications publication-title: Neural Networks – volume: 6 start-page: 2812 year: 2014 end-page: 2831 ident: b0025 article-title: Principal component analysis publication-title: Analytical Methods – volume: 15 start-page: 1468 year: 2007 end-page: 1483 ident: b0050 article-title: Plant-wide detection and diagnosis using correspondence analysis publication-title: Control Engineering Practice – reference: Bishop, C. M. & Nasrabadi, N. M. (2006). – volume: 115 start-page: 44 year: 2012 end-page: 58 ident: b0190 article-title: A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 52 start-page: 3273 year: 2014 end-page: 3286 ident: b0135 article-title: Independent component analysis-based non-Gaussian process monitoring with preselecting optimal components and support vector data description publication-title: International Journal of Production Research – volume: 2 start-page: 94 year: 1999 end-page: 128 ident: b0105 article-title: Survey on independent component analysis publication-title: Neural Computing Surveys – volume: 29 start-page: 165 year: 2015 end-page: 178 ident: b0210 article-title: Generalized Dice’s coefficient-based multi-block principal component analysis with Bayesian inference for plant-wide process monitoring publication-title: Journal of Chemometrics – volume: 2013 year: 2013 ident: b0220 article-title: Fault diagnosis of complex industrial process using KICA and sparse SVM publication-title: Mathematical Problems in Engineering – volume: 90 start-page: 667 year: 2012 end-page: 676 ident: b0250 article-title: Decentralized fault diagnosis using multiblock kernel independent component analysis publication-title: Chemical Engineering Research and Design – year: 2013 ident: b0015 article-title: Statistical decision theory and Bayesian analysis – volume: 19 start-page: 321 year: 1995 ident: 10.1016/j.cie.2016.01.021_b0175 article-title: Plant-wide control of the Tennessee Eastman problem publication-title: Computers & Chemical Engineering doi: 10.1016/0098-1354(94)00057-U – volume: 13 start-page: 411 year: 2000 ident: 10.1016/j.cie.2016.01.021_b0115 article-title: Independent component analysis: Algorithms and applications publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00026-5 – volume: 26 start-page: 297 year: 1945 ident: 10.1016/j.cie.2016.01.021_b0060 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 63 start-page: 377 year: 2016 ident: 10.1016/j.cie.2016.01.021_b0130 article-title: Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2015.2466557 – volume: 148 start-page: 115 year: 2015 ident: 10.1016/j.cie.2016.01.021_b0100 article-title: Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2015.09.010 – volume: 61 start-page: 6418 year: 2014 ident: 10.1016/j.cie.2016.01.021_b0230 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2014.2301773 – volume: 8 start-page: 473 year: 1997 ident: 10.1016/j.cie.2016.01.021_b0010 article-title: A first application of independent component analysis to extracting structure from stock returns publication-title: International Journal of Neural Systems doi: 10.1142/S0129065797000458 – volume: 90 start-page: 667 year: 2012 ident: 10.1016/j.cie.2016.01.021_b0250 article-title: Decentralized fault diagnosis using multiblock kernel independent component analysis publication-title: Chemical Engineering Research and Design doi: 10.1016/j.cherd.2011.09.011 – volume: 52 start-page: 3501 year: 2006 ident: 10.1016/j.cie.2016.01.021_b0150 article-title: Fault detection and diagnosis based on modified independent component analysis publication-title: AIChE Journal doi: 10.1002/aic.10978 – volume: 85 start-page: 132 year: 2015 ident: 10.1016/j.cie.2016.01.021_b0255 article-title: Phase I analysis of multivariate profiles based on regression adjustment publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2015.02.025 – volume: 22 start-page: 477 year: 2012 ident: 10.1016/j.cie.2016.01.021_b0215 article-title: Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2011.11.005 – volume: 41 start-page: 145 year: 2001 ident: 10.1016/j.cie.2016.01.021_b0040 article-title: Independent component ordering in ICA time series analysis publication-title: Neurocomputing doi: 10.1016/S0925-2312(00)00358-1 – volume: 115 start-page: 44 year: 2012 ident: 10.1016/j.cie.2016.01.021_b0190 article-title: A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2012.04.008 – volume: 20 start-page: 676 year: 2010 ident: 10.1016/j.cie.2016.01.021_b0075 article-title: Nonlinear process monitoring based on linear subspace and Bayesian inference publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2010.03.003 – volume: 46 start-page: 2054 year: 2007 ident: 10.1016/j.cie.2016.01.021_b0070 article-title: Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie061083g – volume: 2 start-page: 94 year: 1999 ident: 10.1016/j.cie.2016.01.021_b0105 article-title: Survey on independent component analysis publication-title: Neural Computing Surveys – volume: 60 start-page: 949 year: 2014 ident: 10.1016/j.cie.2016.01.021_b0125 article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring publication-title: AIChE Journal doi: 10.1002/aic.14335 – volume: 31 start-page: 930 year: 2014 ident: 10.1016/j.cie.2016.01.021_b0205 article-title: Fault detection and identification using a Kullback–Leibler divergence based multi-block principal component analysis and bayesian inference publication-title: Korean Journal of Chemical Engineering doi: 10.1007/s11814-013-0295-1 – volume: 47 start-page: 487 year: 2015 ident: 10.1016/j.cie.2016.01.021_b0090 article-title: Simultaneous signal separation and prognostics of multi-component systems: The case of identical components publication-title: IIE Transactions doi: 10.1080/0740817X.2014.955357 – volume: 14 start-page: 467 year: 2004 ident: 10.1016/j.cie.2016.01.021_b0160 article-title: Statistical process monitoring with independent component analysis publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2003.09.004 – volume: 5 start-page: 1 year: 1948 ident: 10.1016/j.cie.2016.01.021_b0195 article-title: {A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons} publication-title: Biologiske Skrifter – volume: 4 start-page: 532 year: 2009 ident: 10.1016/j.cie.2016.01.021_b0245 article-title: Vector similarity measurement method publication-title: Technical Acoustics – volume: 54 start-page: 1811 year: 2008 ident: 10.1016/j.cie.2016.01.021_b0240 article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models publication-title: AIChE Journal doi: 10.1002/aic.11515 – start-page: 1 year: 2014 ident: 10.1016/j.cie.2016.01.021_b0055 article-title: A dynamic quality control approach by improving dominant factors based on improved principal component analysis publication-title: International Journal of Production Research – year: 2014 ident: 10.1016/j.cie.2016.01.021_b0185 article-title: Statistical monitoring of autocorrelated simple linear profiles based on principal components analysis publication-title: Communications in Statistics-Theory and Methods – year: 2013 ident: 10.1016/j.cie.2016.01.021_b0015 – ident: 10.1016/j.cie.2016.01.021_b0020 – volume: 21 start-page: 322 year: 2011 ident: 10.1016/j.cie.2016.01.021_b0005 article-title: Analysis and generalization of fault diagnosis methods for process monitoring publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2010.10.005 – volume: 6 start-page: 2812 year: 2014 ident: 10.1016/j.cie.2016.01.021_b0025 article-title: Principal component analysis publication-title: Analytical Methods doi: 10.1039/C3AY41907J – year: 2004 ident: 10.1016/j.cie.2016.01.021_b0140 – volume: 29 start-page: 165 year: 2015 ident: 10.1016/j.cie.2016.01.021_b0210 article-title: Generalized Dice’s coefficient-based multi-block principal component analysis with Bayesian inference for plant-wide process monitoring publication-title: Journal of Chemometrics doi: 10.1002/cem.2687 – start-page: 415 year: 2003 ident: 10.1016/j.cie.2016.01.021_b0180 article-title: Estimating the effect of the similarity coefficient and the cluster algorithm on biogeographic classifications publication-title: Annales Botanici Fennici – volume: 85 start-page: 526 year: 2007 ident: 10.1016/j.cie.2016.01.021_b0155 article-title: Fault detection of non-linear processes using kernel independent component analysis publication-title: The Canadian Journal of Chemical Engineering doi: 10.1002/cjce.5450850414 – volume: 88 start-page: 63 year: 2015 ident: 10.1016/j.cie.2016.01.021_b0095 article-title: Improved principal component analysis for anomaly detection: Application to an emergency department publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2015.06.020 – volume: 2013 year: 2013 ident: 10.1016/j.cie.2016.01.021_b0220 article-title: Fault diagnosis of complex industrial process using KICA and sparse SVM publication-title: Mathematical Problems in Engineering – start-page: 362 year: 1993 ident: 10.1016/j.cie.2016.01.021_b0030 article-title: Blind beamforming for non-Gaussian signals publication-title: IEE Proceedings F (Radar and Signal Processing) doi: 10.1049/ip-f-2.1993.0054 – volume: 15 start-page: 1468 year: 2007 ident: 10.1016/j.cie.2016.01.021_b0050 article-title: Plant-wide detection and diagnosis using correspondence analysis publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2007.02.007 – volume: Vol. 46 year: 2004 ident: 10.1016/j.cie.2016.01.021_b0110 – volume: 35 start-page: 342 year: 2011 ident: 10.1016/j.cie.2016.01.021_b0080 article-title: Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2010.05.004 – volume: 27 start-page: 1055 year: 2014 ident: 10.1016/j.cie.2016.01.021_b0035 article-title: Applying ICA monitoring and profile monitoring to statistical process control of manufacturing variability at multiple locations within the same unit publication-title: International Journal of Computer Integrated Manufacturing doi: 10.1080/0951192X.2013.874579 – volume: 61 start-page: 6429 year: 2014 ident: 10.1016/j.cie.2016.01.021_b0170 article-title: Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2014.2303781 – volume: 22 start-page: 1567 year: 2012 ident: 10.1016/j.cie.2016.01.021_b0225 article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2012.06.009 – volume: 23 start-page: 1320 year: 2013 ident: 10.1016/j.cie.2016.01.021_b0120 article-title: Non-Gaussian chemical process monitoring with adaptively weighted independent component analysis and its applications publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2013.09.008 – volume: 17 start-page: 245 year: 1993 ident: 10.1016/j.cie.2016.01.021_b0065 article-title: A plant-wide industrial process control problem publication-title: Computers & Chemical Engineering doi: 10.1016/0098-1354(93)80018-I – volume: 62 start-page: 657 year: 2015 ident: 10.1016/j.cie.2016.01.021_b0235 article-title: Data-based techniques focused on modern industry: An overview publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2014.2308133 – volume: 37 start-page: 8606 year: 2010 ident: 10.1016/j.cie.2016.01.021_b0200 article-title: Dynamic independent component analysis approach for fault detection and diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.06.101 – volume: 31 start-page: 75 year: 2015 ident: 10.1016/j.cie.2016.01.021_b0085 article-title: A comparison study of distribution – Free multivariate SPC methods for multimode data publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.1708 – volume: 87 start-page: 140 year: 2015 ident: 10.1016/j.cie.2016.01.021_b0145 article-title: Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2015.05.012 – year: 2001 ident: 10.1016/j.cie.2016.01.021_b0045 – volume: 52 start-page: 3273 year: 2014 ident: 10.1016/j.cie.2016.01.021_b0135 article-title: Independent component analysis-based non-Gaussian process monitoring with preselecting optimal components and support vector data description publication-title: International Journal of Production Research doi: 10.1080/00207543.2013.870362 – volume: 19 start-page: 1114 year: 2011 ident: 10.1016/j.cie.2016.01.021_b0165 article-title: Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2010.2071415 |
| SSID | ssj0004591 |
| Score | 2.2627695 |
| Snippet | •We focus on the de-mixing matrix, which is rarely studied in ICA model, to extract data information for fault detection.•Multi-block strategy is employed to... The de-mixing matrix generated from independent component analysis (ICA) can reveal information about the relations between variables and independent... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 188 |
| SubjectTerms | Bayesian analysis Benchmarks De-mixing matrix Fault diagnosis Feature extraction Generalized Dice’s coefficient Independent component analysis Inference Mathematical models Monitoring Multi-block strategy Non-Gaussian Preserves Reduction Studies |
| Title | Independent component analysis model utilizing de-mixing information for improved non-Gaussian process monitoring |
| URI | https://dx.doi.org/10.1016/j.cie.2016.01.021 https://www.proquest.com/docview/1777500618 https://www.proquest.com/docview/1808085744 |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-q2GU7MOiG6PiQJ-00yTRpndg5omql3TQugMTNcmJbCoK0W1sJceBv573EqQCJHrg5iT-SPL_nX-L3fg_gR4Z2X6bCcukGGReiiLgpMsEVYo_MOFySHQU4_z1PJ1fi93Vy3YFRGwtDbpXB9jc2vbbW4Uw_vM3-vCz7F2h7a_wQE2sUKjxFsAtJWQxOHuNnjOFN1jyszKl2u7NZ-3hht-TdlTbMnfFba9MrK10vPeMd2A6YkZ02t7ULHVd14XPAjyxo56ILn56RC36Bf9N1htslI8_xWUUlE1hIWJ0Dh-G8uy0fsAGzjt-V91QKZKokMoYlVtY_HnCoalbxM7NaUOAlmzchBtgPWQUa8ytcjX9djiY8JFjgxTBRSx4XcZRLZTORGGlF4YdpaqUwLrGFjwbGCu9zh_DbRVYVxqDkMmOS1CNI8QNU3z3YwpHdPjBvnRJDK_DzRAhvTZ5b7CSXVmVOqcT3IGpfrS4C-zglwbjVrZvZDZ53mqSho1ijNHrwc91k3lBvbKosWnnpF_NH49KwqdlhK1sdlHehYykRRyHQUT34vr6Makd7KaZysxXWIT5OleDTfnvfyAfwkY4aJ6BD2Fr-X7kjxDfL_LiewMfw4XT6Z3L-BNIZ_HQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQ9AKUglqeROFUym-w6sXNECFgocAEkbpYT21IQZLfdXaniwG9nJnFWUAkO3CzHj8TjGX-Ox98A7Gdo92UqLJeul3EhioibIhNcIfbIjMMl2dEF58urdHArzu-Suzk4au_CkFtlsP2NTa-tdcjphtHsjsqye422t8YPMbFGocJ_gQWR9CTtwA6e41eU4U3YPCzNqXh7tFk7eWG75N6VNtSd8XuL039mul57TpZhMYBGdti81w-Yc9UKLAUAyYJ6jlfg-yt2wZ_w52wW4nbCyHV8WFHKBBoSVgfBYTjxHsonrMCs44_lP0oFNlWSGcMUK-s_D9hVNaz4qZmO6eYlGzV3DLAdMgvU5yrcnhzfHA14iLDAi36iJjwu4iiXymYiMdKKwvfT1EphXGILH_WMFd7nDvG3i6wqjEHRZcYkqUeU4nuov2swjz27dWDeOiX6VuD-RAhvTZ5bbCSXVmVOqcR3IGqHVheBfpyiYDzo1s_sHvOdJmnoKNYojQ78mlUZNdwbHxUWrbz0mwmkcW34qNpWK1sdtHesYykRSCHSUR3Ymz1GvaPDFFO54RTLECGnSvBrNz7X8y58HdxcXuiLs6vfm_CNnjQeQVswP_k7ddsIdib5Tj2ZXwCeVf4J |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+component+analysis+model+utilizing+de-mixing+information+for+improved+non-Gaussian+process+monitoring&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Wang%2C+Bei&rft.au=Yan%2C+Xuefeng&rft.au=Jiang%2C+Qingchao&rft.date=2016-04-01&rft.issn=0360-8352&rft.volume=94&rft.spage=188&rft.epage=200&rft_id=info:doi/10.1016%2Fj.cie.2016.01.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2016_01_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |