A simple multiscale layer detection algorithm for CALIPSO measurements
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and cloud layers globally. Detecting the layer boundaries of aerosols and clouds is a crucial step in CALIPSO data retrieval. The CALIPSO team uses t...
Saved in:
| Published in | Remote sensing of environment Vol. 266; p. 112687 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Inc
01.12.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-4257 1879-0704 |
| DOI | 10.1016/j.rse.2021.112687 |
Cover
| Abstract | The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and cloud layers globally. Detecting the layer boundaries of aerosols and clouds is a crucial step in CALIPSO data retrieval. The CALIPSO team uses the selective iterated boundary location (SIBYL) algorithm based on threshold arrays to find aerosol and cloud layers at different horizontal resolutions. However, threshold arrays could obstruct the detection of optically tenuous layers at a high resolution and may cause overestimation when averaging signals of layer and clear air at a low resolution. Here, a multiscale algorithm using a series of sliding window sizes without threshold setting is proposed based on a pre-defined probability. The results over land and marine areas show that the multiscale algorithm detected 37.41% and 16.36% more layer area than the SIBYL at 1–80 km resolutions at daytime and 1–5 km resolutions at night time, respectively. This indicates that the multiscale algorithm does not need a threshold array, allowing more tenuous layers to be detected, especially at low signal to noise ratios (SNRs). In contrast, the SIBYL detects 4.40% more layer area than the multiscale algorithm at 1–80 km resolutions at nighttime, mainly caused by the large proportion of layer area detected by SIBYL at 20 and 80 km resolutions. This implies possible noteworthy overestimation by the SIBYL at low resolutions. Additionally, the evaluation using the depolarization ratio of ice clouds shows that the extra detected layers by the multiscale algorithm are reliable. Besides, simulation tests show that the multiscale and SIBYL algorithms achieve a 100% true detection rate when SNR is approximately 2 and 4, respectively. The new multiscale algorithm could upgrade the resolution and accuracy of the layer detection of space lidars and reduce the underestimation of layer optical depth due to missing layers.
•A layer detection algorithm for space lidar is proposed based on probability theory.•The new algorithm detects more layer areas than previous studies at high resolution.•The new algorithm reduces overestimation of the layer coverage at low resolution. |
|---|---|
| AbstractList | The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and cloud layers globally. Detecting the layer boundaries of aerosols and clouds is a crucial step in CALIPSO data retrieval. The CALIPSO team uses the selective iterated boundary location (SIBYL) algorithm based on threshold arrays to find aerosol and cloud layers at different horizontal resolutions. However, threshold arrays could obstruct the detection of optically tenuous layers at a high resolution and may cause overestimation when averaging signals of layer and clear air at a low resolution. Here, a multiscale algorithm using a series of sliding window sizes without threshold setting is proposed based on a pre-defined probability. The results over land and marine areas show that the multiscale algorithm detected 37.41% and 16.36% more layer area than the SIBYL at 1–80 km resolutions at daytime and 1–5 km resolutions at night time, respectively. This indicates that the multiscale algorithm does not need a threshold array, allowing more tenuous layers to be detected, especially at low signal to noise ratios (SNRs). In contrast, the SIBYL detects 4.40% more layer area than the multiscale algorithm at 1–80 km resolutions at nighttime, mainly caused by the large proportion of layer area detected by SIBYL at 20 and 80 km resolutions. This implies possible noteworthy overestimation by the SIBYL at low resolutions. Additionally, the evaluation using the depolarization ratio of ice clouds shows that the extra detected layers by the multiscale algorithm are reliable. Besides, simulation tests show that the multiscale and SIBYL algorithms achieve a 100% true detection rate when SNR is approximately 2 and 4, respectively. The new multiscale algorithm could upgrade the resolution and accuracy of the layer detection of space lidars and reduce the underestimation of layer optical depth due to missing layers. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and cloud layers globally. Detecting the layer boundaries of aerosols and clouds is a crucial step in CALIPSO data retrieval. The CALIPSO team uses the selective iterated boundary location (SIBYL) algorithm based on threshold arrays to find aerosol and cloud layers at different horizontal resolutions. However, threshold arrays could obstruct the detection of optically tenuous layers at a high resolution and may cause overestimation when averaging signals of layer and clear air at a low resolution. Here, a multiscale algorithm using a series of sliding window sizes without threshold setting is proposed based on a pre-defined probability. The results over land and marine areas show that the multiscale algorithm detected 37.41% and 16.36% more layer area than the SIBYL at 1–80 km resolutions at daytime and 1–5 km resolutions at night time, respectively. This indicates that the multiscale algorithm does not need a threshold array, allowing more tenuous layers to be detected, especially at low signal to noise ratios (SNRs). In contrast, the SIBYL detects 4.40% more layer area than the multiscale algorithm at 1–80 km resolutions at nighttime, mainly caused by the large proportion of layer area detected by SIBYL at 20 and 80 km resolutions. This implies possible noteworthy overestimation by the SIBYL at low resolutions. Additionally, the evaluation using the depolarization ratio of ice clouds shows that the extra detected layers by the multiscale algorithm are reliable. Besides, simulation tests show that the multiscale and SIBYL algorithms achieve a 100% true detection rate when SNR is approximately 2 and 4, respectively. The new multiscale algorithm could upgrade the resolution and accuracy of the layer detection of space lidars and reduce the underestimation of layer optical depth due to missing layers. •A layer detection algorithm for space lidar is proposed based on probability theory.•The new algorithm detects more layer areas than previous studies at high resolution.•The new algorithm reduces overestimation of the layer coverage at low resolution. |
| ArticleNumber | 112687 |
| Author | Zang, Lin Hong, Jia Huang, Xin Pan, Zengxin Mao, Feiyue Sun, Jia Liang, Zhenxing Zhang, Tianhao Lu, Xin Gong, Wei |
| Author_xml | – sequence: 1 givenname: Feiyue surname: Mao fullname: Mao, Feiyue organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China – sequence: 2 givenname: Zhenxing surname: Liang fullname: Liang, Zhenxing email: liangzhenxing@whu.edu.cn organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China – sequence: 3 givenname: Zengxin surname: Pan fullname: Pan, Zengxin organization: Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel – sequence: 4 givenname: Wei surname: Gong fullname: Gong, Wei organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China – sequence: 5 givenname: Jia surname: Sun fullname: Sun, Jia organization: School of Geography and Information Engineering, Chinese University of Geosciences, Wuhan 430079, China – sequence: 6 givenname: Tianhao surname: Zhang fullname: Zhang, Tianhao organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China – sequence: 7 givenname: Xin surname: Huang fullname: Huang, Xin organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China – sequence: 8 givenname: Lin surname: Zang fullname: Zang, Lin organization: Chinese Antarctic Centre of Surveying and Mapping, Wuhan University, Wuhan 430079, China – sequence: 9 givenname: Xin surname: Lu fullname: Lu, Xin organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China – sequence: 10 givenname: Jia surname: Hong fullname: Hong, Jia organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
| BookMark | eNp9kEFLwzAUgINMcJv-AG8FL146kyZtUjyN4XQwmKCeQ9K-akbbzCQV9u9NmScPO713-L7H45uhSW97QOiW4AXBpHjYL5yHRYYzsiAkKwS_QFMieJlijtkETTGmLGVZzq_QzPs9xiQXnEzRepl40x1aSLqhDcZXKq6tOoJLaghQBWP7RLWf1pnw1SWNdclqud28vu2SDpQfHHTQB3-NLhvVerj5m3P0sX56X72k293zJgppRXMRUsK04FBwVeuyKTkGqpVgeSlqAF0JnNMaMi0a3RSaFoXWeaY5A0xBM8Xyms7R_enuwdnvAXyQXfwZ2lb1YAcvs4IWjJa4zCJ69w_d28H18btIjTlEzkeKnKjKWe8dNPLgTKfcURIsx7JyL2NZOZaVp7LR4f-cygQ1lgpOmfas-XgyITb6MeCkrwz0FdTGxdaytuaM_Qu0GJSc |
| CitedBy_id | crossref_primary_10_1016_j_rse_2023_113915 crossref_primary_10_3788_AOS222188 crossref_primary_10_1016_j_optlastec_2021_107784 crossref_primary_10_3788_AOS240893 crossref_primary_10_1186_s43074_022_00063_3 crossref_primary_10_1364_OE_473727 crossref_primary_10_1364_OE_536588 crossref_primary_10_5194_acp_22_10589_2022 crossref_primary_10_1016_j_rse_2023_113583 |
| Cites_doi | 10.1016/j.jqsrt.2021.107513 10.1038/s41598-017-14665-6 10.1038/s41467-018-05028-4 10.1175/1520-0426(1998)015<1035:AAAFDO>2.0.CO;2 10.1029/2007GL030135 10.1126/science.1064034 10.1029/2009JD012344 10.1364/AO.50.006591 10.1364/AO.31.001488 10.1002/2015JD024334 10.1029/2019JD030758 10.1002/2014JD021458 10.5194/acp-21-6199-2021 10.1175/JTECH-D-12-00233.1 10.1364/OE.27.034126 10.5194/amt-14-1593-2021 10.1364/AO.45.004437 10.1002/2014GL062015 10.1364/OE.27.00A481 10.1002/2014JD021760 10.1002/2016JD025954 10.1002/2013JD019527 10.1175/2009JTECHA1231.1 10.1002/2013JD020178 10.1175/2009JTECHA1281.1 10.3390/atmos9110445 10.1016/j.jqsrt.2020.107498 10.1175/2009JTECHA1228.1 10.1175/JCLI-D-12-00517.1 10.1175/2010BAMS3009.1 10.1002/2017GL074521 10.1016/j.jqsrt.2018.07.007 10.1029/2010GL046614 10.1364/OE.386214 10.1093/nsr/nwx117 10.5194/acp-12-3025-2012 10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2 10.5194/acp-15-12327-2015 10.1016/0169-8095(94)90084-1 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. Copyright Elsevier BV Dec 1, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright Elsevier BV Dec 1, 2021 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| DOI | 10.1016/j.rse.2021.112687 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| ExternalDocumentID | 10_1016_j_rse_2021_112687 S0034425721004077 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADVLN AEBSH AEIPS AEKER AENEX AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSH SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAQXK AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VOH WUQ XOL ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c358t-14b87e67adb9f970e3ba84598deebc8053de2b8fbf6b366bb52b74e03eb4a45d3 |
| IEDL.DBID | .~1 |
| ISSN | 0034-4257 |
| IngestDate | Sun Sep 28 06:39:14 EDT 2025 Wed Aug 13 05:55:47 EDT 2025 Wed Oct 01 05:16:35 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Sun Apr 06 06:54:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CALIOP Layer detection Aerosol and cloud Multiscale |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c358t-14b87e67adb9f970e3ba84598deebc8053de2b8fbf6b366bb52b74e03eb4a45d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2600348572 |
| PQPubID | 2045405 |
| ParticipantIDs | proquest_miscellaneous_2636439092 proquest_journals_2600348572 crossref_primary_10_1016_j_rse_2021_112687 crossref_citationtrail_10_1016_j_rse_2021_112687 elsevier_sciencedirect_doi_10_1016_j_rse_2021_112687 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Fu, Chen, Li, Qin, Xian, Yu, Zhang, Liu, Zhang (bb0060) 2017; 7 Liu, Hunt, Vaughan, Hostetler, Mcgill, Powell, Winker, Hu (bb0105) 2006; 45 Liu, Kar, Zeng, Tackett, Vaughan, Avery, Pelon, Getzewich, Lee, Magill (bb0115) 2019 Ramanathan, Crutzen, Kiehl, Rosenfeld (bb0160) 2001; 294 Xie, Zhou, Fu, Huang, Huang, Bi, Shi, Zhang, Ge (bb0240) 2017 Clothiaux, Mace, Ackerman, Kane, Spinhirne, Scott (bb0040) 1998; 15 Bian, Xu, Hu, Tao, Kuang, Zhao (bb0025) 2020; 28 Ma, Rasch, Chepfer, Winker, Ghan (bb0120) 2018; 9 Vernier, Thomason, Kar (bb0195) 2011; 38 Wang, Zhao (bb0200) 2017; 122 Hagihara, Okamoto, Yoshida (bb0075) 2010; 115 Liu, Omar, Hu, Vaughan, Winker, Poole, Kovacs (bb0100) 2005 Pal, Steinbrecht, Carswell (bb0150) 1992; 31 Kacenelenbogen, Redemann, Vaughan, Omar, Russell, Burton, Rogers, Ferrare, Hostetler (bb0080) 2014; 119 Winker, Vaughan, Omar, Hu, Powell, Liu, Hunt, Young (bb0225) 2009; 26 Vaughan, Powell, Winker, Hostetler, Kuehn, Hunt, Getzewich, Young, Liu, McGill (bb0190) 2009; 26 Thorsen, Ferrare, Hostetler, Vaughan, Fu (bb0175) 2017; 44 Balmes, Fu (bb0005) 2018; 9 Mao, Gong, Zhu (bb0125) 2011; 50 Winker, Vaughan (bb0210) 1994; 34 Zhang, Zhao, Zhang, Ke, Che, Shen, Zheng, Liu (bb0250) 2019; 27 Berry, Mace (bb0015) 2014; 119 Melfi, Spinhirne, Chou, Palm (bb0140) 1985; 24 Basu, Pereira (bb0010) 1990; 4 Winker, Pelon, McCormick (bb0215) 2003; III Omar, Winker, Vaughan, Hu, Trepte, Ferrare, Lee, Hostetler, Kittaka, Rogers (bb0145) 2009; 26 Powell, Liu, Hunt (bb0155) 2006 Cesana, Chepfer, Winker, Getzewich, Cai, Jourdan, Mioche, Okamoto, Hagihara, Noel (bb0030) 2016; 121 Mao, Pan, Wang, Li, Wei (bb0130) 2018; 218 Winker, Hunt, McGill (bb0220) 2007; 34 Feofilov, Stubenrauch, Delanoë (bb0055) 2015; 15 Yorks, Hlavka, Vaughan, McGill, Hart, Rodier, Kuehn (bb0245) 2011 Guo, Liu, Wang, Huang, Xia, Lou, Wu, Jiang, Xie, Zhaxi (bb0065) 2016; 178 Li, Guo, Ding, Liao, Liu, Sun, Wang, Xue, Zhang, Zhu (bb0090) 2017; 4 Zhao, Garrett (bb0255) 2015; 42 Bi, Huang, Hu, Holben, Guo (bb0020) 2014 Vaillant de Guélis, Vaughan, Winker, Liu (bb0180) 2021; 14 Liu, Zheng, Chen, Wang, Li, Ke, Zhang, Chen, Cheng, Wang (bb0110) 2019; 27 Chen, Li, Kahn, Zhao, Rosenfeld, Guo, Han, Chen (bb0035) 2021; 21 Comerón, Sicard, Rocadenbosch (bb0045) 2013; 30 Li, Wang, Guo, Zhao, Cribb, Dong, Fan, Gong, Huang, Jiang, Jiang, Lee, Li, Li, Liu, Qian, Rosenfeld, Shan, Sun, Wang, Xin, Yan, Yang, Yang, Zhang, Zheng (bb0095) 2019; 124 Hagihara, Okamoto, Yoshida (bb0070) 2010; 115 Winker, Pelon, Coakley, Ackerman, Charlson, Colarco, Flamant, Fu, Hoff, Kittaka, Kubar, Le Treut, Mccormick, Mégie, Poole, Powell, Trepte, Vaughan, Wielicki (bb0230) 2010; 91 Davis, Hlavka, Jensen, Rosenlof, Yang, Schmidt, Borrmann, Frey, Lawson, Voemel, Bui (bb0050) 2010 Redemann, Vaughan, Zhang, Shinozuka, Russell, Livingston, Kacenelenbogen, Remer (bb0165) 2011; 12 Vaughan, Winker, Powell (bb0185) 2005; 202 Wang, Shen, Xiao, Veselovskii, Zhao, Chen, Liu, Rong, Ke, Wang, Liu (bb0205) 2021; 261 Zhao, Wang, Wang, Li, Wang, Liu (bb0260) 2014; 119 Kim, Kim, Yoon, Omar (bb0085) 2013; 118 Mao, Zhao, Gong, Chen, Liang (bb0135) 2021; 261 Xie, Liu, Zhao, Zhang (bb0235) 2013; 26 Chen (10.1016/j.rse.2021.112687_bb0035) 2021; 21 Zhao (10.1016/j.rse.2021.112687_bb0260) 2014; 119 Bian (10.1016/j.rse.2021.112687_bb0025) 2020; 28 Clothiaux (10.1016/j.rse.2021.112687_bb0040) 1998; 15 Li (10.1016/j.rse.2021.112687_bb0095) 2019; 124 Vaillant de Guélis (10.1016/j.rse.2021.112687_bb0180) 2021; 14 Winker (10.1016/j.rse.2021.112687_bb0210) 1994; 34 Comerón (10.1016/j.rse.2021.112687_bb0045) 2013; 30 Ma (10.1016/j.rse.2021.112687_bb0120) 2018; 9 Balmes (10.1016/j.rse.2021.112687_bb0005) 2018; 9 Ramanathan (10.1016/j.rse.2021.112687_bb0160) 2001; 294 Kim (10.1016/j.rse.2021.112687_bb0085) 2013; 118 Winker (10.1016/j.rse.2021.112687_bb0220) 2007; 34 Zhang (10.1016/j.rse.2021.112687_bb0250) 2019; 27 Zhao (10.1016/j.rse.2021.112687_bb0255) 2015; 42 Davis (10.1016/j.rse.2021.112687_bb0050) 2010 Liu (10.1016/j.rse.2021.112687_bb0100) 2005 Yorks (10.1016/j.rse.2021.112687_bb0245) 2011 Vaughan (10.1016/j.rse.2021.112687_bb0185) 2005; 202 Cesana (10.1016/j.rse.2021.112687_bb0030) 2016; 121 Li (10.1016/j.rse.2021.112687_bb0090) 2017; 4 Berry (10.1016/j.rse.2021.112687_bb0015) 2014; 119 Vernier (10.1016/j.rse.2021.112687_bb0195) 2011; 38 Xie (10.1016/j.rse.2021.112687_bb0235) 2013; 26 Hagihara (10.1016/j.rse.2021.112687_bb0075) 2010; 115 Mao (10.1016/j.rse.2021.112687_bb0130) 2018; 218 Liu (10.1016/j.rse.2021.112687_bb0115) 2019 Pal (10.1016/j.rse.2021.112687_bb0150) 1992; 31 Kacenelenbogen (10.1016/j.rse.2021.112687_bb0080) 2014; 119 Vaughan (10.1016/j.rse.2021.112687_bb0190) 2009; 26 Wang (10.1016/j.rse.2021.112687_bb0205) 2021; 261 Feofilov (10.1016/j.rse.2021.112687_bb0055) 2015; 15 Wang (10.1016/j.rse.2021.112687_bb0200) 2017; 122 Mao (10.1016/j.rse.2021.112687_bb0125) 2011; 50 Winker (10.1016/j.rse.2021.112687_bb0215) 2003; III Liu (10.1016/j.rse.2021.112687_bb0105) 2006; 45 Winker (10.1016/j.rse.2021.112687_bb0230) 2010; 91 Xie (10.1016/j.rse.2021.112687_bb0240) 2017 Winker (10.1016/j.rse.2021.112687_bb0225) 2009; 26 Guo (10.1016/j.rse.2021.112687_bb0065) 2016; 178 Basu (10.1016/j.rse.2021.112687_bb0010) 1990; 4 Thorsen (10.1016/j.rse.2021.112687_bb0175) 2017; 44 Bi (10.1016/j.rse.2021.112687_bb0020) 2014 Melfi (10.1016/j.rse.2021.112687_bb0140) 1985; 24 Hagihara (10.1016/j.rse.2021.112687_bb0070) 2010; 115 Liu (10.1016/j.rse.2021.112687_bb0110) 2019; 27 Redemann (10.1016/j.rse.2021.112687_bb0165) 2011; 12 Powell (10.1016/j.rse.2021.112687_bb0155) 2006 Mao (10.1016/j.rse.2021.112687_bb0135) 2021; 261 Fu (10.1016/j.rse.2021.112687_bb0060) 2017; 7 Omar (10.1016/j.rse.2021.112687_bb0145) 2009; 26 |
| References_xml | – volume: 30 start-page: 1189 year: 2013 end-page: 1193 ident: bb0045 article-title: Wavelet correlation transform method and gradient method to determine aerosol layering from lidar returns: some comments publication-title: J. Atmos. Ocean. Technol. – volume: 115 year: 2010 ident: bb0070 article-title: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution publication-title: J. Geophys. Res.-Atmos. – volume: 119 start-page: 230 year: 2014 end-page: 244 ident: bb0080 article-title: An evaluation of CALIOP/CALIPSO’s aerosol-above-cloud detection and retrieval capability over North America publication-title: J. Geophys. Res. – volume: 14 start-page: 1593 year: 2021 end-page: 1613 ident: bb0180 article-title: Two-dimensional and multi-channel feature detection algorithm for the CALIPSO lidar measurements publication-title: Atmos. Meas. Tech. – year: 2019 ident: bb0115 article-title: Discriminating between Clouds and Aerosols in the CALIOP Version 4.1 Data Products – volume: 34 start-page: 117 year: 1994 end-page: 133 ident: bb0210 article-title: Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs publication-title: Atmos. Res. – volume: 261 start-page: 107498 year: 2021 ident: bb0135 article-title: Layer detection algorithm for CALIPSO observation based on automatic segmentation with a minimum cost function publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 122 start-page: 329 year: 2017 end-page: 343 ident: bb0200 article-title: Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites? publication-title: J. Geophys. Res.-Atmos. – volume: 9 start-page: 2640 year: 2018 ident: bb0120 article-title: Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations publication-title: Nat. Commun. – volume: 26 start-page: 2310 year: 2009 end-page: 2323 ident: bb0225 article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms publication-title: J. Atmos. Ocean. Technol. – volume: 27 start-page: 34126 year: 2019 end-page: 34140 ident: bb0250 article-title: Retrieving the microphysical properties of opaque liquid water clouds from CALIOP measurements publication-title: Opt. Express – volume: 42 start-page: 557 year: 2015 end-page: 564 ident: bb0255 article-title: Effects of Arctic haze on surface cloud radiative forcing publication-title: Geophys. Res. Lett. – volume: 115 year: 2010 ident: bb0075 article-title: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution publication-title: J. Geophys. Res.-Atmos. – volume: 24 start-page: 806 year: 1985 end-page: 821 ident: bb0140 article-title: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean publication-title: J. Clim. Appl. Meteorol. – start-page: 115 year: 2010 ident: bb0050 article-title: In situ and lidar observations of tropopause subvisible cirrus clouds during TC4 publication-title: J. Geophys. Res.-Atmos. – volume: 15 start-page: 12327 year: 2015 end-page: 12344 ident: bb0055 article-title: Ice water content vertical profiles of high-level clouds: classification and impact on radiative fluxes publication-title: Atmos. Chem. Phys. – volume: 27 start-page: A481 year: 2019 end-page: A494 ident: bb0110 article-title: Performance estimation of space-borne high-spectral-resolution lidar for cloud and aerosol optical properties at 532 nm publication-title: Opt. Express – volume: 21 start-page: 6199 year: 2021 end-page: 6220 ident: bb0035 article-title: Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China publication-title: Atmos. Chem. Phys. – volume: 15 start-page: 1035 year: 1998 end-page: 1042 ident: bb0040 article-title: An automated algorithm for detection of hydrometeor returns in micropulse lidar data publication-title: J. Atmos. Ocean. Technol. – volume: 7 start-page: 14221 year: 2017 ident: bb0060 article-title: Lateral boundary of cirrus cloud from CALIPSO observations publication-title: Sci. Rep. – volume: 4 start-page: 810 year: 2017 end-page: 833 ident: bb0090 article-title: Aerosol and boundary-layer interactions and impact on air quality publication-title: Natl. Sci. Rev. – volume: 178 start-page: 580 year: 2016 end-page: 589 ident: bb0065 article-title: Three-dimensional structure of aerosol in China: a perspective from multi-satellite observations – year: 2006 ident: bb0155 article-title: Simulation of Random Electron Multiplication in Calipso Lidar Photomultipliers – volume: 4 start-page: 137 year: 1990 end-page: 145 ident: bb0010 article-title: Blackwell sufficiency and bernoulli experiments publication-title: Braz. J. Probab. Stat. – volume: 124 start-page: 13026 year: 2019 end-page: 13054 ident: bb0095 article-title: East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC) publication-title: J. Geophys. Res.-Atmos. – start-page: 116 year: 2011 ident: bb0245 article-title: Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: spatial properties publication-title: J. Geophys. Res. – volume: 28 start-page: 6631 year: 2020 end-page: 6647 ident: bb0025 article-title: Method to retrieve aerosol extinction profiles and aerosol scattering phase functions with a modified CCD laser atmospheric detection system publication-title: Opt. Express – volume: 12 start-page: 3025 year: 2011 end-page: 3043 ident: bb0165 article-title: The comparison of MODIS-aqua (C5) and CALIOP (V2 & V3) aerosol optical depth publication-title: Atmos. Chem. Phys. – volume: 44 start-page: 9059 year: 2017 end-page: 9067 ident: bb0175 article-title: The impact of lidar detection sensitivity on assessing aerosol direct radiative effects publication-title: Geophys. Res. Lett. – volume: 50 start-page: 6591 year: 2011 end-page: 6598 ident: bb0125 article-title: Simple multiscale algorithm for layer detection with lidar publication-title: Appl. Opt. – volume: 38 year: 2011 ident: bb0195 article-title: CALIPSO detection of an Asian tropopause aerosol layer publication-title: Geophys. Res. Lett. – volume: 26 start-page: 5981 year: 2013 end-page: 5999 ident: bb0235 article-title: Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization publication-title: J. Clim. – volume: 218 start-page: 125 year: 2018 end-page: 130 ident: bb0130 article-title: Iterative method for determining boundaries and lidar ratio of permeable layer of a space lidar publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 34 year: 2007 ident: bb0220 article-title: Initial performance assessment of CALIOP publication-title: Geophys. Res. Lett. – volume: 261 start-page: 107513 year: 2021 ident: bb0205 article-title: Development of ZJU high-spectral-resolution lidar for aerosol and cloud: feature detection and classification publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 26 start-page: 1994 year: 2009 end-page: 2014 ident: bb0145 article-title: The CALIPSO automated aerosol classification and lidar ratio selection algorithm publication-title: J. Atmos. Ocean. Technol. – year: 2005 ident: bb0100 article-title: CALIOP algorithm theoretical basis document. Part 3: scene classification algorithms publication-title: NASA-CNES document PC-SCI-203 – volume: 119 start-page: 9492 year: 2014 end-page: 9508 ident: bb0015 article-title: Cloud properties and radiative effects of the Asian summer monsoon derived from A-train data publication-title: J. Geophys. Res.-Atmos. – volume: 26 start-page: 2034 year: 2009 end-page: 2050 ident: bb0190 article-title: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements publication-title: J. Atmos. Ocean. Technol. – volume: 121 start-page: 5788 year: 2016 end-page: 5808 ident: bb0030 article-title: Using in-situ airborne measurements to evaluate three cloud phase products derived from CALIPSO publication-title: J. Geophys. Res.-Atmos. – volume: 294 start-page: 2119 year: 2001 end-page: 2124 ident: bb0160 article-title: Aerosols, climate, and the hydrological cycle publication-title: Science – start-page: 25 year: 2017 ident: bb0240 article-title: Automated Detection of Cloud and Aerosol Features with SACOL Micro-Pulse Lidar in Northwest China – volume: 45 start-page: 4437 year: 2006 end-page: 4447 ident: bb0105 article-title: Estimating random errors due to shot noise in backscatter lidar observations publication-title: Appl. Opt. – volume: 91 start-page: 1211 year: 2010 end-page: 1230 ident: bb0230 article-title: The CALIPSO mission: A global 3D view of aerosols and clouds publication-title: Bull. Am. Meteorol. Soc. – volume: III start-page: 1 year: 2003 end-page: 11 ident: bb0215 article-title: CALIPSO mission: spaceborne lidar for observation of aerosols and clouds publication-title: Lidar Remote Sensing for Industry and Environment Monitoring – volume: 202 start-page: 87 year: 2005 ident: bb0185 article-title: CALIOP algorithm theoretical basis document, part 2: feature detection and layer properties algorithms publication-title: Rep. PC-SCI – volume: 9 start-page: 445 year: 2018 ident: bb0005 article-title: An investigation of optically very thin ice clouds from ground-based ARM Raman Lidars publication-title: Atmosphere – volume: 118 year: 2013 ident: bb0085 article-title: Comparison of aerosol optical depth between CALIOP and MODIS-aqua for CALIOP aerosol subtypes over the ocean publication-title: J. Geophys. Res. – volume: 31 start-page: 1488 year: 1992 end-page: 1494 ident: bb0150 article-title: Automated method for lidar determination of cloud-base height and vertical extent publication-title: Appl. Opt. – start-page: 119 year: 2014 ident: bb0020 article-title: Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013 publication-title: J. Geophys. Res.-Atmos. – volume: 119 start-page: 6788 year: 2014 end-page: 6802 ident: bb0260 article-title: A new cloud and aerosol layer detection method based on micropulse lidar measurements publication-title: J. Geophys. Res.-Atmos. – volume: III start-page: 1 year: 2003 ident: 10.1016/j.rse.2021.112687_bb0215 article-title: CALIPSO mission: spaceborne lidar for observation of aerosols and clouds – volume: 4 start-page: 137 year: 1990 ident: 10.1016/j.rse.2021.112687_bb0010 article-title: Blackwell sufficiency and bernoulli experiments publication-title: Braz. J. Probab. Stat. – volume: 261 start-page: 107513 year: 2021 ident: 10.1016/j.rse.2021.112687_bb0205 article-title: Development of ZJU high-spectral-resolution lidar for aerosol and cloud: feature detection and classification publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2021.107513 – volume: 7 start-page: 14221 year: 2017 ident: 10.1016/j.rse.2021.112687_bb0060 article-title: Lateral boundary of cirrus cloud from CALIPSO observations publication-title: Sci. Rep. doi: 10.1038/s41598-017-14665-6 – year: 2006 ident: 10.1016/j.rse.2021.112687_bb0155 – volume: 9 start-page: 2640 year: 2018 ident: 10.1016/j.rse.2021.112687_bb0120 article-title: Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations publication-title: Nat. Commun. doi: 10.1038/s41467-018-05028-4 – volume: 15 start-page: 1035 year: 1998 ident: 10.1016/j.rse.2021.112687_bb0040 article-title: An automated algorithm for detection of hydrometeor returns in micropulse lidar data publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/1520-0426(1998)015<1035:AAAFDO>2.0.CO;2 – volume: 34 year: 2007 ident: 10.1016/j.rse.2021.112687_bb0220 article-title: Initial performance assessment of CALIOP publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL030135 – volume: 294 start-page: 2119 year: 2001 ident: 10.1016/j.rse.2021.112687_bb0160 article-title: Aerosols, climate, and the hydrological cycle publication-title: Science doi: 10.1126/science.1064034 – volume: 115 year: 2010 ident: 10.1016/j.rse.2021.112687_bb0070 article-title: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2009JD012344 – volume: 50 start-page: 6591 year: 2011 ident: 10.1016/j.rse.2021.112687_bb0125 article-title: Simple multiscale algorithm for layer detection with lidar publication-title: Appl. Opt. doi: 10.1364/AO.50.006591 – volume: 31 start-page: 1488 year: 1992 ident: 10.1016/j.rse.2021.112687_bb0150 article-title: Automated method for lidar determination of cloud-base height and vertical extent publication-title: Appl. Opt. doi: 10.1364/AO.31.001488 – start-page: 25 year: 2017 ident: 10.1016/j.rse.2021.112687_bb0240 – volume: 202 start-page: 87 year: 2005 ident: 10.1016/j.rse.2021.112687_bb0185 article-title: CALIOP algorithm theoretical basis document, part 2: feature detection and layer properties algorithms publication-title: Rep. PC-SCI – volume: 121 start-page: 5788 year: 2016 ident: 10.1016/j.rse.2021.112687_bb0030 article-title: Using in-situ airborne measurements to evaluate three cloud phase products derived from CALIPSO publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2015JD024334 – volume: 124 start-page: 13026 year: 2019 ident: 10.1016/j.rse.2021.112687_bb0095 article-title: East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC) publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2019JD030758 – volume: 119 start-page: 9492 year: 2014 ident: 10.1016/j.rse.2021.112687_bb0015 article-title: Cloud properties and radiative effects of the Asian summer monsoon derived from A-train data publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2014JD021458 – volume: 21 start-page: 6199 year: 2021 ident: 10.1016/j.rse.2021.112687_bb0035 article-title: Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-6199-2021 – volume: 30 start-page: 1189 year: 2013 ident: 10.1016/j.rse.2021.112687_bb0045 article-title: Wavelet correlation transform method and gradient method to determine aerosol layering from lidar returns: some comments publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-12-00233.1 – volume: 27 start-page: 34126 year: 2019 ident: 10.1016/j.rse.2021.112687_bb0250 article-title: Retrieving the microphysical properties of opaque liquid water clouds from CALIOP measurements publication-title: Opt. Express doi: 10.1364/OE.27.034126 – volume: 14 start-page: 1593 year: 2021 ident: 10.1016/j.rse.2021.112687_bb0180 article-title: Two-dimensional and multi-channel feature detection algorithm for the CALIPSO lidar measurements publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-14-1593-2021 – start-page: 119 year: 2014 ident: 10.1016/j.rse.2021.112687_bb0020 article-title: Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013 publication-title: J. Geophys. Res.-Atmos. – volume: 45 start-page: 4437 year: 2006 ident: 10.1016/j.rse.2021.112687_bb0105 article-title: Estimating random errors due to shot noise in backscatter lidar observations publication-title: Appl. Opt. doi: 10.1364/AO.45.004437 – volume: 178 start-page: 580 year: 2016 ident: 10.1016/j.rse.2021.112687_bb0065 article-title: Three-dimensional structure of aerosol in China: a perspective from multi-satellite observations – volume: 42 start-page: 557 year: 2015 ident: 10.1016/j.rse.2021.112687_bb0255 article-title: Effects of Arctic haze on surface cloud radiative forcing publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL062015 – volume: 115 year: 2010 ident: 10.1016/j.rse.2021.112687_bb0075 article-title: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2009JD012344 – volume: 27 start-page: A481 year: 2019 ident: 10.1016/j.rse.2021.112687_bb0110 article-title: Performance estimation of space-borne high-spectral-resolution lidar for cloud and aerosol optical properties at 532 nm publication-title: Opt. Express doi: 10.1364/OE.27.00A481 – volume: 119 start-page: 6788 year: 2014 ident: 10.1016/j.rse.2021.112687_bb0260 article-title: A new cloud and aerosol layer detection method based on micropulse lidar measurements publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2014JD021760 – volume: 122 start-page: 329 year: 2017 ident: 10.1016/j.rse.2021.112687_bb0200 article-title: Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites? publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2016JD025954 – volume: 118 year: 2013 ident: 10.1016/j.rse.2021.112687_bb0085 article-title: Comparison of aerosol optical depth between CALIOP and MODIS-aqua for CALIOP aerosol subtypes over the ocean publication-title: J. Geophys. Res. doi: 10.1002/2013JD019527 – volume: 26 start-page: 1994 year: 2009 ident: 10.1016/j.rse.2021.112687_bb0145 article-title: The CALIPSO automated aerosol classification and lidar ratio selection algorithm publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2009JTECHA1231.1 – volume: 119 start-page: 230 year: 2014 ident: 10.1016/j.rse.2021.112687_bb0080 article-title: An evaluation of CALIOP/CALIPSO’s aerosol-above-cloud detection and retrieval capability over North America publication-title: J. Geophys. Res. doi: 10.1002/2013JD020178 – volume: 26 start-page: 2310 year: 2009 ident: 10.1016/j.rse.2021.112687_bb0225 article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2009JTECHA1281.1 – volume: 9 start-page: 445 year: 2018 ident: 10.1016/j.rse.2021.112687_bb0005 article-title: An investigation of optically very thin ice clouds from ground-based ARM Raman Lidars publication-title: Atmosphere doi: 10.3390/atmos9110445 – volume: 261 start-page: 107498 year: 2021 ident: 10.1016/j.rse.2021.112687_bb0135 article-title: Layer detection algorithm for CALIPSO observation based on automatic segmentation with a minimum cost function publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2020.107498 – volume: 26 start-page: 2034 year: 2009 ident: 10.1016/j.rse.2021.112687_bb0190 article-title: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2009JTECHA1228.1 – volume: 26 start-page: 5981 year: 2013 ident: 10.1016/j.rse.2021.112687_bb0235 article-title: Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization publication-title: J. Clim. doi: 10.1175/JCLI-D-12-00517.1 – start-page: 116 year: 2011 ident: 10.1016/j.rse.2021.112687_bb0245 article-title: Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: spatial properties publication-title: J. Geophys. Res.: Atmos. – start-page: 115 year: 2010 ident: 10.1016/j.rse.2021.112687_bb0050 article-title: In situ and lidar observations of tropopause subvisible cirrus clouds during TC4 publication-title: J. Geophys. Res.-Atmos. – volume: 91 start-page: 1211 year: 2010 ident: 10.1016/j.rse.2021.112687_bb0230 article-title: The CALIPSO mission: A global 3D view of aerosols and clouds publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2010BAMS3009.1 – volume: 44 start-page: 9059 year: 2017 ident: 10.1016/j.rse.2021.112687_bb0175 article-title: The impact of lidar detection sensitivity on assessing aerosol direct radiative effects publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074521 – year: 2019 ident: 10.1016/j.rse.2021.112687_bb0115 – volume: 218 start-page: 125 year: 2018 ident: 10.1016/j.rse.2021.112687_bb0130 article-title: Iterative method for determining boundaries and lidar ratio of permeable layer of a space lidar publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2018.07.007 – volume: 38 issue: 7 year: 2011 ident: 10.1016/j.rse.2021.112687_bb0195 article-title: CALIPSO detection of an Asian tropopause aerosol layer publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL046614 – volume: 28 start-page: 6631 year: 2020 ident: 10.1016/j.rse.2021.112687_bb0025 article-title: Method to retrieve aerosol extinction profiles and aerosol scattering phase functions with a modified CCD laser atmospheric detection system publication-title: Opt. Express doi: 10.1364/OE.386214 – volume: 4 start-page: 810 year: 2017 ident: 10.1016/j.rse.2021.112687_bb0090 article-title: Aerosol and boundary-layer interactions and impact on air quality publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx117 – year: 2005 ident: 10.1016/j.rse.2021.112687_bb0100 article-title: CALIOP algorithm theoretical basis document. Part 3: scene classification algorithms – volume: 12 start-page: 3025 year: 2011 ident: 10.1016/j.rse.2021.112687_bb0165 article-title: The comparison of MODIS-aqua (C5) and CALIOP (V2 & V3) aerosol optical depth publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-3025-2012 – volume: 24 start-page: 806 year: 1985 ident: 10.1016/j.rse.2021.112687_bb0140 article-title: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean publication-title: J. Clim. Appl. Meteorol. doi: 10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2 – volume: 15 start-page: 12327 year: 2015 ident: 10.1016/j.rse.2021.112687_bb0055 article-title: Ice water content vertical profiles of high-level clouds: classification and impact on radiative fluxes publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-12327-2015 – volume: 34 start-page: 117 year: 1994 ident: 10.1016/j.rse.2021.112687_bb0210 article-title: Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs publication-title: Atmos. Res. doi: 10.1016/0169-8095(94)90084-1 |
| SSID | ssj0015871 |
| Score | 2.4414854 |
| Snippet | The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112687 |
| SubjectTerms | Aerosol and cloud Aerosols air Algorithms Arrays CALIOP CALIPSO (Pathfinder satellite) Clouds Data retrieval Depolarization environment ice Ice clouds Layer detection Lidar Lidar measurements Marine environment Meteorological satellites Multiscale Night Optical analysis Optical thickness probability Satellite observation satellites Signal to noise ratio |
| Title | A simple multiscale layer detection algorithm for CALIPSO measurements |
| URI | https://dx.doi.org/10.1016/j.rse.2021.112687 https://www.proquest.com/docview/2600348572 https://www.proquest.com/docview/2636439092 |
| Volume | 266 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hEGovVVmKui0gI_WElJKNndg5rlYs21alh4LEzbJjpyxasmgTDlz62zuTOItAiEOPicdKNC-P7W9mAL7wQnmHkXBkS1lGgvJyjJMuwtVF2NIWqvB0oP_zPJtdiu9X6dUGTPpcGIJVBt_f-fTWW4c3J4GbJ3fzOeX4ckEal1DRs1hSRrkQkroYfP27hnmMUiW7rnlcRETd32y2GK9VTZUyk1GbSEOoupfXpmdeul16pu_hXYgZ2bj7rR3Y8NUA9k4fU9RwMNhoPYA3oa_59cMAts_axr0PuzAds3pOlYBZCyGsUTSeLQwG3Mz5psVjVcws_ixX8-b6lmEoyyZj3PX__sVuH48R6w9wOT29mMyi0EMhKniqmmgkrJI-k8bZvMxl7Lk1SqS5ct6jJNAEnU-sKm2ZWZ5l1qaJlcLH3FthROr4HmxWy8p_BJYVeUpprAluPEUmvOLGpThTlQYdZpENIe65p4tQYJz6XCx0jyS70chwTQzXHcOHcLyectdV13iNWPQi0U9URKP3f23afi8-Heyz1lSWnwuFyjOEo_UwWhZdl5jKL--JhlO4FufJp__78md4S08d-GUfNpvVvT_AEKaxh62OHsLW-NuP2fk_OZzvYg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUAUXBNsilkdxpZ4qpWRjO3aOqxXbpQV6KEjcLDt2YNGSRZtw4MJvx5M4i1pVHHqNPXI0L4_tb2YAvtBcOusj4cgUoogY5uVoK2zkdxdmCpPL3OGF_vlFOrliP6759QqMulwYhFUG39_69MZbhy_HgZvHD9Mp5vhShhqXYNGzWIh3sMZ4IvAE9u15ifMYcCnatnmURTi9e9psQF6LCktlJoMmkwZhdf_enP5y083eM96CzRA0kmH7X9uw4soe7Jy85qj5wWCkVQ_WQ2Pz26cevP_edO59-gDjIammWAqYNBjCysvGkZn2ETexrm4AWSXRs5v5Ylrf3hMfy5LR0B_7f_8i96_3iNVHuBqfXI4mUWiiEOWUyzoaMCOFS4W2JisyETtqtGQ8k9Y5Lwpvg9YlRhamSA1NU2N4YgRzMXWGacYt3YHVcl66XSBpnnHMY038yZOlzEmqLfeUstDeY-ZpH-KOeyoPFcax0cVMdVCyO-UZrpDhqmV4H74uSR7a8hpvTWadSNQfOqK8-3-L7KATnwoGWimsy0-Z9NrTh8_LYW9a-F6iSzd_xDkU47U4S_b-b-UjWJ9cnp-ps9OLn_uwgSMtEuYAVuvFozv08UxtPjX6-gLMVPD3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+multiscale+layer+detection+algorithm+for+CALIPSO+measurements&rft.jtitle=Remote+sensing+of+environment&rft.au=Mao%2C+Feiyue&rft.au=Liang%2C+Zhenxing&rft.au=Pan%2C+Zengxin&rft.au=Gong%2C+Wei&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=266&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rse.2021.112687&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |