ASNN-FRR: A traffic-aware neural network for fastest route recommendation

Fastest route recommendation (FRR) is an important task in urban computing. Despite some efforts are made to integrate A ∗ algorithm with neural networks to learn cost functions by a data driven approach, they suffer from inaccuracy of travel time estimation and admissibility of model, resulting sub...

Full description

Saved in:
Bibliographic Details
Published inGeoInformatica Vol. 27; no. 1; pp. 39 - 60
Main Authors Wang, Chaoxiong, Li, Chao, Huang, Hai, Qiu, Jing, Qu, Jianfeng, Yin, Lihua
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-6175
1573-7624
DOI10.1007/s10707-021-00458-7

Cover

Abstract Fastest route recommendation (FRR) is an important task in urban computing. Despite some efforts are made to integrate A ∗ algorithm with neural networks to learn cost functions by a data driven approach, they suffer from inaccuracy of travel time estimation and admissibility of model, resulting sub-optimal results accordingly. In this paper, we propose an ASNN-FRR model that contains two powerful predictors for g (⋅) and h (⋅) functions of A* algorithm respectively. Specifically, an adaptive graph convolutional recurrent network is used to accurately estimate the travel time of the observed path in g (⋅). Toward h (⋅), the model adopts a multi-task representation learning method to support origin-destination (OD) based travel time estimation, which can achieve high accuracy without the actual path information. Besides, we further consider the admissibility of A* algorithm, and utilize a rational setting of the loss function for h (⋅) estimator, which is likely to return a lower bound value without overestimation. At last, the two predictors are fused into the A ∗ algorithm in a seamlessly way to help us find the real-time fastest route. We conduct extensive experiments on two real-world large scale trip datasets. The proposed approach clearly outperforms state-of-the-art methods for FRR task.
AbstractList Fastest route recommendation (FRR) is an important task in urban computing. Despite some efforts are made to integrate A ∗ algorithm with neural networks to learn cost functions by a data driven approach, they suffer from inaccuracy of travel time estimation and admissibility of model, resulting sub-optimal results accordingly. In this paper, we propose an ASNN-FRR model that contains two powerful predictors for g (⋅) and h (⋅) functions of A* algorithm respectively. Specifically, an adaptive graph convolutional recurrent network is used to accurately estimate the travel time of the observed path in g (⋅). Toward h (⋅), the model adopts a multi-task representation learning method to support origin-destination (OD) based travel time estimation, which can achieve high accuracy without the actual path information. Besides, we further consider the admissibility of A* algorithm, and utilize a rational setting of the loss function for h (⋅) estimator, which is likely to return a lower bound value without overestimation. At last, the two predictors are fused into the A ∗ algorithm in a seamlessly way to help us find the real-time fastest route. We conduct extensive experiments on two real-world large scale trip datasets. The proposed approach clearly outperforms state-of-the-art methods for FRR task.
Fastest route recommendation (FRR) is an important task in urban computing. Despite some efforts are made to integrate A.sup.* algorithm with neural networks to learn cost functions by a data driven approach, they suffer from inaccuracy of travel time estimation and admissibility of model, resulting sub-optimal results accordingly. In this paper, we propose an ASNN-FRR model that contains two powerful predictors for g(·) and h(·) functions of A* algorithm respectively. Specifically, an adaptive graph convolutional recurrent network is used to accurately estimate the travel time of the observed path in g(·). Toward h(·), the model adopts a multi-task representation learning method to support origin-destination (OD) based travel time estimation, which can achieve high accuracy without the actual path information. Besides, we further consider the admissibility of A* algorithm, and utilize a rational setting of the loss function for h(·) estimator, which is likely to return a lower bound value without overestimation. At last, the two predictors are fused into the A.sup.* algorithm in a seamlessly way to help us find the real-time fastest route. We conduct extensive experiments on two real-world large scale trip datasets. The proposed approach clearly outperforms state-of-the-art methods for FRR task.
Fastest route recommendation (FRR) is an important task in urban computing. Despite some efforts are made to integrate A∗ algorithm with neural networks to learn cost functions by a data driven approach, they suffer from inaccuracy of travel time estimation and admissibility of model, resulting sub-optimal results accordingly. In this paper, we propose an ASNN-FRR model that contains two powerful predictors for g(⋅) and h(⋅) functions of A* algorithm respectively. Specifically, an adaptive graph convolutional recurrent network is used to accurately estimate the travel time of the observed path in g(⋅). Toward h(⋅), the model adopts a multi-task representation learning method to support origin-destination (OD) based travel time estimation, which can achieve high accuracy without the actual path information. Besides, we further consider the admissibility of A* algorithm, and utilize a rational setting of the loss function for h(⋅) estimator, which is likely to return a lower bound value without overestimation. At last, the two predictors are fused into the A∗ algorithm in a seamlessly way to help us find the real-time fastest route. We conduct extensive experiments on two real-world large scale trip datasets. The proposed approach clearly outperforms state-of-the-art methods for FRR task.
Audience Academic
Author Huang, Hai
Li, Chao
Qu, Jianfeng
Yin, Lihua
Wang, Chaoxiong
Qiu, Jing
Author_xml – sequence: 1
  givenname: Chaoxiong
  surname: Wang
  fullname: Wang, Chaoxiong
  organization: Cyberspace Institute of Advance Technology, GuangZhou University
– sequence: 2
  givenname: Chao
  surname: Li
  fullname: Li, Chao
  email: lichao@gzhu.edu.cn
  organization: Cyberspace Institute of Advance Technology, GuangZhou University
– sequence: 3
  givenname: Hai
  surname: Huang
  fullname: Huang, Hai
  organization: School of Computing and Mathematical Sciences, University of Greenwich
– sequence: 4
  givenname: Jing
  surname: Qiu
  fullname: Qiu, Jing
  organization: Cyberspace Institute of Advance Technology, GuangZhou University
– sequence: 5
  givenname: Jianfeng
  surname: Qu
  fullname: Qu, Jianfeng
  email: jfqu@suda.edu.cn
  organization: School of Computer Science and Technology, Soochow University
– sequence: 6
  givenname: Lihua
  surname: Yin
  fullname: Yin, Lihua
  email: yinlh@gzhu.edu.cn
  organization: Cyberspace Institute of Advance Technology, GuangZhou University
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnlPzZ3eTeivFaqFUqHoO2TQpW3c3Ndml-O0du4LgocxhhvB-M3lvhAaNbyxCt5RMKCHiPlIiiMCEUUxImkksLtCQZoJjkbN0ADOXKc6pyK7QKMY9ISQDYoiWs9f1Gi82m4dklrRBO1carI862KSxXdAVtPbow0fifEicjq2NbRJ819okWOPr2jZb3Za-uUaXTlfR3vz2MXpfPL7Nn_Hq5Wk5n62w4ZlsMS2mPJUmL4ygzhS5YdZRmRPubGq0FkTKwjBuJCtSbbcAOaF1llGXTwuhJR-ju37vIfjPDn6j9r4LDZxUTORZzhjsANWkV-10ZVXZOA_mDNTW1qWB8FwJ7zPBecpFSgkAsgdM8DEG65Qp25MxAMtKUaJ-klZ90gqSVqeklQCU_UMPoax1-DoP8R6KIG52NvzZOEN9A17kkfg
CitedBy_id crossref_primary_10_1007_s10707_024_00517_9
crossref_primary_10_1016_j_inffus_2024_102413
crossref_primary_10_3390_math12192977
crossref_primary_10_1007_s40747_024_01611_z
Cites_doi 10.1109/TKDE.2011.200
10.1109/TKDE.2015.2509998
10.1007/s00778-013-0331-0
10.24963/ijcai.2018/505
10.24963/ijcai.2019/274
10.1016/j.future.2019.03.010
10.1109/ICDE.2006.71
10.1177/0361198120930010
10.1007/s00778-018-0502-0
10.1145/3357384.3357907
10.1109/TKDE.2016.2598171
10.1145/2020408.2020462
10.1109/TKDE.2017.2685504
10.1145/2623330.2623656
10.1109/TKDE.2019.2932984
10.1609/aaai.v32i1.11836
10.1007/s10707-020-00422-x
10.1155/2015/970256
10.24963/ijcai.2019/264
10.1609/aaai.v33i01.3301922
10.1109/ITSC.2013.6728569
10.14778/3137628.3137630
10.1007/s11390-020-0314-8
10.1007/s10707-019-00372-z
10.1109/TITS.2004.837813
10.1145/3219819.3219895
10.24963/ijcai.2018/482
10.1145/3219819.3220033
10.1007/s11280-021-00877-4
10.1007/978-3-030-16145-3_3
10.1007/s10707-019-00373-y
10.1016/j.neucom.2020.03.120
10.1007/s10707-019-00358-x
10.1109/ICDE.2018.00143
10.1007/978-3-540-68552-4_25
10.1109/CVPR.2019.00197
10.1109/TKDE.2020.2981062
10.1145/3292500.3330835
10.1371/journal.pone.0147263
10.1145/3318464.3389771
10.1145/1353343.1353371
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2023 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
JQ2
K7-
KR7
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
DOI 10.1007/s10707-021-00458-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Computer Science
EISSN 1573-7624
EndPage 60
ExternalDocumentID A733437410
10_1007_s10707_021_00458_7
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFB2100400
– fundername: Guangxi Key Laboratory of Cryptography and Information Security
  grantid: GXIS202119
– fundername: National Natural Science Foundation of China
  grantid: 62102276
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7XC
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9O
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XH6
YLTOR
Z45
Z7Z
Z83
Z88
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c358t-1b9348c6bc71fcb6c2ef18603fe4caa7088bc23c82b4aedc35f7aa551f69b7a83
IEDL.DBID BENPR
ISSN 1384-6175
IngestDate Wed Aug 13 09:35:23 EDT 2025
Mon Oct 20 16:59:24 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
Wed Oct 01 02:56:44 EDT 2025
Fri Feb 21 02:45:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Traffic speed prediction
Travel time prediction
Fastest route planning
Heuristic search
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-1b9348c6bc71fcb6c2ef18603fe4caa7088bc23c82b4aedc35f7aa551f69b7a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2765622708
PQPubID 105513
PageCount 22
ParticipantIDs proquest_journals_2765622708
gale_infotracacademiconefile_A733437410
crossref_citationtrail_10_1007_s10707_021_00458_7
crossref_primary_10_1007_s10707_021_00458_7
springer_journals_10_1007_s10707_021_00458_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal on Advances of Computer Science for Geographic Information Systems
PublicationTitle GeoInformatica
PublicationTitleAbbrev Geoinformatica
PublicationYear 2023
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Li Y, Yu R, Shahabi C, Liu Y (2017) Diffusion convolutional recurrent neural network:, Data-driven traffic forecasting. arXiv:1707.01926
ChenXXuJZhouRZhaoPLiuCFangJZhaoLS 2 r-tree: a pivot-based indexing structure for semantic-aware spatial keyword searchGeoInformatica202024132510.1007/s10707-019-00372-z
ChenLShangSYangCLiJSpatial keyword search: a surveyGeoInformatica20202418510610.1007/s10707-019-00373-y
Yao H, Wu F, Ke J, Tang X, Jia Y, Lu S, Gong P, Ye J, Li Z (2018) Deep multi-view spatial-temporal network for taxi demand prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32
Mallick T, Balaprakash P, Rask E, Macfarlane J (2019) Graph-partitioning based diffusion convolution recurrent neural network for large-scale traffic forecasting. arXiv:1909.11197
Bai L, Yao L, Kanhere S, Wang X, Sheng Q et al (2019) Stg2seq:, Spatial-temporal graph to sequence model for multi-step passenger demand forecasting. arXiv:1905.10069
Chen L, Shang S, Jensen CS, Yao B, Zhang Z, Shao L (2019) Effective and efficient reuse of past travel behavior for route recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 488–498
Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2017) Trajectory similarity join in spatial networks. Proceedings of the VLDB Endowment 10(11):1178–1189
Guo S, Lin Y, Feng N, Song C, Wan H (2019) Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 922–929
Wu Z, Pan S, Long G, Jiang J, Zhang C (2019) Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121
NiuXZhuYCaoQZhangXXieWZhengKAn online-traffic-prediction based route finding mechanism for smart cityInternational Journal of Distributed Sensor Networks2015118970,25610.1155/2015/970256
LiYXuJJZhaoPPFangJHChenWZhaoLAtlrec: an attentional adversarial transfer learning network for cross-domain recommendationJ Comput Sci Technol202035479480810.1007/s11390-020-0314-8
ChenXXuJZhouRChenWFangJLiuCTrajvae: a variational autoencoder model for trajectory generationNeurocomputing202142833233910.1016/j.neucom.2020.03.120
Xu S, Zhang R, Cheng W, Xu J (2020) Mtlm: a multi-task learning model for travel time estimation. GeoInformatica, pp 1–17
Liu S, Johns E, Davison AJ (2019) End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1871–1880
ShangSChenLWeiZJensenCSWenJRKalnisPCollective travel planning in spatial networksIEEE Trans Knowl Data Eng20152851132114610.1109/TKDE.2015.2509998
Ding B, Yu JX, Qin L (2008) Finding time-dependent shortest paths over large graphs. In: Proceedings of the 11th international conference on Extending database technology: Advances in database technology, pp 205–216
Nannicini G, Delling D, Liberti L, Schultes D (2008) Bidirectional a* search for time-dependent fast paths. In: International workshop on experimental and efficient algorithms, Springer, pp 334–346
Lv Z, Xu J, Zheng K, Yin H, Zhao P, Zhou X (2018) Lc-rnn: a deep learning model for traffic speed prediction. In: IJCAI, pp 3470–3476
ShangSChenLJensenCSWenJRKalnisPSearching trajectories by regions of interestIEEE Trans Knowl Data Eng20172971549156210.1109/TKDE.2017.2685504
Yuan H, Li G, Bao Z, Feng L (2020) Effective travel time estimation: When historical trajectories over road networks matter. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp 2135–2149
LiKShangSSTowards alleviating traffic congestion:, Optimal route planning for massive-scale tripsTraffic20207v8v9
Yuan J, Zheng Y, Xie X, Sun G (2011) Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 316–324
ShangSChenLWeiZJensenCSZhengKKalnisPParallel trajectory similarity joins in spatial networksThe VLDB J201827339542010.1007/s00778-018-0502-0
Yu B, Yin H, Zhu Z (2017) Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv:1709.04875
ShangSDingRZhengKJensenCSKalnisPZhouXPersonalized trajectory matching in spatial networksThe VLDB J201423344946810.1007/s00778-013-0331-0
Sun J, Xu J, Zhou R, Zheng K, Liu C (2018) Discovering expert drivers from trajectories. In: 2018 IEEE 34Th international conference on data engineering (ICDE), IEEE, pp 1332–1335
Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907
Li Y, Fu K, Wang Z, Shahabi C, Ye J, Liu Y (2018) Multi-task representation learning for travel time estimation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 1695–1704
TangJZouYAshJZhangSLiuFWangYTravel time estimation using freeway point detector data based on evolving fuzzy neural inference systemPloS One2016112e0147,26310.1371/journal.pone.0147263
WangFXuJLiuCZhouRZhaoPOn prediction of traffic flows in smart cities: a multitask deep learning based approachWorld Wide Web202124380582310.1007/s11280-021-00877-4
LiuJZhaoKSommerPShangSKusyBLeeJGJurdakRA novel framework for online amnesic trajectory compression in resource-constrained environmentsIEEE Trans Knowl Data Eng201628112827284110.1109/TKDE.2016.2598171
Jindal I, Chen X, Nokleby M, Ye J et al (2017) A unified neural network approach for estimating travel time and distance for a taxi trip. arXiv:1710.04350
SongXXuJZhouRLiuCZhengKZhaoPFalknerNCollective spatial keyword search on activity trajectoriesGeoInformatica2020241618410.1007/s10707-019-00358-x
Bai L, Yao L, Kanhere SS, Yang Z, Chu J, Wang X (2019) Passenger demand forecasting with multi-task convolutional recurrent neural networks. In: Pacific-asia conference on knowledge discovery and data mining, Springer, pp 29–42
Wang Y, Zheng Y, Xue Y (2014) Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 25–34
XuJChenJZhouRFangJLiuCOn workflow aware location-based service composition for personal trip planningFutur Gener Comput Syst20199827428510.1016/j.future.2019.03.010
Li L, Wang S, Zhou X (2020) Fastest path query answering using time-dependent hop-labeling in road network. IEEE Transactions on Knowledge and Data Engineering
Rahmani M, Jenelius E, Koutsopoulos HN (2013) Route travel time estimation using low-frequency floating car data. In: 16Th international IEEE conference on intelligent transportation systems (ITSC 2013), IEEE, pp 2292–2297
WangHTangXKuoYHKiferDLiZA simple baseline for travel time estimation using large-scale trip dataACM Trans Intell Syst Technol (TIST)2019102122
Kanoulas E, Du Y, Xia T, Zhang D (2006) Finding fastest paths on a road network with speed patterns. In: 22Nd international conference on data engineering (ICDE’06), IEEE, pp 10–10
XuJZhaoJZhouRLiuCZhaoPZhaoLPredicting destinations by a deep learning based approachIEEE Trans Knowl Data Eng2021330265166610.1109/TKDE.2019.2932984
YuanJZhengYXieXSunGT-drive: Enhancing driving directions with taxi drivers’ intelligenceIEEE Trans Knowl Data Eng201125122023210.1109/TKDE.2011.200
WuCHHoJMLeeDTTravel-time prediction with support vector regressionIEEE Trans Intell Transp Syst20045427628110.1109/TITS.2004.837813
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. Journal of machine learning research 13(2):281–305
Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. arXiv:2007.02842
HunterTHerringRAbbeelPBayenAPath and travel time inference from gps probe vehicle dataNIPS Analyzing Networks and Learning with Graphs20091212
Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John Wiley & Sons
Wu N, Wang J, Zhao WX, Jin Y (2019) Learning to effectively estimate the travel time for fastest route recommendation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp 1923–1932
Liao B, Zhang J, Wu C, McIlwraith D, Chen T, Yang S, Guo Y, Wu F (2018) Deep sequence learning with auxiliary information for traffic prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 537–546
458_CR22
458_CR21
458_CR24
T Hunter (458_CR12) 2009; 12
458_CR26
458_CR25
X Niu (458_CR28) 2015; 11
458_CR27
458_CR29
Y Li (458_CR20) 2020; 35
S Shang (458_CR34) 2014; 23
J Xu (458_CR47) 2021; 33
X Song (458_CR35) 2020; 24
L Chen (458_CR7) 2020; 24
X Chen (458_CR9) 2020; 24
458_CR32
J Tang (458_CR37) 2016; 11
458_CR36
X Chen (458_CR8) 2021; 428
J Xu (458_CR45) 2019; 98
458_CR40
458_CR42
458_CR43
458_CR5
458_CR6
CH Wu (458_CR41) 2004; 5
458_CR3
J Liu (458_CR23) 2016; 28
458_CR48
458_CR4
458_CR1
458_CR2
458_CR49
J Xu (458_CR44) 2019; 98
F Wang (458_CR38) 2021; 24
458_CR51
K Li (458_CR16) 2020; 7
458_CR50
458_CR53
458_CR52
458_CR11
Y Li (458_CR19) 2020; 35
458_CR10
458_CR13
458_CR15
458_CR14
458_CR17
J Yuan (458_CR54) 2011; 25
458_CR18
S Shang (458_CR31) 2015; 28
S Shang (458_CR33) 2018; 27
J Xu (458_CR46) 2021; 33
S Shang (458_CR30) 2017; 29
H Wang (458_CR39) 2019; 10
References_xml – reference: Wu N, Wang J, Zhao WX, Jin Y (2019) Learning to effectively estimate the travel time for fastest route recommendation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp 1923–1932
– reference: Ding B, Yu JX, Qin L (2008) Finding time-dependent shortest paths over large graphs. In: Proceedings of the 11th international conference on Extending database technology: Advances in database technology, pp 205–216
– reference: ShangSChenLWeiZJensenCSZhengKKalnisPParallel trajectory similarity joins in spatial networksThe VLDB J201827339542010.1007/s00778-018-0502-0
– reference: ChenLShangSYangCLiJSpatial keyword search: a surveyGeoInformatica20202418510610.1007/s10707-019-00373-y
– reference: NiuXZhuYCaoQZhangXXieWZhengKAn online-traffic-prediction based route finding mechanism for smart cityInternational Journal of Distributed Sensor Networks2015118970,25610.1155/2015/970256
– reference: Yuan H, Li G, Bao Z, Feng L (2020) Effective travel time estimation: When historical trajectories over road networks matter. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp 2135–2149
– reference: ShangSDingRZhengKJensenCSKalnisPZhouXPersonalized trajectory matching in spatial networksThe VLDB J201423344946810.1007/s00778-013-0331-0
– reference: Kanoulas E, Du Y, Xia T, Zhang D (2006) Finding fastest paths on a road network with speed patterns. In: 22Nd international conference on data engineering (ICDE’06), IEEE, pp 10–10
– reference: XuJChenJZhouRFangJLiuCOn workflow aware location-based service composition for personal trip planningFutur Gener Comput Syst20199827428510.1016/j.future.2019.03.010
– reference: YuanJZhengYXieXSunGT-drive: Enhancing driving directions with taxi drivers’ intelligenceIEEE Trans Knowl Data Eng201125122023210.1109/TKDE.2011.200
– reference: WangFXuJLiuCZhouRZhaoPOn prediction of traffic flows in smart cities: a multitask deep learning based approachWorld Wide Web202124380582310.1007/s11280-021-00877-4
– reference: Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. Journal of machine learning research 13(2):281–305
– reference: ShangSChenLWeiZJensenCSWenJRKalnisPCollective travel planning in spatial networksIEEE Trans Knowl Data Eng20152851132114610.1109/TKDE.2015.2509998
– reference: TangJZouYAshJZhangSLiuFWangYTravel time estimation using freeway point detector data based on evolving fuzzy neural inference systemPloS One2016112e0147,26310.1371/journal.pone.0147263
– reference: Liao B, Zhang J, Wu C, McIlwraith D, Chen T, Yang S, Guo Y, Wu F (2018) Deep sequence learning with auxiliary information for traffic prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 537–546
– reference: Li Y, Fu K, Wang Z, Shahabi C, Ye J, Liu Y (2018) Multi-task representation learning for travel time estimation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 1695–1704
– reference: Guo S, Lin Y, Feng N, Song C, Wan H (2019) Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 922–929
– reference: Wu Z, Pan S, Long G, Jiang J, Zhang C (2019) Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121
– reference: LiuJZhaoKSommerPShangSKusyBLeeJGJurdakRA novel framework for online amnesic trajectory compression in resource-constrained environmentsIEEE Trans Knowl Data Eng201628112827284110.1109/TKDE.2016.2598171
– reference: ChenXXuJZhouRZhaoPLiuCFangJZhaoLS 2 r-tree: a pivot-based indexing structure for semantic-aware spatial keyword searchGeoInformatica202024132510.1007/s10707-019-00372-z
– reference: LiYXuJJZhaoPPFangJHChenWZhaoLAtlrec: an attentional adversarial transfer learning network for cross-domain recommendationJ Comput Sci Technol202035479480810.1007/s11390-020-0314-8
– reference: Bai L, Yao L, Kanhere S, Wang X, Sheng Q et al (2019) Stg2seq:, Spatial-temporal graph to sequence model for multi-step passenger demand forecasting. arXiv:1905.10069
– reference: WangHTangXKuoYHKiferDLiZA simple baseline for travel time estimation using large-scale trip dataACM Trans Intell Syst Technol (TIST)2019102122
– reference: Nannicini G, Delling D, Liberti L, Schultes D (2008) Bidirectional a* search for time-dependent fast paths. In: International workshop on experimental and efficient algorithms, Springer, pp 334–346
– reference: Sun J, Xu J, Zhou R, Zheng K, Liu C (2018) Discovering expert drivers from trajectories. In: 2018 IEEE 34Th international conference on data engineering (ICDE), IEEE, pp 1332–1335
– reference: Rahmani M, Jenelius E, Koutsopoulos HN (2013) Route travel time estimation using low-frequency floating car data. In: 16Th international IEEE conference on intelligent transportation systems (ITSC 2013), IEEE, pp 2292–2297
– reference: Yao H, Wu F, Ke J, Tang X, Jia Y, Lu S, Gong P, Ye J, Li Z (2018) Deep multi-view spatial-temporal network for taxi demand prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32
– reference: Chen L, Shang S, Jensen CS, Yao B, Zhang Z, Shao L (2019) Effective and efficient reuse of past travel behavior for route recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 488–498
– reference: SongXXuJZhouRLiuCZhengKZhaoPFalknerNCollective spatial keyword search on activity trajectoriesGeoInformatica2020241618410.1007/s10707-019-00358-x
– reference: HunterTHerringRAbbeelPBayenAPath and travel time inference from gps probe vehicle dataNIPS Analyzing Networks and Learning with Graphs20091212
– reference: XuJZhaoJZhouRLiuCZhaoPZhaoLPredicting destinations by a deep learning based approachIEEE Trans Knowl Data Eng2021330265166610.1109/TKDE.2019.2932984
– reference: Jindal I, Chen X, Nokleby M, Ye J et al (2017) A unified neural network approach for estimating travel time and distance for a taxi trip. arXiv:1710.04350
– reference: Mallick T, Balaprakash P, Rask E, Macfarlane J (2019) Graph-partitioning based diffusion convolution recurrent neural network for large-scale traffic forecasting. arXiv:1909.11197
– reference: ShangSChenLJensenCSWenJRKalnisPSearching trajectories by regions of interestIEEE Trans Knowl Data Eng20172971549156210.1109/TKDE.2017.2685504
– reference: WuCHHoJMLeeDTTravel-time prediction with support vector regressionIEEE Trans Intell Transp Syst20045427628110.1109/TITS.2004.837813
– reference: ChenXXuJZhouRChenWFangJLiuCTrajvae: a variational autoencoder model for trajectory generationNeurocomputing202142833233910.1016/j.neucom.2020.03.120
– reference: Liu S, Johns E, Davison AJ (2019) End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1871–1880
– reference: Bai L, Yao L, Kanhere SS, Yang Z, Chu J, Wang X (2019) Passenger demand forecasting with multi-task convolutional recurrent neural networks. In: Pacific-asia conference on knowledge discovery and data mining, Springer, pp 29–42
– reference: Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907
– reference: Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2017) Trajectory similarity join in spatial networks. Proceedings of the VLDB Endowment 10(11):1178–1189
– reference: Li Y, Yu R, Shahabi C, Liu Y (2017) Diffusion convolutional recurrent neural network:, Data-driven traffic forecasting. arXiv:1707.01926
– reference: Yuan J, Zheng Y, Xie X, Sun G (2011) Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 316–324
– reference: Lv Z, Xu J, Zheng K, Yin H, Zhao P, Zhou X (2018) Lc-rnn: a deep learning model for traffic speed prediction. In: IJCAI, pp 3470–3476
– reference: Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John Wiley & Sons
– reference: Xu S, Zhang R, Cheng W, Xu J (2020) Mtlm: a multi-task learning model for travel time estimation. GeoInformatica, pp 1–17
– reference: Li L, Wang S, Zhou X (2020) Fastest path query answering using time-dependent hop-labeling in road network. IEEE Transactions on Knowledge and Data Engineering
– reference: Wang Y, Zheng Y, Xue Y (2014) Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 25–34
– reference: Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. arXiv:2007.02842
– reference: Yu B, Yin H, Zhu Z (2017) Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv:1709.04875
– reference: LiKShangSSTowards alleviating traffic congestion:, Optimal route planning for massive-scale tripsTraffic20207v8v9
– volume: 25
  start-page: 220
  issue: 1
  year: 2011
  ident: 458_CR54
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2011.200
– volume: 28
  start-page: 1132
  issue: 5
  year: 2015
  ident: 458_CR31
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2509998
– volume: 23
  start-page: 449
  issue: 3
  year: 2014
  ident: 458_CR34
  publication-title: The VLDB J
  doi: 10.1007/s00778-013-0331-0
– ident: 458_CR51
  doi: 10.24963/ijcai.2018/505
– ident: 458_CR1
  doi: 10.24963/ijcai.2019/274
– volume: 98
  start-page: 274
  year: 2019
  ident: 458_CR45
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.03.010
– ident: 458_CR4
– ident: 458_CR14
  doi: 10.1109/ICDE.2006.71
– ident: 458_CR26
  doi: 10.1177/0361198120930010
– volume: 27
  start-page: 395
  issue: 3
  year: 2018
  ident: 458_CR33
  publication-title: The VLDB J
  doi: 10.1007/s00778-018-0502-0
– ident: 458_CR42
  doi: 10.1145/3357384.3357907
– volume: 28
  start-page: 2827
  issue: 11
  year: 2016
  ident: 458_CR23
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2598171
– ident: 458_CR53
  doi: 10.1145/2020408.2020462
– volume: 29
  start-page: 1549
  issue: 7
  year: 2017
  ident: 458_CR30
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2685504
– ident: 458_CR40
  doi: 10.1145/2623330.2623656
– ident: 458_CR21
– volume: 98
  start-page: 274
  year: 2019
  ident: 458_CR44
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.03.010
– volume: 33
  start-page: 651
  issue: 02
  year: 2021
  ident: 458_CR46
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2932984
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 458_CR39
  publication-title: ACM Trans Intell Syst Technol (TIST)
– ident: 458_CR50
  doi: 10.1609/aaai.v32i1.11836
– ident: 458_CR48
  doi: 10.1007/s10707-020-00422-x
– ident: 458_CR13
– volume: 11
  start-page: 970,256
  issue: 8
  year: 2015
  ident: 458_CR28
  publication-title: International Journal of Distributed Sensor Networks
  doi: 10.1155/2015/970256
– ident: 458_CR3
– volume: 7
  start-page: v9
  issue: v8
  year: 2020
  ident: 458_CR16
  publication-title: Traffic
– ident: 458_CR43
  doi: 10.24963/ijcai.2019/264
– ident: 458_CR11
  doi: 10.1609/aaai.v33i01.3301922
– ident: 458_CR29
  doi: 10.1109/ITSC.2013.6728569
– ident: 458_CR32
  doi: 10.14778/3137628.3137630
– volume: 35
  start-page: 794
  issue: 4
  year: 2020
  ident: 458_CR19
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-020-0314-8
– volume: 24
  start-page: 3
  issue: 1
  year: 2020
  ident: 458_CR9
  publication-title: GeoInformatica
  doi: 10.1007/s10707-019-00372-z
– volume: 5
  start-page: 276
  issue: 4
  year: 2004
  ident: 458_CR41
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2004.837813
– ident: 458_CR22
  doi: 10.1145/3219819.3219895
– volume: 12
  start-page: 2
  issue: 1
  year: 2009
  ident: 458_CR12
  publication-title: NIPS Analyzing Networks and Learning with Graphs
– ident: 458_CR25
  doi: 10.24963/ijcai.2018/482
– ident: 458_CR18
  doi: 10.1145/3219819.3220033
– volume: 35
  start-page: 794
  issue: 4
  year: 2020
  ident: 458_CR20
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-020-0314-8
– volume: 24
  start-page: 805
  issue: 3
  year: 2021
  ident: 458_CR38
  publication-title: World Wide Web
  doi: 10.1007/s11280-021-00877-4
– ident: 458_CR2
  doi: 10.1007/978-3-030-16145-3_3
– volume: 24
  start-page: 85
  issue: 1
  year: 2020
  ident: 458_CR7
  publication-title: GeoInformatica
  doi: 10.1007/s10707-019-00373-y
– volume: 428
  start-page: 332
  year: 2021
  ident: 458_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.120
– volume: 24
  start-page: 61
  issue: 1
  year: 2020
  ident: 458_CR35
  publication-title: GeoInformatica
  doi: 10.1007/s10707-019-00358-x
– ident: 458_CR36
  doi: 10.1109/ICDE.2018.00143
– ident: 458_CR27
  doi: 10.1007/978-3-540-68552-4_25
– ident: 458_CR24
  doi: 10.1109/CVPR.2019.00197
– volume: 33
  start-page: 651
  issue: 02
  year: 2021
  ident: 458_CR47
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2932984
– ident: 458_CR17
  doi: 10.1109/TKDE.2020.2981062
– ident: 458_CR6
  doi: 10.1145/3292500.3330835
– ident: 458_CR15
– ident: 458_CR49
  doi: 10.1007/s10707-020-00422-x
– ident: 458_CR5
– volume: 11
  start-page: e0147,263
  issue: 2
  year: 2016
  ident: 458_CR37
  publication-title: PloS One
  doi: 10.1371/journal.pone.0147263
– ident: 458_CR52
  doi: 10.1145/3318464.3389771
– ident: 458_CR10
  doi: 10.1145/1353343.1353371
SSID ssj0005070
Score 2.3645856
Snippet Fastest route recommendation (FRR) is an important task in urban computing. Despite some efforts are made to integrate A ∗ algorithm with neural networks to...
Fastest route recommendation (FRR) is an important task in urban computing. Despite some efforts are made to integrate A.sup.* algorithm with neural networks...
Fastest route recommendation (FRR) is an important task in urban computing. Despite some efforts are made to integrate A∗ algorithm with neural networks to...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Algorithms
Analysis
Computer Science
Cost function
Data Structures and Information Theory
Geographical Information Systems/Cartography
Information Storage and Retrieval
Lower bounds
Multimedia Information Systems
Neural networks
Travel time
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VeoBLoRTULQ_5UIlDa2ljO3G2twixAiT2AKzEzRp7bXGAXbSbquLfM06cLi0PiXPsSTLjx-fH9w3Ad42F0EFOuApoudLacszshFsRJ8M8hLwhiZ2PipOxOrvOrxMpbNHddu-OJJuR-gnZTcdtNUHL33i6x_UKfMyjnBe14rGolhc7-rrlBpcqEuDyRJV52cY_09H_g_Kz09Fm0hluwqeEFlnVhvczfPDTLdjoMjGw1DG3YC3lMr95-AKn1eVoxIcXF79Yxeo5Ro0Ijn9w7lkUryRz0_bqNyO8ygJSmBc1m8_IIovL47s7nxItbcN4eHx1dMJTwgTuZF7WPLMDqUpXWKez4GzhhA9ZWfRl8MohahpRrBPSlcIq9BOqFDQiYaZQDKzGUu7A6nQ29V-BUWmLKC2KHBVBCuz7gZR2ImxRWqlcD7LOb8YlNfGY1OLWLHWQo68N-do0vja6Bz_-1rlvtTTeLH0Yw2FiRyPLDhNfgL4vSlaZSkupJAGifg_2uoiZ1AMXRmhCqkLQP_fgZxfF5ePX3_vtfcV3YT1moG93ZfZgtZ7_9vuEU2p70DTLRz8H3JI
  priority: 102
  providerName: Springer Nature
Title ASNN-FRR: A traffic-aware neural network for fastest route recommendation
URI https://link.springer.com/article/10.1007/s10707-021-00458-7
https://www.proquest.com/docview/2765622708
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-7624
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005070
  issn: 1384-6175
  databaseCode: ABDBF
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7624
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005070
  issn: 1384-6175
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7624
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005070
  issn: 1384-6175
  databaseCode: BENPR
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7624
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005070
  issn: 1384-6175
  databaseCode: 8FG
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7624
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005070
  issn: 1384-6175
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7624
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005070
  issn: 1384-6175
  databaseCode: U2A
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH7a2gNcJsYP0TEqH5A4gEViO7GLhFCG2g0QESpUGifr2bHFgbWjy4T477EThwoQuya2E33PP579_L4P4InEkknPGyo8GiqkNBRz01DD4mJYeF90SWIf6vJsJd6dF-d7UA-5MPFa5TAndhN1s7HxjPwFk8HzYExm6vXldxpVo2J0dZDQwCSt0LzqKMb2YcwiM9YIxifz-uNyd-kjk33esBIxOa5IaTQpmU7GYzsWttcxekjlH0vV3xP2P5HTbkFa3IGD5EmSqjf9Iey59V24lUTNv_68B2-rT3VNF8vlS1KRdouRLILiD9w6ElksQ911fwecBMeVeAz2vmrJdnPdOhL3yRcXLiku3YfVYv75zRlNygnU8kK1NDczLpQtjZW5t6a0zPlclRn3TljEAKIylnGrmBHomlDJS8SAnC9nRqLiD2C03qzdQyChtEHkBlmBIvgWmLkZ56ZhplSGCzuBfABJ20QrHtUtvukdIXIEVgdgdQeslhN49rvOZU-qcWPppxF7HUdcaNliShwI_xe5q3QlORc8eEbZBI4H8-g0FK_0ruNM4Plgst3r_3_36ObWHsHtKD3fH8ccw6jdXrvHwUFpzRT21eJ0CuPq9Mv7-TT1wfB0xapfArrjUQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXxFMsFPABxAEsEtuJvUgVWqCrXdpGaGml3szYscWB7pbdVFX_HL-NceKwAkRvPcePaGbsmbH9zUfIcwUlV0HUTAawTCplGeS2ZpZHZ1iEULQgscOqnBzLTyfFyQb52WNh4rPKfk9sN-p64eIZ-RuuMPLgXGX63dkPFlmj4u1qT6EBiVqh3m1LjCVgx76_vMAUbrU7_Yj6fsH5eO_ow4QllgHmRKEbltuhkNqV1qk8OFs67kOuy0wELx0ATqit48JpbiX4GjsFBYCzhHJoFWiB494gW1LIISZ_W-_3qs-z9SOTTHU4ZS0jGK9IsJ0E3lPxmJBjOh9vK5n6wzX-7SD-ualtHeD4NrmVIlc66kztDtnw87tkO5Gof7u8R6ajL1XFxrPZWzqizRJicQoGF7D0NFbNxL7z7s05xUCZBkD7WjV0uThvPI15-empTwxP98nxtcjwAdmcL-b-IaHY2gIIC7wAibEMZH4ohK25LbUV0g1I3gvJuFTGPLJpfDfrAsxRsAYFa1rBGjUgr373OeuKeFzZ-mWUvYkrHEd2kIAK-H-xVpYZKSGkwEgsG5CdXj0mLf2VWRvqgLzuVbb-_P95H1092jOyPTk6PDAH02r_MbkZae-7o6Adstksz_0TDI4a-zRZICVfr9vofwG9Ah6d
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxFMsFPABxAGsJrYTZ5EQWlFCl8IKFSr1ZsaOLQ50t-ymqvrX-HWME4cVIHrrOX5E48-esWe-GYAnGkuhg2y4Cmi50tpyzG3DrYjKsAih6EhiH2fl7oF6f1gcbsDPgQsTwyqHM7E7qJuFi2_k20KT5SGEzqrtkMIiPu3Ur49_8FhBKnpah3IaPUT2_NkpXd9Wr6Y7tNZPhajffnmzy1OFAe5kUbU8t2OpKldap_PgbOmED3lVZjJ45RBpsso6IV0lrELfUKegEcnICOXYaqwkjXsJLuuYxT2y1Ot36_CSTPcM5UpFGl6RCDuJtqfjA6Ggi3z0U3L9h1L8WzX846PtVF99A64nm5VNepDdhA0_vwVXU_n0b2e3YTr5PJvxen__JZuwdokxLQXHU1x6FvNlUt95H23OyERmAQlZq5YtFyetZ_FGfnTkU22nO3BwIRK8C5vzxdzfA0atLaK0KApUZMVg5sdS2kbYsrJSuRHkg5CMSwnMYx2N72adejkK1pBgTSdYo0fw_Hef4z59x7mtn0XZm7i3aWSHiaJA_xezZJmJllJJssGyEWwNy2PSpl-ZNURH8GJYsvXn_897__zRHsMVgrr5MJ3tPYBrsd59_wa0BZvt8sQ_JKuotY86-DH4etF4_wXaZRw3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASNN-FRR%3A+A+traffic-aware+neural+network+for+fastest+route+recommendation&rft.jtitle=GeoInformatica&rft.au=Wang%2C+Chaoxiong&rft.au=Li%2C+Chao&rft.au=Huang%2C+Hai&rft.au=Qiu%2C+Jing&rft.date=2023-01-01&rft.issn=1384-6175&rft.eissn=1573-7624&rft.volume=27&rft.issue=1&rft.spage=39&rft.epage=60&rft_id=info:doi/10.1007%2Fs10707-021-00458-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10707_021_00458_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-6175&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-6175&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-6175&client=summon