A simple multiscale layer detection algorithm for CALIPSO measurements

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and cloud layers globally. Detecting the layer boundaries of aerosols and clouds is a crucial step in CALIPSO data retrieval. The CALIPSO team uses t...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 266; p. 112687
Main Authors Mao, Feiyue, Liang, Zhenxing, Pan, Zengxin, Gong, Wei, Sun, Jia, Zhang, Tianhao, Huang, Xin, Zang, Lin, Lu, Xin, Hong, Jia
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2021.112687

Cover

Abstract The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and cloud layers globally. Detecting the layer boundaries of aerosols and clouds is a crucial step in CALIPSO data retrieval. The CALIPSO team uses the selective iterated boundary location (SIBYL) algorithm based on threshold arrays to find aerosol and cloud layers at different horizontal resolutions. However, threshold arrays could obstruct the detection of optically tenuous layers at a high resolution and may cause overestimation when averaging signals of layer and clear air at a low resolution. Here, a multiscale algorithm using a series of sliding window sizes without threshold setting is proposed based on a pre-defined probability. The results over land and marine areas show that the multiscale algorithm detected 37.41% and 16.36% more layer area than the SIBYL at 1–80 km resolutions at daytime and 1–5 km resolutions at night time, respectively. This indicates that the multiscale algorithm does not need a threshold array, allowing more tenuous layers to be detected, especially at low signal to noise ratios (SNRs). In contrast, the SIBYL detects 4.40% more layer area than the multiscale algorithm at 1–80 km resolutions at nighttime, mainly caused by the large proportion of layer area detected by SIBYL at 20 and 80 km resolutions. This implies possible noteworthy overestimation by the SIBYL at low resolutions. Additionally, the evaluation using the depolarization ratio of ice clouds shows that the extra detected layers by the multiscale algorithm are reliable. Besides, simulation tests show that the multiscale and SIBYL algorithms achieve a 100% true detection rate when SNR is approximately 2 and 4, respectively. The new multiscale algorithm could upgrade the resolution and accuracy of the layer detection of space lidars and reduce the underestimation of layer optical depth due to missing layers. •A layer detection algorithm for space lidar is proposed based on probability theory.•The new algorithm detects more layer areas than previous studies at high resolution.•The new algorithm reduces overestimation of the layer coverage at low resolution.
AbstractList The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and cloud layers globally. Detecting the layer boundaries of aerosols and clouds is a crucial step in CALIPSO data retrieval. The CALIPSO team uses the selective iterated boundary location (SIBYL) algorithm based on threshold arrays to find aerosol and cloud layers at different horizontal resolutions. However, threshold arrays could obstruct the detection of optically tenuous layers at a high resolution and may cause overestimation when averaging signals of layer and clear air at a low resolution. Here, a multiscale algorithm using a series of sliding window sizes without threshold setting is proposed based on a pre-defined probability. The results over land and marine areas show that the multiscale algorithm detected 37.41% and 16.36% more layer area than the SIBYL at 1–80 km resolutions at daytime and 1–5 km resolutions at night time, respectively. This indicates that the multiscale algorithm does not need a threshold array, allowing more tenuous layers to be detected, especially at low signal to noise ratios (SNRs). In contrast, the SIBYL detects 4.40% more layer area than the multiscale algorithm at 1–80 km resolutions at nighttime, mainly caused by the large proportion of layer area detected by SIBYL at 20 and 80 km resolutions. This implies possible noteworthy overestimation by the SIBYL at low resolutions. Additionally, the evaluation using the depolarization ratio of ice clouds shows that the extra detected layers by the multiscale algorithm are reliable. Besides, simulation tests show that the multiscale and SIBYL algorithms achieve a 100% true detection rate when SNR is approximately 2 and 4, respectively. The new multiscale algorithm could upgrade the resolution and accuracy of the layer detection of space lidars and reduce the underestimation of layer optical depth due to missing layers.
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and cloud layers globally. Detecting the layer boundaries of aerosols and clouds is a crucial step in CALIPSO data retrieval. The CALIPSO team uses the selective iterated boundary location (SIBYL) algorithm based on threshold arrays to find aerosol and cloud layers at different horizontal resolutions. However, threshold arrays could obstruct the detection of optically tenuous layers at a high resolution and may cause overestimation when averaging signals of layer and clear air at a low resolution. Here, a multiscale algorithm using a series of sliding window sizes without threshold setting is proposed based on a pre-defined probability. The results over land and marine areas show that the multiscale algorithm detected 37.41% and 16.36% more layer area than the SIBYL at 1–80 km resolutions at daytime and 1–5 km resolutions at night time, respectively. This indicates that the multiscale algorithm does not need a threshold array, allowing more tenuous layers to be detected, especially at low signal to noise ratios (SNRs). In contrast, the SIBYL detects 4.40% more layer area than the multiscale algorithm at 1–80 km resolutions at nighttime, mainly caused by the large proportion of layer area detected by SIBYL at 20 and 80 km resolutions. This implies possible noteworthy overestimation by the SIBYL at low resolutions. Additionally, the evaluation using the depolarization ratio of ice clouds shows that the extra detected layers by the multiscale algorithm are reliable. Besides, simulation tests show that the multiscale and SIBYL algorithms achieve a 100% true detection rate when SNR is approximately 2 and 4, respectively. The new multiscale algorithm could upgrade the resolution and accuracy of the layer detection of space lidars and reduce the underestimation of layer optical depth due to missing layers. •A layer detection algorithm for space lidar is proposed based on probability theory.•The new algorithm detects more layer areas than previous studies at high resolution.•The new algorithm reduces overestimation of the layer coverage at low resolution.
ArticleNumber 112687
Author Zang, Lin
Hong, Jia
Huang, Xin
Pan, Zengxin
Mao, Feiyue
Sun, Jia
Liang, Zhenxing
Zhang, Tianhao
Lu, Xin
Gong, Wei
Author_xml – sequence: 1
  givenname: Feiyue
  surname: Mao
  fullname: Mao, Feiyue
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
– sequence: 2
  givenname: Zhenxing
  surname: Liang
  fullname: Liang, Zhenxing
  email: liangzhenxing@whu.edu.cn
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
– sequence: 3
  givenname: Zengxin
  surname: Pan
  fullname: Pan, Zengxin
  organization: Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
– sequence: 4
  givenname: Wei
  surname: Gong
  fullname: Gong, Wei
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
– sequence: 5
  givenname: Jia
  surname: Sun
  fullname: Sun, Jia
  organization: School of Geography and Information Engineering, Chinese University of Geosciences, Wuhan 430079, China
– sequence: 6
  givenname: Tianhao
  surname: Zhang
  fullname: Zhang, Tianhao
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
– sequence: 7
  givenname: Xin
  surname: Huang
  fullname: Huang, Xin
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
– sequence: 8
  givenname: Lin
  surname: Zang
  fullname: Zang, Lin
  organization: Chinese Antarctic Centre of Surveying and Mapping, Wuhan University, Wuhan 430079, China
– sequence: 9
  givenname: Xin
  surname: Lu
  fullname: Lu, Xin
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
– sequence: 10
  givenname: Jia
  surname: Hong
  fullname: Hong, Jia
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
BookMark eNp9kEFLwzAUgINMcJv-AG8FL146kyZtUjyN4XQwmKCeQ9K-akbbzCQV9u9NmScPO713-L7H45uhSW97QOiW4AXBpHjYL5yHRYYzsiAkKwS_QFMieJlijtkETTGmLGVZzq_QzPs9xiQXnEzRepl40x1aSLqhDcZXKq6tOoJLaghQBWP7RLWf1pnw1SWNdclqud28vu2SDpQfHHTQB3-NLhvVerj5m3P0sX56X72k293zJgppRXMRUsK04FBwVeuyKTkGqpVgeSlqAF0JnNMaMi0a3RSaFoXWeaY5A0xBM8Xyms7R_enuwdnvAXyQXfwZ2lb1YAcvs4IWjJa4zCJ69w_d28H18btIjTlEzkeKnKjKWe8dNPLgTKfcURIsx7JyL2NZOZaVp7LR4f-cygQ1lgpOmfas-XgyITb6MeCkrwz0FdTGxdaytuaM_Qu0GJSc
CitedBy_id crossref_primary_10_1016_j_rse_2023_113915
crossref_primary_10_3788_AOS222188
crossref_primary_10_1016_j_optlastec_2021_107784
crossref_primary_10_3788_AOS240893
crossref_primary_10_1186_s43074_022_00063_3
crossref_primary_10_1364_OE_473727
crossref_primary_10_1364_OE_536588
crossref_primary_10_5194_acp_22_10589_2022
crossref_primary_10_1016_j_rse_2023_113583
Cites_doi 10.1016/j.jqsrt.2021.107513
10.1038/s41598-017-14665-6
10.1038/s41467-018-05028-4
10.1175/1520-0426(1998)015<1035:AAAFDO>2.0.CO;2
10.1029/2007GL030135
10.1126/science.1064034
10.1029/2009JD012344
10.1364/AO.50.006591
10.1364/AO.31.001488
10.1002/2015JD024334
10.1029/2019JD030758
10.1002/2014JD021458
10.5194/acp-21-6199-2021
10.1175/JTECH-D-12-00233.1
10.1364/OE.27.034126
10.5194/amt-14-1593-2021
10.1364/AO.45.004437
10.1002/2014GL062015
10.1364/OE.27.00A481
10.1002/2014JD021760
10.1002/2016JD025954
10.1002/2013JD019527
10.1175/2009JTECHA1231.1
10.1002/2013JD020178
10.1175/2009JTECHA1281.1
10.3390/atmos9110445
10.1016/j.jqsrt.2020.107498
10.1175/2009JTECHA1228.1
10.1175/JCLI-D-12-00517.1
10.1175/2010BAMS3009.1
10.1002/2017GL074521
10.1016/j.jqsrt.2018.07.007
10.1029/2010GL046614
10.1364/OE.386214
10.1093/nsr/nwx117
10.5194/acp-12-3025-2012
10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2
10.5194/acp-15-12327-2015
10.1016/0169-8095(94)90084-1
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright Elsevier BV Dec 1, 2021
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright Elsevier BV Dec 1, 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2021.112687
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2021_112687
S0034425721004077
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c358t-14b87e67adb9f970e3ba84598deebc8053de2b8fbf6b366bb52b74e03eb4a45d3
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Sun Sep 28 06:39:14 EDT 2025
Wed Aug 13 05:55:47 EDT 2025
Wed Oct 01 05:16:35 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Sun Apr 06 06:54:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords CALIOP
Layer detection
Aerosol and cloud
Multiscale
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c358t-14b87e67adb9f970e3ba84598deebc8053de2b8fbf6b366bb52b74e03eb4a45d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2600348572
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2636439092
proquest_journals_2600348572
crossref_primary_10_1016_j_rse_2021_112687
crossref_citationtrail_10_1016_j_rse_2021_112687
elsevier_sciencedirect_doi_10_1016_j_rse_2021_112687
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2021
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Fu, Chen, Li, Qin, Xian, Yu, Zhang, Liu, Zhang (bb0060) 2017; 7
Liu, Hunt, Vaughan, Hostetler, Mcgill, Powell, Winker, Hu (bb0105) 2006; 45
Liu, Kar, Zeng, Tackett, Vaughan, Avery, Pelon, Getzewich, Lee, Magill (bb0115) 2019
Ramanathan, Crutzen, Kiehl, Rosenfeld (bb0160) 2001; 294
Xie, Zhou, Fu, Huang, Huang, Bi, Shi, Zhang, Ge (bb0240) 2017
Clothiaux, Mace, Ackerman, Kane, Spinhirne, Scott (bb0040) 1998; 15
Bian, Xu, Hu, Tao, Kuang, Zhao (bb0025) 2020; 28
Ma, Rasch, Chepfer, Winker, Ghan (bb0120) 2018; 9
Vernier, Thomason, Kar (bb0195) 2011; 38
Wang, Zhao (bb0200) 2017; 122
Hagihara, Okamoto, Yoshida (bb0075) 2010; 115
Liu, Omar, Hu, Vaughan, Winker, Poole, Kovacs (bb0100) 2005
Pal, Steinbrecht, Carswell (bb0150) 1992; 31
Kacenelenbogen, Redemann, Vaughan, Omar, Russell, Burton, Rogers, Ferrare, Hostetler (bb0080) 2014; 119
Winker, Vaughan, Omar, Hu, Powell, Liu, Hunt, Young (bb0225) 2009; 26
Vaughan, Powell, Winker, Hostetler, Kuehn, Hunt, Getzewich, Young, Liu, McGill (bb0190) 2009; 26
Thorsen, Ferrare, Hostetler, Vaughan, Fu (bb0175) 2017; 44
Balmes, Fu (bb0005) 2018; 9
Mao, Gong, Zhu (bb0125) 2011; 50
Winker, Vaughan (bb0210) 1994; 34
Zhang, Zhao, Zhang, Ke, Che, Shen, Zheng, Liu (bb0250) 2019; 27
Berry, Mace (bb0015) 2014; 119
Melfi, Spinhirne, Chou, Palm (bb0140) 1985; 24
Basu, Pereira (bb0010) 1990; 4
Winker, Pelon, McCormick (bb0215) 2003; III
Omar, Winker, Vaughan, Hu, Trepte, Ferrare, Lee, Hostetler, Kittaka, Rogers (bb0145) 2009; 26
Powell, Liu, Hunt (bb0155) 2006
Cesana, Chepfer, Winker, Getzewich, Cai, Jourdan, Mioche, Okamoto, Hagihara, Noel (bb0030) 2016; 121
Mao, Pan, Wang, Li, Wei (bb0130) 2018; 218
Winker, Hunt, McGill (bb0220) 2007; 34
Feofilov, Stubenrauch, Delanoë (bb0055) 2015; 15
Yorks, Hlavka, Vaughan, McGill, Hart, Rodier, Kuehn (bb0245) 2011
Guo, Liu, Wang, Huang, Xia, Lou, Wu, Jiang, Xie, Zhaxi (bb0065) 2016; 178
Li, Guo, Ding, Liao, Liu, Sun, Wang, Xue, Zhang, Zhu (bb0090) 2017; 4
Zhao, Garrett (bb0255) 2015; 42
Bi, Huang, Hu, Holben, Guo (bb0020) 2014
Vaillant de Guélis, Vaughan, Winker, Liu (bb0180) 2021; 14
Liu, Zheng, Chen, Wang, Li, Ke, Zhang, Chen, Cheng, Wang (bb0110) 2019; 27
Chen, Li, Kahn, Zhao, Rosenfeld, Guo, Han, Chen (bb0035) 2021; 21
Comerón, Sicard, Rocadenbosch (bb0045) 2013; 30
Li, Wang, Guo, Zhao, Cribb, Dong, Fan, Gong, Huang, Jiang, Jiang, Lee, Li, Li, Liu, Qian, Rosenfeld, Shan, Sun, Wang, Xin, Yan, Yang, Yang, Zhang, Zheng (bb0095) 2019; 124
Hagihara, Okamoto, Yoshida (bb0070) 2010; 115
Winker, Pelon, Coakley, Ackerman, Charlson, Colarco, Flamant, Fu, Hoff, Kittaka, Kubar, Le Treut, Mccormick, Mégie, Poole, Powell, Trepte, Vaughan, Wielicki (bb0230) 2010; 91
Davis, Hlavka, Jensen, Rosenlof, Yang, Schmidt, Borrmann, Frey, Lawson, Voemel, Bui (bb0050) 2010
Redemann, Vaughan, Zhang, Shinozuka, Russell, Livingston, Kacenelenbogen, Remer (bb0165) 2011; 12
Vaughan, Winker, Powell (bb0185) 2005; 202
Wang, Shen, Xiao, Veselovskii, Zhao, Chen, Liu, Rong, Ke, Wang, Liu (bb0205) 2021; 261
Zhao, Wang, Wang, Li, Wang, Liu (bb0260) 2014; 119
Kim, Kim, Yoon, Omar (bb0085) 2013; 118
Mao, Zhao, Gong, Chen, Liang (bb0135) 2021; 261
Xie, Liu, Zhao, Zhang (bb0235) 2013; 26
Chen (10.1016/j.rse.2021.112687_bb0035) 2021; 21
Zhao (10.1016/j.rse.2021.112687_bb0260) 2014; 119
Bian (10.1016/j.rse.2021.112687_bb0025) 2020; 28
Clothiaux (10.1016/j.rse.2021.112687_bb0040) 1998; 15
Li (10.1016/j.rse.2021.112687_bb0095) 2019; 124
Vaillant de Guélis (10.1016/j.rse.2021.112687_bb0180) 2021; 14
Winker (10.1016/j.rse.2021.112687_bb0210) 1994; 34
Comerón (10.1016/j.rse.2021.112687_bb0045) 2013; 30
Ma (10.1016/j.rse.2021.112687_bb0120) 2018; 9
Balmes (10.1016/j.rse.2021.112687_bb0005) 2018; 9
Ramanathan (10.1016/j.rse.2021.112687_bb0160) 2001; 294
Kim (10.1016/j.rse.2021.112687_bb0085) 2013; 118
Winker (10.1016/j.rse.2021.112687_bb0220) 2007; 34
Zhang (10.1016/j.rse.2021.112687_bb0250) 2019; 27
Zhao (10.1016/j.rse.2021.112687_bb0255) 2015; 42
Davis (10.1016/j.rse.2021.112687_bb0050) 2010
Liu (10.1016/j.rse.2021.112687_bb0100) 2005
Yorks (10.1016/j.rse.2021.112687_bb0245) 2011
Vaughan (10.1016/j.rse.2021.112687_bb0185) 2005; 202
Cesana (10.1016/j.rse.2021.112687_bb0030) 2016; 121
Li (10.1016/j.rse.2021.112687_bb0090) 2017; 4
Berry (10.1016/j.rse.2021.112687_bb0015) 2014; 119
Vernier (10.1016/j.rse.2021.112687_bb0195) 2011; 38
Xie (10.1016/j.rse.2021.112687_bb0235) 2013; 26
Hagihara (10.1016/j.rse.2021.112687_bb0075) 2010; 115
Mao (10.1016/j.rse.2021.112687_bb0130) 2018; 218
Liu (10.1016/j.rse.2021.112687_bb0115) 2019
Pal (10.1016/j.rse.2021.112687_bb0150) 1992; 31
Kacenelenbogen (10.1016/j.rse.2021.112687_bb0080) 2014; 119
Vaughan (10.1016/j.rse.2021.112687_bb0190) 2009; 26
Wang (10.1016/j.rse.2021.112687_bb0205) 2021; 261
Feofilov (10.1016/j.rse.2021.112687_bb0055) 2015; 15
Wang (10.1016/j.rse.2021.112687_bb0200) 2017; 122
Mao (10.1016/j.rse.2021.112687_bb0125) 2011; 50
Winker (10.1016/j.rse.2021.112687_bb0215) 2003; III
Liu (10.1016/j.rse.2021.112687_bb0105) 2006; 45
Winker (10.1016/j.rse.2021.112687_bb0230) 2010; 91
Xie (10.1016/j.rse.2021.112687_bb0240) 2017
Winker (10.1016/j.rse.2021.112687_bb0225) 2009; 26
Guo (10.1016/j.rse.2021.112687_bb0065) 2016; 178
Basu (10.1016/j.rse.2021.112687_bb0010) 1990; 4
Thorsen (10.1016/j.rse.2021.112687_bb0175) 2017; 44
Bi (10.1016/j.rse.2021.112687_bb0020) 2014
Melfi (10.1016/j.rse.2021.112687_bb0140) 1985; 24
Hagihara (10.1016/j.rse.2021.112687_bb0070) 2010; 115
Liu (10.1016/j.rse.2021.112687_bb0110) 2019; 27
Redemann (10.1016/j.rse.2021.112687_bb0165) 2011; 12
Powell (10.1016/j.rse.2021.112687_bb0155) 2006
Mao (10.1016/j.rse.2021.112687_bb0135) 2021; 261
Fu (10.1016/j.rse.2021.112687_bb0060) 2017; 7
Omar (10.1016/j.rse.2021.112687_bb0145) 2009; 26
References_xml – volume: 30
  start-page: 1189
  year: 2013
  end-page: 1193
  ident: bb0045
  article-title: Wavelet correlation transform method and gradient method to determine aerosol layering from lidar returns: some comments
  publication-title: J. Atmos. Ocean. Technol.
– volume: 115
  year: 2010
  ident: bb0070
  article-title: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution
  publication-title: J. Geophys. Res.-Atmos.
– volume: 119
  start-page: 230
  year: 2014
  end-page: 244
  ident: bb0080
  article-title: An evaluation of CALIOP/CALIPSO’s aerosol-above-cloud detection and retrieval capability over North America
  publication-title: J. Geophys. Res.
– volume: 14
  start-page: 1593
  year: 2021
  end-page: 1613
  ident: bb0180
  article-title: Two-dimensional and multi-channel feature detection algorithm for the CALIPSO lidar measurements
  publication-title: Atmos. Meas. Tech.
– year: 2019
  ident: bb0115
  article-title: Discriminating between Clouds and Aerosols in the CALIOP Version 4.1 Data Products
– volume: 34
  start-page: 117
  year: 1994
  end-page: 133
  ident: bb0210
  article-title: Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs
  publication-title: Atmos. Res.
– volume: 261
  start-page: 107498
  year: 2021
  ident: bb0135
  article-title: Layer detection algorithm for CALIPSO observation based on automatic segmentation with a minimum cost function
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 122
  start-page: 329
  year: 2017
  end-page: 343
  ident: bb0200
  article-title: Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites?
  publication-title: J. Geophys. Res.-Atmos.
– volume: 9
  start-page: 2640
  year: 2018
  ident: bb0120
  article-title: Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations
  publication-title: Nat. Commun.
– volume: 26
  start-page: 2310
  year: 2009
  end-page: 2323
  ident: bb0225
  article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms
  publication-title: J. Atmos. Ocean. Technol.
– volume: 27
  start-page: 34126
  year: 2019
  end-page: 34140
  ident: bb0250
  article-title: Retrieving the microphysical properties of opaque liquid water clouds from CALIOP measurements
  publication-title: Opt. Express
– volume: 42
  start-page: 557
  year: 2015
  end-page: 564
  ident: bb0255
  article-title: Effects of Arctic haze on surface cloud radiative forcing
  publication-title: Geophys. Res. Lett.
– volume: 115
  year: 2010
  ident: bb0075
  article-title: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution
  publication-title: J. Geophys. Res.-Atmos.
– volume: 24
  start-page: 806
  year: 1985
  end-page: 821
  ident: bb0140
  article-title: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean
  publication-title: J. Clim. Appl. Meteorol.
– start-page: 115
  year: 2010
  ident: bb0050
  article-title: In situ and lidar observations of tropopause subvisible cirrus clouds during TC4
  publication-title: J. Geophys. Res.-Atmos.
– volume: 15
  start-page: 12327
  year: 2015
  end-page: 12344
  ident: bb0055
  article-title: Ice water content vertical profiles of high-level clouds: classification and impact on radiative fluxes
  publication-title: Atmos. Chem. Phys.
– volume: 27
  start-page: A481
  year: 2019
  end-page: A494
  ident: bb0110
  article-title: Performance estimation of space-borne high-spectral-resolution lidar for cloud and aerosol optical properties at 532 nm
  publication-title: Opt. Express
– volume: 21
  start-page: 6199
  year: 2021
  end-page: 6220
  ident: bb0035
  article-title: Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
  publication-title: Atmos. Chem. Phys.
– volume: 15
  start-page: 1035
  year: 1998
  end-page: 1042
  ident: bb0040
  article-title: An automated algorithm for detection of hydrometeor returns in micropulse lidar data
  publication-title: J. Atmos. Ocean. Technol.
– volume: 7
  start-page: 14221
  year: 2017
  ident: bb0060
  article-title: Lateral boundary of cirrus cloud from CALIPSO observations
  publication-title: Sci. Rep.
– volume: 4
  start-page: 810
  year: 2017
  end-page: 833
  ident: bb0090
  article-title: Aerosol and boundary-layer interactions and impact on air quality
  publication-title: Natl. Sci. Rev.
– volume: 178
  start-page: 580
  year: 2016
  end-page: 589
  ident: bb0065
  article-title: Three-dimensional structure of aerosol in China: a perspective from multi-satellite observations
– year: 2006
  ident: bb0155
  article-title: Simulation of Random Electron Multiplication in Calipso Lidar Photomultipliers
– volume: 4
  start-page: 137
  year: 1990
  end-page: 145
  ident: bb0010
  article-title: Blackwell sufficiency and bernoulli experiments
  publication-title: Braz. J. Probab. Stat.
– volume: 124
  start-page: 13026
  year: 2019
  end-page: 13054
  ident: bb0095
  article-title: East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC)
  publication-title: J. Geophys. Res.-Atmos.
– start-page: 116
  year: 2011
  ident: bb0245
  article-title: Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: spatial properties
  publication-title: J. Geophys. Res.
– volume: 28
  start-page: 6631
  year: 2020
  end-page: 6647
  ident: bb0025
  article-title: Method to retrieve aerosol extinction profiles and aerosol scattering phase functions with a modified CCD laser atmospheric detection system
  publication-title: Opt. Express
– volume: 12
  start-page: 3025
  year: 2011
  end-page: 3043
  ident: bb0165
  article-title: The comparison of MODIS-aqua (C5) and CALIOP (V2 & V3) aerosol optical depth
  publication-title: Atmos. Chem. Phys.
– volume: 44
  start-page: 9059
  year: 2017
  end-page: 9067
  ident: bb0175
  article-title: The impact of lidar detection sensitivity on assessing aerosol direct radiative effects
  publication-title: Geophys. Res. Lett.
– volume: 50
  start-page: 6591
  year: 2011
  end-page: 6598
  ident: bb0125
  article-title: Simple multiscale algorithm for layer detection with lidar
  publication-title: Appl. Opt.
– volume: 38
  year: 2011
  ident: bb0195
  article-title: CALIPSO detection of an Asian tropopause aerosol layer
  publication-title: Geophys. Res. Lett.
– volume: 26
  start-page: 5981
  year: 2013
  end-page: 5999
  ident: bb0235
  article-title: Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization
  publication-title: J. Clim.
– volume: 218
  start-page: 125
  year: 2018
  end-page: 130
  ident: bb0130
  article-title: Iterative method for determining boundaries and lidar ratio of permeable layer of a space lidar
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 34
  year: 2007
  ident: bb0220
  article-title: Initial performance assessment of CALIOP
  publication-title: Geophys. Res. Lett.
– volume: 261
  start-page: 107513
  year: 2021
  ident: bb0205
  article-title: Development of ZJU high-spectral-resolution lidar for aerosol and cloud: feature detection and classification
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 26
  start-page: 1994
  year: 2009
  end-page: 2014
  ident: bb0145
  article-title: The CALIPSO automated aerosol classification and lidar ratio selection algorithm
  publication-title: J. Atmos. Ocean. Technol.
– year: 2005
  ident: bb0100
  article-title: CALIOP algorithm theoretical basis document. Part 3: scene classification algorithms
  publication-title: NASA-CNES document PC-SCI-203
– volume: 119
  start-page: 9492
  year: 2014
  end-page: 9508
  ident: bb0015
  article-title: Cloud properties and radiative effects of the Asian summer monsoon derived from A-train data
  publication-title: J. Geophys. Res.-Atmos.
– volume: 26
  start-page: 2034
  year: 2009
  end-page: 2050
  ident: bb0190
  article-title: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements
  publication-title: J. Atmos. Ocean. Technol.
– volume: 121
  start-page: 5788
  year: 2016
  end-page: 5808
  ident: bb0030
  article-title: Using in-situ airborne measurements to evaluate three cloud phase products derived from CALIPSO
  publication-title: J. Geophys. Res.-Atmos.
– volume: 294
  start-page: 2119
  year: 2001
  end-page: 2124
  ident: bb0160
  article-title: Aerosols, climate, and the hydrological cycle
  publication-title: Science
– start-page: 25
  year: 2017
  ident: bb0240
  article-title: Automated Detection of Cloud and Aerosol Features with SACOL Micro-Pulse Lidar in Northwest China
– volume: 45
  start-page: 4437
  year: 2006
  end-page: 4447
  ident: bb0105
  article-title: Estimating random errors due to shot noise in backscatter lidar observations
  publication-title: Appl. Opt.
– volume: 91
  start-page: 1211
  year: 2010
  end-page: 1230
  ident: bb0230
  article-title: The CALIPSO mission: A global 3D view of aerosols and clouds
  publication-title: Bull. Am. Meteorol. Soc.
– volume: III
  start-page: 1
  year: 2003
  end-page: 11
  ident: bb0215
  article-title: CALIPSO mission: spaceborne lidar for observation of aerosols and clouds
  publication-title: Lidar Remote Sensing for Industry and Environment Monitoring
– volume: 202
  start-page: 87
  year: 2005
  ident: bb0185
  article-title: CALIOP algorithm theoretical basis document, part 2: feature detection and layer properties algorithms
  publication-title: Rep. PC-SCI
– volume: 9
  start-page: 445
  year: 2018
  ident: bb0005
  article-title: An investigation of optically very thin ice clouds from ground-based ARM Raman Lidars
  publication-title: Atmosphere
– volume: 118
  year: 2013
  ident: bb0085
  article-title: Comparison of aerosol optical depth between CALIOP and MODIS-aqua for CALIOP aerosol subtypes over the ocean
  publication-title: J. Geophys. Res.
– volume: 31
  start-page: 1488
  year: 1992
  end-page: 1494
  ident: bb0150
  article-title: Automated method for lidar determination of cloud-base height and vertical extent
  publication-title: Appl. Opt.
– start-page: 119
  year: 2014
  ident: bb0020
  article-title: Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013
  publication-title: J. Geophys. Res.-Atmos.
– volume: 119
  start-page: 6788
  year: 2014
  end-page: 6802
  ident: bb0260
  article-title: A new cloud and aerosol layer detection method based on micropulse lidar measurements
  publication-title: J. Geophys. Res.-Atmos.
– volume: III
  start-page: 1
  year: 2003
  ident: 10.1016/j.rse.2021.112687_bb0215
  article-title: CALIPSO mission: spaceborne lidar for observation of aerosols and clouds
– volume: 4
  start-page: 137
  year: 1990
  ident: 10.1016/j.rse.2021.112687_bb0010
  article-title: Blackwell sufficiency and bernoulli experiments
  publication-title: Braz. J. Probab. Stat.
– volume: 261
  start-page: 107513
  year: 2021
  ident: 10.1016/j.rse.2021.112687_bb0205
  article-title: Development of ZJU high-spectral-resolution lidar for aerosol and cloud: feature detection and classification
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2021.107513
– volume: 7
  start-page: 14221
  year: 2017
  ident: 10.1016/j.rse.2021.112687_bb0060
  article-title: Lateral boundary of cirrus cloud from CALIPSO observations
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14665-6
– year: 2006
  ident: 10.1016/j.rse.2021.112687_bb0155
– volume: 9
  start-page: 2640
  year: 2018
  ident: 10.1016/j.rse.2021.112687_bb0120
  article-title: Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05028-4
– volume: 15
  start-page: 1035
  year: 1998
  ident: 10.1016/j.rse.2021.112687_bb0040
  article-title: An automated algorithm for detection of hydrometeor returns in micropulse lidar data
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/1520-0426(1998)015<1035:AAAFDO>2.0.CO;2
– volume: 34
  year: 2007
  ident: 10.1016/j.rse.2021.112687_bb0220
  article-title: Initial performance assessment of CALIOP
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL030135
– volume: 294
  start-page: 2119
  year: 2001
  ident: 10.1016/j.rse.2021.112687_bb0160
  article-title: Aerosols, climate, and the hydrological cycle
  publication-title: Science
  doi: 10.1126/science.1064034
– volume: 115
  year: 2010
  ident: 10.1016/j.rse.2021.112687_bb0070
  article-title: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2009JD012344
– volume: 50
  start-page: 6591
  year: 2011
  ident: 10.1016/j.rse.2021.112687_bb0125
  article-title: Simple multiscale algorithm for layer detection with lidar
  publication-title: Appl. Opt.
  doi: 10.1364/AO.50.006591
– volume: 31
  start-page: 1488
  year: 1992
  ident: 10.1016/j.rse.2021.112687_bb0150
  article-title: Automated method for lidar determination of cloud-base height and vertical extent
  publication-title: Appl. Opt.
  doi: 10.1364/AO.31.001488
– start-page: 25
  year: 2017
  ident: 10.1016/j.rse.2021.112687_bb0240
– volume: 202
  start-page: 87
  year: 2005
  ident: 10.1016/j.rse.2021.112687_bb0185
  article-title: CALIOP algorithm theoretical basis document, part 2: feature detection and layer properties algorithms
  publication-title: Rep. PC-SCI
– volume: 121
  start-page: 5788
  year: 2016
  ident: 10.1016/j.rse.2021.112687_bb0030
  article-title: Using in-situ airborne measurements to evaluate three cloud phase products derived from CALIPSO
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2015JD024334
– volume: 124
  start-page: 13026
  year: 2019
  ident: 10.1016/j.rse.2021.112687_bb0095
  article-title: East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC)
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2019JD030758
– volume: 119
  start-page: 9492
  year: 2014
  ident: 10.1016/j.rse.2021.112687_bb0015
  article-title: Cloud properties and radiative effects of the Asian summer monsoon derived from A-train data
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2014JD021458
– volume: 21
  start-page: 6199
  year: 2021
  ident: 10.1016/j.rse.2021.112687_bb0035
  article-title: Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-6199-2021
– volume: 30
  start-page: 1189
  year: 2013
  ident: 10.1016/j.rse.2021.112687_bb0045
  article-title: Wavelet correlation transform method and gradient method to determine aerosol layering from lidar returns: some comments
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-12-00233.1
– volume: 27
  start-page: 34126
  year: 2019
  ident: 10.1016/j.rse.2021.112687_bb0250
  article-title: Retrieving the microphysical properties of opaque liquid water clouds from CALIOP measurements
  publication-title: Opt. Express
  doi: 10.1364/OE.27.034126
– volume: 14
  start-page: 1593
  year: 2021
  ident: 10.1016/j.rse.2021.112687_bb0180
  article-title: Two-dimensional and multi-channel feature detection algorithm for the CALIPSO lidar measurements
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-14-1593-2021
– start-page: 119
  year: 2014
  ident: 10.1016/j.rse.2021.112687_bb0020
  article-title: Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013
  publication-title: J. Geophys. Res.-Atmos.
– volume: 45
  start-page: 4437
  year: 2006
  ident: 10.1016/j.rse.2021.112687_bb0105
  article-title: Estimating random errors due to shot noise in backscatter lidar observations
  publication-title: Appl. Opt.
  doi: 10.1364/AO.45.004437
– volume: 178
  start-page: 580
  year: 2016
  ident: 10.1016/j.rse.2021.112687_bb0065
  article-title: Three-dimensional structure of aerosol in China: a perspective from multi-satellite observations
– volume: 42
  start-page: 557
  year: 2015
  ident: 10.1016/j.rse.2021.112687_bb0255
  article-title: Effects of Arctic haze on surface cloud radiative forcing
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL062015
– volume: 115
  year: 2010
  ident: 10.1016/j.rse.2021.112687_bb0075
  article-title: Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2009JD012344
– volume: 27
  start-page: A481
  year: 2019
  ident: 10.1016/j.rse.2021.112687_bb0110
  article-title: Performance estimation of space-borne high-spectral-resolution lidar for cloud and aerosol optical properties at 532 nm
  publication-title: Opt. Express
  doi: 10.1364/OE.27.00A481
– volume: 119
  start-page: 6788
  year: 2014
  ident: 10.1016/j.rse.2021.112687_bb0260
  article-title: A new cloud and aerosol layer detection method based on micropulse lidar measurements
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2014JD021760
– volume: 122
  start-page: 329
  year: 2017
  ident: 10.1016/j.rse.2021.112687_bb0200
  article-title: Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites?
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2016JD025954
– volume: 118
  year: 2013
  ident: 10.1016/j.rse.2021.112687_bb0085
  article-title: Comparison of aerosol optical depth between CALIOP and MODIS-aqua for CALIOP aerosol subtypes over the ocean
  publication-title: J. Geophys. Res.
  doi: 10.1002/2013JD019527
– volume: 26
  start-page: 1994
  year: 2009
  ident: 10.1016/j.rse.2021.112687_bb0145
  article-title: The CALIPSO automated aerosol classification and lidar ratio selection algorithm
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHA1231.1
– volume: 119
  start-page: 230
  year: 2014
  ident: 10.1016/j.rse.2021.112687_bb0080
  article-title: An evaluation of CALIOP/CALIPSO’s aerosol-above-cloud detection and retrieval capability over North America
  publication-title: J. Geophys. Res.
  doi: 10.1002/2013JD020178
– volume: 26
  start-page: 2310
  year: 2009
  ident: 10.1016/j.rse.2021.112687_bb0225
  article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHA1281.1
– volume: 9
  start-page: 445
  year: 2018
  ident: 10.1016/j.rse.2021.112687_bb0005
  article-title: An investigation of optically very thin ice clouds from ground-based ARM Raman Lidars
  publication-title: Atmosphere
  doi: 10.3390/atmos9110445
– volume: 261
  start-page: 107498
  year: 2021
  ident: 10.1016/j.rse.2021.112687_bb0135
  article-title: Layer detection algorithm for CALIPSO observation based on automatic segmentation with a minimum cost function
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2020.107498
– volume: 26
  start-page: 2034
  year: 2009
  ident: 10.1016/j.rse.2021.112687_bb0190
  article-title: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHA1228.1
– volume: 26
  start-page: 5981
  year: 2013
  ident: 10.1016/j.rse.2021.112687_bb0235
  article-title: Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-12-00517.1
– start-page: 116
  year: 2011
  ident: 10.1016/j.rse.2021.112687_bb0245
  article-title: Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: spatial properties
  publication-title: J. Geophys. Res.: Atmos.
– start-page: 115
  year: 2010
  ident: 10.1016/j.rse.2021.112687_bb0050
  article-title: In situ and lidar observations of tropopause subvisible cirrus clouds during TC4
  publication-title: J. Geophys. Res.-Atmos.
– volume: 91
  start-page: 1211
  year: 2010
  ident: 10.1016/j.rse.2021.112687_bb0230
  article-title: The CALIPSO mission: A global 3D view of aerosols and clouds
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2010BAMS3009.1
– volume: 44
  start-page: 9059
  year: 2017
  ident: 10.1016/j.rse.2021.112687_bb0175
  article-title: The impact of lidar detection sensitivity on assessing aerosol direct radiative effects
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074521
– year: 2019
  ident: 10.1016/j.rse.2021.112687_bb0115
– volume: 218
  start-page: 125
  year: 2018
  ident: 10.1016/j.rse.2021.112687_bb0130
  article-title: Iterative method for determining boundaries and lidar ratio of permeable layer of a space lidar
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2018.07.007
– volume: 38
  issue: 7
  year: 2011
  ident: 10.1016/j.rse.2021.112687_bb0195
  article-title: CALIPSO detection of an Asian tropopause aerosol layer
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL046614
– volume: 28
  start-page: 6631
  year: 2020
  ident: 10.1016/j.rse.2021.112687_bb0025
  article-title: Method to retrieve aerosol extinction profiles and aerosol scattering phase functions with a modified CCD laser atmospheric detection system
  publication-title: Opt. Express
  doi: 10.1364/OE.386214
– volume: 4
  start-page: 810
  year: 2017
  ident: 10.1016/j.rse.2021.112687_bb0090
  article-title: Aerosol and boundary-layer interactions and impact on air quality
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx117
– year: 2005
  ident: 10.1016/j.rse.2021.112687_bb0100
  article-title: CALIOP algorithm theoretical basis document. Part 3: scene classification algorithms
– volume: 12
  start-page: 3025
  year: 2011
  ident: 10.1016/j.rse.2021.112687_bb0165
  article-title: The comparison of MODIS-aqua (C5) and CALIOP (V2 & V3) aerosol optical depth
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-12-3025-2012
– volume: 24
  start-page: 806
  year: 1985
  ident: 10.1016/j.rse.2021.112687_bb0140
  article-title: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean
  publication-title: J. Clim. Appl. Meteorol.
  doi: 10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2
– volume: 15
  start-page: 12327
  year: 2015
  ident: 10.1016/j.rse.2021.112687_bb0055
  article-title: Ice water content vertical profiles of high-level clouds: classification and impact on radiative fluxes
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-12327-2015
– volume: 34
  start-page: 117
  year: 1994
  ident: 10.1016/j.rse.2021.112687_bb0210
  article-title: Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs
  publication-title: Atmos. Res.
  doi: 10.1016/0169-8095(94)90084-1
SSID ssj0015871
Score 2.4414854
Snippet The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) is unique in its ability to perform profiling measurements of aerosol and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112687
SubjectTerms Aerosol and cloud
Aerosols
air
Algorithms
Arrays
CALIOP
CALIPSO (Pathfinder satellite)
Clouds
Data retrieval
Depolarization
environment
ice
Ice clouds
Layer detection
Lidar
Lidar measurements
Marine environment
Meteorological satellites
Multiscale
Night
Optical analysis
Optical thickness
probability
Satellite observation
satellites
Signal to noise ratio
Title A simple multiscale layer detection algorithm for CALIPSO measurements
URI https://dx.doi.org/10.1016/j.rse.2021.112687
https://www.proquest.com/docview/2600348572
https://www.proquest.com/docview/2636439092
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hEGovVVmKui0gI_WElJKNndg5rlYs21alh4LEzbJjpyxasmgTDlz62zuTOItAiEOPicdKNC-P7W9mAL7wQnmHkXBkS1lGgvJyjJMuwtVF2NIWqvB0oP_zPJtdiu9X6dUGTPpcGIJVBt_f-fTWW4c3J4GbJ3fzOeX4ckEal1DRs1hSRrkQkroYfP27hnmMUiW7rnlcRETd32y2GK9VTZUyk1GbSEOoupfXpmdeul16pu_hXYgZ2bj7rR3Y8NUA9k4fU9RwMNhoPYA3oa_59cMAts_axr0PuzAds3pOlYBZCyGsUTSeLQwG3Mz5psVjVcws_ixX8-b6lmEoyyZj3PX__sVuH48R6w9wOT29mMyi0EMhKniqmmgkrJI-k8bZvMxl7Lk1SqS5ct6jJNAEnU-sKm2ZWZ5l1qaJlcLH3FthROr4HmxWy8p_BJYVeUpprAluPEUmvOLGpThTlQYdZpENIe65p4tQYJz6XCx0jyS70chwTQzXHcOHcLyectdV13iNWPQi0U9URKP3f23afi8-Heyz1lSWnwuFyjOEo_UwWhZdl5jKL--JhlO4FufJp__78md4S08d-GUfNpvVvT_AEKaxh62OHsLW-NuP2fk_OZzvYg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUAUXBNsilkdxpZ4qpWRjO3aOqxXbpQV6KEjcLDt2YNGSRZtw4MJvx5M4i1pVHHqNPXI0L4_tb2YAvtBcOusj4cgUoogY5uVoK2zkdxdmCpPL3OGF_vlFOrliP6759QqMulwYhFUG39_69MZbhy_HgZvHD9Mp5vhShhqXYNGzWIh3sMZ4IvAE9u15ifMYcCnatnmURTi9e9psQF6LCktlJoMmkwZhdf_enP5y083eM96CzRA0kmH7X9uw4soe7Jy85qj5wWCkVQ_WQ2Pz26cevP_edO59-gDjIammWAqYNBjCysvGkZn2ETexrm4AWSXRs5v5Ylrf3hMfy5LR0B_7f_8i96_3iNVHuBqfXI4mUWiiEOWUyzoaMCOFS4W2JisyETtqtGQ8k9Y5Lwpvg9YlRhamSA1NU2N4YgRzMXWGacYt3YHVcl66XSBpnnHMY038yZOlzEmqLfeUstDeY-ZpH-KOeyoPFcax0cVMdVCyO-UZrpDhqmV4H74uSR7a8hpvTWadSNQfOqK8-3-L7KATnwoGWimsy0-Z9NrTh8_LYW9a-F6iSzd_xDkU47U4S_b-b-UjWJ9cnp-ps9OLn_uwgSMtEuYAVuvFozv08UxtPjX6-gLMVPD3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+multiscale+layer+detection+algorithm+for+CALIPSO+measurements&rft.jtitle=Remote+sensing+of+environment&rft.au=Mao%2C+Feiyue&rft.au=Liang%2C+Zhenxing&rft.au=Pan%2C+Zengxin&rft.au=Gong%2C+Wei&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=266&rft.spage=1&rft_id=info:doi/10.1016%2Fj.rse.2021.112687&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon