Tumoral and tissue-specific expression of the major human β-tubulin isotypes
The β‐tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on β‐tubulin binding, microtubule dynamics alteration, and cell division blockage. The expres...
Saved in:
Published in | Cytoskeleton (Hoboken, N.J.) Vol. 67; no. 4; pp. 214 - 223 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1949-3584 1949-3592 1949-3592 |
DOI | 10.1002/cm.20436 |
Cover
Abstract | The β‐tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on β‐tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex β‐tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT‐PCR technique that accurately determines the mRNA expression of the eight human β‐tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell‐specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total β‐tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex β‐tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule‐binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | The β‐tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on β‐tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex β‐tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT‐PCR technique that accurately determines the mRNA expression of the eight human β‐tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell‐specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total β‐tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex β‐tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule‐binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response. © 2010 Wiley‐Liss, Inc. The beta-tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on beta-tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex beta-tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT-PCR technique that accurately determines the mRNA expression of the eight human beta-tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell-specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total beta-tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex beta-tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule-binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response. The β‐tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on β‐tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex β‐tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT‐PCR technique that accurately determines the mRNA expression of the eight human β‐tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1 (VI) was hematopoietic cell‐specific, and TUBB2A (IIa) , TUBB2B (IIb) , TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total β‐tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex β‐tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule‐binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response. © 2010 Wiley‐Liss, Inc. The beta-tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on beta-tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex beta-tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT-PCR technique that accurately determines the mRNA expression of the eight human beta-tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell-specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total beta-tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex beta-tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule-binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response.The beta-tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on beta-tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex beta-tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT-PCR technique that accurately determines the mRNA expression of the eight human beta-tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell-specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total beta-tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex beta-tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule-binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response. |
Author | Leandro-García, Luis J. Leskelä, Susanna Letón, Rocío López-Jiménez, Elena Cascón, Alberto Montero-Conde, Cristina Rodríguez-Antona, Cristina Robledo, Mercedes Landa, Iñigo |
Author_xml | – sequence: 1 givenname: Luis J. surname: Leandro-García fullname: Leandro-García, Luis J. organization: Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain – sequence: 2 givenname: Susanna surname: Leskelä fullname: Leskelä, Susanna organization: Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain – sequence: 3 givenname: Iñigo surname: Landa fullname: Landa, Iñigo organization: Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain – sequence: 4 givenname: Cristina surname: Montero-Conde fullname: Montero-Conde, Cristina organization: Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain – sequence: 5 givenname: Elena surname: López-Jiménez fullname: López-Jiménez, Elena organization: Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain – sequence: 6 givenname: Rocío surname: Letón fullname: Letón, Rocío organization: Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain – sequence: 7 givenname: Alberto surname: Cascón fullname: Cascón, Alberto organization: Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain – sequence: 8 givenname: Mercedes surname: Robledo fullname: Robledo, Mercedes organization: Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain – sequence: 9 givenname: Cristina surname: Rodríguez-Antona fullname: Rodríguez-Antona, Cristina email: cristina.rodriguez-antona@cnio.es organization: Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20191564$$D View this record in MEDLINE/PubMed |
BookMark | eNp10M1u1DAQB3CrKqIfIPUJkG9wyeKvOPYRrWBbtKU9LIKb5TgT1SWJg-2I7mv1QfpMTdm2hwpOM4ffjGb-R2h_CAMgdELJghLCPrp-wYjgcg8dUi10wUvN9p97JQ7QUUrXhEjNCX-NDhihmpZSHKLzzdSHaDtshwZnn9IERRrB-dY7DDdjhJR8GHBocb4C3NvrEPHV1NsB390Weaqnzg_Yp5C3I6Q36FVruwRvH-sx-v7l82Z5WqwvVmfLT-vCzdfIglW8diAq2tBGK6mYtLqFltS6rOpaCUpLpRunRCWVZFxbwUjdKiKUbjVhNT9G73d7xxh-T5Cy6X1y0HV2gDAlU3GuCFeczfLdo5zqHhozRt_buDVPCcxgsQMuhpQitMb5bPP8c47Wd4YS8xCxcb35G_E88OHFwNPOf9BiR__4Drb_dWZ5_sL7lOHm2dv4y8iKV6X58W1lLr9ufm7WWpoVvwftc5f3 |
CitedBy_id | crossref_primary_10_1007_s10863_012_9457_9 crossref_primary_10_1007_s11095_012_0794_5 crossref_primary_10_1016_j_ejpn_2021_09_007 crossref_primary_10_3390_brainsci8090175 crossref_primary_10_7554_eLife_36392 crossref_primary_10_1093_ibd_izy119 crossref_primary_10_1111_jpi_12373 crossref_primary_10_1038_s42003_023_05306_y crossref_primary_10_1016_j_ijdevneu_2016_03_002 crossref_primary_10_3389_fcell_2022_870088 crossref_primary_10_1007_s10237_023_01792_5 crossref_primary_10_1016_j_biocel_2014_09_004 crossref_primary_10_1371_journal_pone_0129168 crossref_primary_10_3390_molecules25163705 crossref_primary_10_3390_cancers15061714 crossref_primary_10_1016_j_bcp_2020_114125 crossref_primary_10_1016_j_bbabio_2013_10_011 crossref_primary_10_1016_j_ejmg_2018_07_012 crossref_primary_10_1247_csf_21022 crossref_primary_10_1016_j_schres_2011_12_010 crossref_primary_10_1002_psp4_12453 crossref_primary_10_1371_journal_pgen_1008243 crossref_primary_10_1016_j_ab_2019_01_004 crossref_primary_10_1016_j_isci_2022_105189 crossref_primary_10_1371_journal_pone_0201578 crossref_primary_10_1007_s13277_015_3597_6 crossref_primary_10_2217_pgs_11_12 crossref_primary_10_3390_ijms252111659 crossref_primary_10_1074_jbc_C116_731133 crossref_primary_10_1093_hmg_ddt255 crossref_primary_10_1016_j_ygyno_2012_11_036 crossref_primary_10_1007_s00345_014_1463_6 crossref_primary_10_1155_2013_210253 crossref_primary_10_1021_acs_jcim_4c00438 crossref_primary_10_1038_srep46312 crossref_primary_10_1111_bjh_12124 crossref_primary_10_3390_cells8030239 crossref_primary_10_1111_cbdd_12132 crossref_primary_10_1371_journal_pone_0240453 crossref_primary_10_1016_j_neo_2016_10_011 crossref_primary_10_1038_s41598_024_61019_0 crossref_primary_10_1016_j_cub_2014_03_078 crossref_primary_10_1016_j_isci_2023_107755 crossref_primary_10_1093_hmg_ddx168 crossref_primary_10_1007_s11010_012_1390_z crossref_primary_10_1111_cbdd_12926 crossref_primary_10_1007_s10337_017_3382_3 crossref_primary_10_3390_molecules29102200 crossref_primary_10_1007_s11095_022_03364_1 crossref_primary_10_1134_S1022795414010098 crossref_primary_10_1016_j_brainres_2011_08_066 crossref_primary_10_1007_s11910_014_0462_8 crossref_primary_10_1080_07391102_2021_1897044 crossref_primary_10_1158_0008_5472_CAN_11_2861 crossref_primary_10_1016_j_mcn_2017_03_002 crossref_primary_10_1089_cbr_2014_1797 crossref_primary_10_1016_j_bmc_2021_116014 crossref_primary_10_18632_oncotarget_17740 crossref_primary_10_1371_journal_pone_0221532 crossref_primary_10_1007_s13760_022_02032_w crossref_primary_10_1111_neup_12075 crossref_primary_10_1002_jdn_10284 crossref_primary_10_1371_journal_pone_0188869 crossref_primary_10_1007_s13361_016_1360_x crossref_primary_10_3892_ol_2016_4206 crossref_primary_10_3892_ol_2017_6012 crossref_primary_10_1002_prca_201200018 crossref_primary_10_1007_s11064_013_1006_3 crossref_primary_10_1016_j_ejcb_2011_05_005 crossref_primary_10_3389_fncel_2024_1340240 crossref_primary_10_3390_ijms242015423 crossref_primary_10_1002_cam4_6550 crossref_primary_10_1038_s10038_020_0739_5 crossref_primary_10_1016_j_bbrc_2015_09_057 crossref_primary_10_1212_WNL_0000000000000535 crossref_primary_10_3389_fchem_2020_00108 crossref_primary_10_1038_s41431_018_0146_y crossref_primary_10_1080_15384101_2017_1415680 crossref_primary_10_1016_j_neures_2017_04_002 crossref_primary_10_1039_D2OB01910H crossref_primary_10_1371_journal_pone_0102341 crossref_primary_10_3390_cells7110216 crossref_primary_10_3389_fncel_2023_1162363 crossref_primary_10_1016_j_ajhg_2014_03_009 crossref_primary_10_1002_jcla_24630 crossref_primary_10_3345_kjp_2017_60_1_1 crossref_primary_10_3103_S0027131421020024 crossref_primary_10_1371_journal_pone_0128174 crossref_primary_10_3389_fcell_2022_851542 crossref_primary_10_1007_s00441_017_2688_7 crossref_primary_10_3390_microorganisms10122415 crossref_primary_10_1007_s00335_014_9529_8 crossref_primary_10_3724_abbs_2023130 crossref_primary_10_2174_1389450124666230731094837 crossref_primary_10_17650_1726_9784_2016_15_2_16_18 crossref_primary_10_1111_tra_12461 crossref_primary_10_1002_prca_201800046 crossref_primary_10_1083_jcb_202202102 crossref_primary_10_1002_cam4_68 crossref_primary_10_1007_s00709_016_1060_1 crossref_primary_10_3390_cells7110192 crossref_primary_10_1016_j_sjbs_2015_05_005 crossref_primary_10_3389_fonc_2024_1312634 crossref_primary_10_1128_AEM_00967_21 crossref_primary_10_3389_fcell_2021_778887 crossref_primary_10_3389_fneur_2021_702039 crossref_primary_10_1101_gr_132662_111 crossref_primary_10_1530_ERC_17_0456 crossref_primary_10_3390_toxics12100745 crossref_primary_10_1016_j_drup_2021_100754 crossref_primary_10_3103_S0027131421040039 crossref_primary_10_1212_WNL_0000000000000294 crossref_primary_10_1126_sciadv_abf7262 crossref_primary_10_1177_1010428317712166 crossref_primary_10_3892_br_2016_835 crossref_primary_10_1002_mds_26129 crossref_primary_10_1242_jcs_239772 crossref_primary_10_1002_ijc_34265 crossref_primary_10_1016_j_jprot_2013_10_015 crossref_primary_10_1002_cmdc_202000185 crossref_primary_10_1093_brain_awu110 crossref_primary_10_1139_cjc_2012_0360 crossref_primary_10_3390_ijms21197354 crossref_primary_10_1002_cm_21043 crossref_primary_10_1186_1742_4682_10_29 crossref_primary_10_1038_srep03199 crossref_primary_10_1093_biolre_ioz210 crossref_primary_10_1093_genetics_iyab101 crossref_primary_10_1016_j_humpath_2016_11_005 crossref_primary_10_3390_jdb5030008 crossref_primary_10_1074_jbc_M111_296483 crossref_primary_10_1177_0883073821000977 crossref_primary_10_1158_1078_0432_CCR_12_1221 crossref_primary_10_3109_00365599_2010_515612 crossref_primary_10_7554_eLife_52904 crossref_primary_10_1016_j_jbc_2021_100898 crossref_primary_10_1371_journal_pone_0299145 crossref_primary_10_1002_cm_21195 crossref_primary_10_1016_j_bbrep_2015_08_020 crossref_primary_10_1083_jcb_201603050 crossref_primary_10_1016_j_gde_2011_01_003 crossref_primary_10_1007_s12035_023_03302_1 crossref_primary_10_1093_hmg_ddy096 crossref_primary_10_1016_j_bbcan_2011_06_001 crossref_primary_10_1021_jm200555r crossref_primary_10_1038_s42003_024_06867_2 crossref_primary_10_1007_s00709_014_0633_0 crossref_primary_10_1080_15513815_2020_1753270 crossref_primary_10_1371_journal_pone_0172955 crossref_primary_10_1007_s11095_012_0809_2 crossref_primary_10_1016_j_ejps_2017_05_011 crossref_primary_10_1002_cne_24990 crossref_primary_10_7554_eLife_20172 crossref_primary_10_1016_j_neuint_2013_07_011 crossref_primary_10_4251_wjgo_v10_i10_351 crossref_primary_10_1016_j_drudis_2025_104312 crossref_primary_10_18632_oncotarget_5885 crossref_primary_10_1111_cge_12811 crossref_primary_10_1136_jmedgenet_2019_106740 crossref_primary_10_12677_AE_2024_141125 crossref_primary_10_1007_s10637_015_0315_6 crossref_primary_10_1007_s11033_012_2082_1 crossref_primary_10_1091_mbc_e17_02_0124 crossref_primary_10_1016_j_ejmech_2019_111728 crossref_primary_10_1091_mbc_e17_06_0424 crossref_primary_10_1042_BCJ20190123 crossref_primary_10_1177_08830738211000977 crossref_primary_10_1021_acs_jcim_3c01379 crossref_primary_10_1517_14728222_2013_766170 crossref_primary_10_3892_ol_2013_1734 crossref_primary_10_1016_j_canlet_2021_11_028 crossref_primary_10_1021_cb4008259 crossref_primary_10_1039_C5MB00211G crossref_primary_10_1158_1078_0432_CCR_18_1199 crossref_primary_10_1371_journal_pone_0039694 crossref_primary_10_1158_1535_7163_MCT_14_0950 crossref_primary_10_1016_j_biopha_2012_06_002 crossref_primary_10_1111_ijlh_13235 crossref_primary_10_1039_c0mb00281j crossref_primary_10_1039_D4LC00296B crossref_primary_10_1007_s13277_015_4118_3 crossref_primary_10_1002_ana_23829 crossref_primary_10_1093_genetics_iyad163 crossref_primary_10_1038_s41419_019_2077_0 crossref_primary_10_1039_D2CC01783K crossref_primary_10_1002_ajmg_a_36526 crossref_primary_10_1016_j_jprot_2020_103779 crossref_primary_10_1146_annurev_cellbio_030123_032748 crossref_primary_10_3389_fcell_2023_1136699 crossref_primary_10_3390_ijms24032781 crossref_primary_10_1292_jvms_14_0343 crossref_primary_10_3390_ijms241512253 crossref_primary_10_1002_humu_23602 |
Cites_doi | 10.1007/978-3-642-59524-0_3 10.1158/1078-0432.CCR-05-0285 10.1093/annonc/mdm209 10.1083/jcb.105.4.1707 10.1007/s00280-006-0343-1 10.4161/cc.8.23.10105 10.1073/pnas.91.24.11358 10.1158/1078-0432.CCR-06-1503 10.1158/0008-5472.CAN-08-1501 10.1073/pnas.040546297 10.1083/jcb.103.5.1903 10.1200/JCO.2007.14.9146 10.1016/j.ygyno.2007.01.044 10.1083/jcb.104.3.381 10.1529/biophysj.107.115113 10.1016/j.ctrv.2008.11.001 10.1158/1078-0432.CCR-05-2715 10.1021/bi051004p 10.1002/cm.20109 10.1016/S1470-2045(04)01411-1 10.1016/j.ygyno.2006.08.046 10.1186/bcr631 10.1074/jbc.272.27.17118 10.1002/cm.10042 10.1001/jama.295.14.1658 10.1002/cm.20297 10.1016/S0074-7696(08)62138-5 10.4161/cc.6.17.4633 10.1016/S0021-9258(19)40087-2 10.1038/344389a0 10.1006/meth.2001.1262 10.1096/fj.04-3178fje 10.1074/jbc.M414477200 10.1016/S1074-5521(03)00141-8 10.1091/mbc.E04-01-0060 10.1021/bi962724m 10.1128/MCB.6.12.4409 10.1242/jcs.112.13.2213 10.1083/jcb.99.6.1927 10.1073/pnas.83.12.4327 10.1158/1078-0432.298.11.1 10.1002/cm.10132 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. Copyright 2010 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: Copyright 2010 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/cm.20436 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1949-3592 |
EndPage | 223 |
ExternalDocumentID | 20191564 10_1002_cm_20436 CM20436 ark_67375_WNG_PJTXTL96_G |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Leskelä and Leandro‐García have fellowships from the Spanish Ministry of Education and Science – fundername: Fundación Ramón Areces. Rodríguez‐Antona has a contract from the “Ramon y Cajal” program – fundername: Spanish Ministry of Education and Science funderid: SAF2006‐01139 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ J0M JPC LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WNSPC WOHZO WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE BQCPF RWI AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3586-273bce471d1d986826a9fef0b957bb8411589dc847686239a420bf80489f902b3 |
IEDL.DBID | DR2 |
ISSN | 1949-3584 1949-3592 |
IngestDate | Fri Sep 05 14:05:56 EDT 2025 Wed Feb 19 01:50:47 EST 2025 Thu Apr 24 23:04:43 EDT 2025 Tue Jul 01 00:51:45 EDT 2025 Wed Jan 22 17:06:54 EST 2025 Sun Sep 21 06:16:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright 2010 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3586-273bce471d1d986826a9fef0b957bb8411589dc847686239a420bf80489f902b3 |
Notes | ark:/67375/WNG-PJTXTL96-G Fundación Ramón Areces. Rodríguez-Antona has a contract from the "Ramon y Cajal" program ArticleID:CM20436 Leskelä and Leandro-García have fellowships from the Spanish Ministry of Education and Science Monitoring Editor: George Bloom istex:093C207243B82722F740D1839C6681DA6773BF80 Spanish Ministry of Education and Science - No. SAF2006-01139 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20191564 |
PQID | 733803832 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_733803832 pubmed_primary_20191564 crossref_citationtrail_10_1002_cm_20436 crossref_primary_10_1002_cm_20436 wiley_primary_10_1002_cm_20436_CM20436 istex_primary_ark_67375_WNG_PJTXTL96_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2010 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: April 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States |
PublicationTitle | Cytoskeleton (Hoboken, N.J.) |
PublicationTitleAlternate | Cytoskeleton |
PublicationYear | 2010 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | Lopata MA, Cleveland DW. 1987. In vivo microtubules are copolymers of available beta-tubulin isotypes: localization of each of six vertebrate beta-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens. J Cell Biol 105: 1707-1720. Cleveland DW. 1987. The multitubulin hypothesis revisited: what have we learned? J Cell Biol 104: 381-383. Hasegawa S, Miyoshi Y, Egawa C, Ishitobi M, Taguchi T, Tamaki Y, Monden M, Noguchi S. 2003. Prediction of response to docetaxel by quantitative analysis of class I and III beta-tubulin isotype mRNA expression in human breast cancers. Clin Cancer Res 9: 2992-2997. Havercroft JC, Cleveland DW. 1984. Programmed expression of beta-tubulin genes during development and differentiation of the chicken. J Cell Biol 99: 1927-1935. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. Cucchiarelli V, Hiser L, Smith H, Frankfurter A, Spano A, Correia JJ, Lobert S. 2008. Beta-tubulin isotype classes II and V expression patterns in nonsmall cell lung carcinomas. Cell Motil Cytoskeleton 65: 675-685. Panda D, Miller HP, Banerjee A, Ludueña RF, Wilson L. 1994. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci USA 91: 11358-11362. Arai K, Shibutani M, Matsuda H. 2002. Distribution of the class II beta-tubulin in developmental and adult rat tissues. Cell Motil Cytoskeleton 52: 174-182. Shalli K, Brown I, Heys SD, Schofield AC. 2005. Alterations of beta-tubulin isotypes in breast cancer cells resistant to docetaxel. Faseb J 19: 1299-1301. Andre F, Broglio K, Roche H, Martin M, Mackey JR, Penault-Llorca F, Hortobagyi GN, Pusztai L. 2008. Estrogen receptor expression and efficacy of docetaxel-containing adjuvant chemotherapy in patients with node-positive breast cancer: results from a pooled analysis. J Clin Oncol 26: 2636-2643. Ohishi Y, Oda Y, Basaki Y, Kobayashi H, Wake N, Kuwano M, Tsuneyoshi M. 2007. Expression of beta-tubulin isotypes in human primary ovarian carcinoma. Gynecol Oncol 105: 586-592. Kavallaris M, Tait AS, Walsh BJ, He L, Horwitz SB, Norris MD, Haber M. 2001. Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res 61: 5803-5809. Wang D, Villasante A, Lewis SA, Cowan NJ. 1986. The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype. J Cell Biol 103: 1903-1910. Escuin D, Burke PA, McMahon-Tobin G, Hembrough T, Wang Y, Alcaraz AA, Leandro-García LJ, Rodríguez-Antona C, Snyder JP, LaVallee TM, et al. 2009. The hematopoietic-specific 1-tubulin is naturally resistant to 2-Methoxyestradiol and protects patients from drug-induced myelosuppression. Cell Cycle 8: 3914-3924. Hiser L, Aggarwal A, Young R, Frankfurter A, Spano A, Correia JJ, Lobert S. 2006. Comparison of beta-tubulin mRNA and protein levels in 12 human cancer cell lines. Cell Motil Cytoskeleton 63: 41-52. Risinger AL, Giles FJ, Mooberry SL. 2009. Microtubule dynamics as a target in oncology. Cancer Treat Rev 35: 255-261. Ferrandina G, Zannoni GF, Martinelli E, Paglia A, Gallotta V, Mozzetti S, Scambia G, Ferlini C. 2006. Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res 12: 2774-2779. Berrieman HK, Lind MJ, Cawkwell L. 2004. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol 5: 158-164. Conforti R, Boulet T, Tomasic G, Taranchon E, Arriagada R, Spielmann M, Ducourtieux M, Soria JC, Tursz T, Delaloge S, Michiels S, Andre F. 2007. Breast cancer molecular subclassification and estrogen receptor expression to predict efficacy of adjuvant anthracyclines-based chemotherapy: a biomarker study from two randomized trials. Ann Oncol 18: 1477-1483. Nicoletti MI, Valoti G, Giannakakou P, Zhan Z, Kim JH, Lucchini V, Landoni F, Mayo JG, Giavazzi R, Fojo T. 2001. Expression of beta-tubulin isotypes in human ovarian carcinoma xenografts and in a sub-panel of human cancer cell lines from the NCI-Anticancer Drug Screen: correlation with sensitivity to microtubule active agents. Clin Cancer Res 7: 2912-2922. Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, Gallo D, Martinelli E, Ranelletti FO, Ferrandina G, et al. 2005. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 11: 298-305. Seve P, Isaac S, Tredan O, Souquet PJ, Pacheco Y, Perol M, Lafanechere L, Penet A, Peiller EL, Dumontet C. 2005. Expression of class III {beta}-tubulin is predictive of patient outcome in patients with non-small cell lung cancer receiving vinorelbine-based chemotherapy. Clin Cancer Res 11: 5481-5486. Verrills NM, Flemming CL, Liu M, Ivery MT, Cobon GS, Norris MD, Haber M, Kavallaris M. 2003. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol 10: 597-607. Hari M, Yang H, Zeng C, Canizales M, Cabral F. 2003. Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskeleton 56: 45-56. Dozier JH, Hiser L, Davis JA, Thomas NS, Tucci MA, Benghuzzi HA, Frankfurter A, Correia JJ, Lobert S. 2003. Beta class II tubulin predominates in normal and tumor breast tissues. Breast Cancer Res 5: R157-R169. Sullivan KF, Cleveland DW. 1986. Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci USA 83: 4327-4331. Bhattacharya R, Cabral F. 2004. A ubiquitous beta-tubulin disrupts microtubule assembly and inhibits cell proliferation. Mol Biol Cell 15: 3123-3131. Blade K, Menick DR, Cabral F. 1999. Overexpression of class I, II or IVb beta-tubulin isotypes in CHO cells is insufficient to confer resistance to paclitaxel. J Cell Sci 112 ( Part 13): 2213-2221. Seve P, Reiman T, Lai R, Hanson J, Santos C, Johnson L, Dabbagh L, Sawyer M, Dumontet C, Mackey JR. 2007b. Class III beta-tubulin is a marker of paclitaxel resistance in carcinomas of unknown primary site. Cancer Chemother Pharmacol 60: 27-34. Cleveland DW, Joshi HC, Murphy DB. 1990. Tubulin site interpretation. Nature 344: 389. Ludueña RF. 1998. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178: 207-275. Ferrandina G, Martinelli E, Zannoni GF, Distefano M, Paglia A, Ferlini C, Scambia G. 2007. Expression of class III beta tubulin in cervical cancer patients administered preoperative radiochemotherapy: correlation with response to treatment and clinical outcome. Gynecol Oncol 104: 326-330. Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T. 2000. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 97: 2904-2909. Derry WB, Wilson L, Khan IA, Ludueña RF, Jordan MA. 1997. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry 36: 3554-3562. Banerjee A, Roach MC, Trcka P, Ludueña RF. 1990. Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta-tubulin. J Biol Chem 265: 1794-1799. Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS. 1997. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272: 17118-17125. Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ, Martino S, Perez EA, Muss HB, Norton L, et al. 2006. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295: 1658-1667. Verdier-Pinard P, Shahabi S, Wang F, Burd B, Xiao H, Goldberg GL, Orr GA, Horwitz SB. 2005. Detection of human betaV-tubulin expression in epithelial cancer cell lines by tubulin proteomics. Biochemistry 44: 15858-15870. Gan PP, Kavallaris M. 2008. Tubulin-targeted drug action: functional significance of class ii and class IVb beta-tubulin in vinca alkaloid sensitivity. Cancer Res 68: 9817-9824. Kamath K, Wilson L, Cabral F, Jordan MA. 2005. BetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 280: 12902-12907. Luchko T, Huzil JT, Stepanova M, Tuszynski J. 2008. Conformational analysis of the carboxy-terminal tails of human beta-tubulin isotypes. Biophys J 94: 1971-1982. Sullivan KF, Havercroft JC, Machlin PS, Cleveland DW. 1986. Sequence and expression of the chicken beta 5- and beta 4-tubulin genes define a pair of divergent beta-tubulins with complementary patterns of expression. Mol Cell Biol 6: 4409-4418. Seve P, Lai R, Ding K, Winton T, Butts C, Mackey J, Dumontet C, Dabbagh L, Aviel-Ronen S, Seymour L, et al. 2007a. Class III beta-tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non-small cell lung cancer: analysis of NCIC JBR. 10. Clin Cancer Res 13: 994-999. Verhey KJ, Gaertig J. 2007. The tubulin code. Cell Cycle 6: 2152-2160. 2007; 18 2007; 104 2007; 105 2002; 52 2006; 12 1987; 105 1997; 272 1987; 104 2006; 295 2004; 5 2008; 94 1990; 344 1990; 265 2001; 25 1998; 178 2005; 44 2003; 10 2003; 56 2007b; 60 2005; 280 2001; 61 2009; 35 2006; 63 2005; 19 1986; 103 1986; 83 2001; 7 2001 2004; 15 1997; 36 1984; 99 2007a; 13 2000; 97 2003; 9 1986; 6 2008; 26 2007; 6 2003; 5 2009; 8 2008; 68 2008; 65 1999; 112 1994; 91 2005; 11 e_1_2_6_10_1 e_1_2_6_30_1 Mozzetti S (e_1_2_6_31_1) 2005; 11 Nicoletti MI (e_1_2_6_32_1) 2001; 7 Kavallaris M (e_1_2_6_26_1) 2001; 61 e_1_2_6_19_1 Blade K (e_1_2_6_8_1) 1999; 112 Banerjee A (e_1_2_6_4_1) 1990; 265 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 Hasegawa S (e_1_2_6_22_1) 2003; 9 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Panda D, Miller HP, Banerjee A, Ludueña RF, Wilson L. 1994. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci USA 91: 11358-11362. – reference: Luchko T, Huzil JT, Stepanova M, Tuszynski J. 2008. Conformational analysis of the carboxy-terminal tails of human beta-tubulin isotypes. Biophys J 94: 1971-1982. – reference: Verdier-Pinard P, Shahabi S, Wang F, Burd B, Xiao H, Goldberg GL, Orr GA, Horwitz SB. 2005. Detection of human betaV-tubulin expression in epithelial cancer cell lines by tubulin proteomics. Biochemistry 44: 15858-15870. – reference: Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. – reference: Cleveland DW. 1987. The multitubulin hypothesis revisited: what have we learned? J Cell Biol 104: 381-383. – reference: Andre F, Broglio K, Roche H, Martin M, Mackey JR, Penault-Llorca F, Hortobagyi GN, Pusztai L. 2008. Estrogen receptor expression and efficacy of docetaxel-containing adjuvant chemotherapy in patients with node-positive breast cancer: results from a pooled analysis. J Clin Oncol 26: 2636-2643. – reference: Ludueña RF. 1998. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178: 207-275. – reference: Cleveland DW, Joshi HC, Murphy DB. 1990. Tubulin site interpretation. Nature 344: 389. – reference: Wang D, Villasante A, Lewis SA, Cowan NJ. 1986. The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype. J Cell Biol 103: 1903-1910. – reference: Nicoletti MI, Valoti G, Giannakakou P, Zhan Z, Kim JH, Lucchini V, Landoni F, Mayo JG, Giavazzi R, Fojo T. 2001. Expression of beta-tubulin isotypes in human ovarian carcinoma xenografts and in a sub-panel of human cancer cell lines from the NCI-Anticancer Drug Screen: correlation with sensitivity to microtubule active agents. Clin Cancer Res 7: 2912-2922. – reference: Blade K, Menick DR, Cabral F. 1999. Overexpression of class I, II or IVb beta-tubulin isotypes in CHO cells is insufficient to confer resistance to paclitaxel. J Cell Sci 112 ( Part 13): 2213-2221. – reference: Risinger AL, Giles FJ, Mooberry SL. 2009. Microtubule dynamics as a target in oncology. Cancer Treat Rev 35: 255-261. – reference: Sullivan KF, Cleveland DW. 1986. Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci USA 83: 4327-4331. – reference: Gan PP, Kavallaris M. 2008. Tubulin-targeted drug action: functional significance of class ii and class IVb beta-tubulin in vinca alkaloid sensitivity. Cancer Res 68: 9817-9824. – reference: Hiser L, Aggarwal A, Young R, Frankfurter A, Spano A, Correia JJ, Lobert S. 2006. Comparison of beta-tubulin mRNA and protein levels in 12 human cancer cell lines. Cell Motil Cytoskeleton 63: 41-52. – reference: Verrills NM, Flemming CL, Liu M, Ivery MT, Cobon GS, Norris MD, Haber M, Kavallaris M. 2003. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol 10: 597-607. – reference: Cucchiarelli V, Hiser L, Smith H, Frankfurter A, Spano A, Correia JJ, Lobert S. 2008. Beta-tubulin isotype classes II and V expression patterns in nonsmall cell lung carcinomas. Cell Motil Cytoskeleton 65: 675-685. – reference: Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, Gallo D, Martinelli E, Ranelletti FO, Ferrandina G, et al. 2005. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 11: 298-305. – reference: Seve P, Isaac S, Tredan O, Souquet PJ, Pacheco Y, Perol M, Lafanechere L, Penet A, Peiller EL, Dumontet C. 2005. Expression of class III {beta}-tubulin is predictive of patient outcome in patients with non-small cell lung cancer receiving vinorelbine-based chemotherapy. Clin Cancer Res 11: 5481-5486. – reference: Hari M, Yang H, Zeng C, Canizales M, Cabral F. 2003. Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskeleton 56: 45-56. – reference: Dozier JH, Hiser L, Davis JA, Thomas NS, Tucci MA, Benghuzzi HA, Frankfurter A, Correia JJ, Lobert S. 2003. Beta class II tubulin predominates in normal and tumor breast tissues. Breast Cancer Res 5: R157-R169. – reference: Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T. 2000. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 97: 2904-2909. – reference: Arai K, Shibutani M, Matsuda H. 2002. Distribution of the class II beta-tubulin in developmental and adult rat tissues. Cell Motil Cytoskeleton 52: 174-182. – reference: Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS. 1997. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272: 17118-17125. – reference: Derry WB, Wilson L, Khan IA, Ludueña RF, Jordan MA. 1997. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry 36: 3554-3562. – reference: Ferrandina G, Martinelli E, Zannoni GF, Distefano M, Paglia A, Ferlini C, Scambia G. 2007. Expression of class III beta tubulin in cervical cancer patients administered preoperative radiochemotherapy: correlation with response to treatment and clinical outcome. Gynecol Oncol 104: 326-330. – reference: Escuin D, Burke PA, McMahon-Tobin G, Hembrough T, Wang Y, Alcaraz AA, Leandro-García LJ, Rodríguez-Antona C, Snyder JP, LaVallee TM, et al. 2009. The hematopoietic-specific 1-tubulin is naturally resistant to 2-Methoxyestradiol and protects patients from drug-induced myelosuppression. Cell Cycle 8: 3914-3924. – reference: Bhattacharya R, Cabral F. 2004. A ubiquitous beta-tubulin disrupts microtubule assembly and inhibits cell proliferation. Mol Biol Cell 15: 3123-3131. – reference: Lopata MA, Cleveland DW. 1987. In vivo microtubules are copolymers of available beta-tubulin isotypes: localization of each of six vertebrate beta-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens. J Cell Biol 105: 1707-1720. – reference: Banerjee A, Roach MC, Trcka P, Ludueña RF. 1990. Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta-tubulin. J Biol Chem 265: 1794-1799. – reference: Sullivan KF, Havercroft JC, Machlin PS, Cleveland DW. 1986. Sequence and expression of the chicken beta 5- and beta 4-tubulin genes define a pair of divergent beta-tubulins with complementary patterns of expression. Mol Cell Biol 6: 4409-4418. – reference: Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ, Martino S, Perez EA, Muss HB, Norton L, et al. 2006. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295: 1658-1667. – reference: Shalli K, Brown I, Heys SD, Schofield AC. 2005. Alterations of beta-tubulin isotypes in breast cancer cells resistant to docetaxel. Faseb J 19: 1299-1301. – reference: Ohishi Y, Oda Y, Basaki Y, Kobayashi H, Wake N, Kuwano M, Tsuneyoshi M. 2007. Expression of beta-tubulin isotypes in human primary ovarian carcinoma. Gynecol Oncol 105: 586-592. – reference: Seve P, Lai R, Ding K, Winton T, Butts C, Mackey J, Dumontet C, Dabbagh L, Aviel-Ronen S, Seymour L, et al. 2007a. Class III beta-tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non-small cell lung cancer: analysis of NCIC JBR. 10. Clin Cancer Res 13: 994-999. – reference: Hasegawa S, Miyoshi Y, Egawa C, Ishitobi M, Taguchi T, Tamaki Y, Monden M, Noguchi S. 2003. Prediction of response to docetaxel by quantitative analysis of class I and III beta-tubulin isotype mRNA expression in human breast cancers. Clin Cancer Res 9: 2992-2997. – reference: Kavallaris M, Tait AS, Walsh BJ, He L, Horwitz SB, Norris MD, Haber M. 2001. Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res 61: 5803-5809. – reference: Berrieman HK, Lind MJ, Cawkwell L. 2004. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol 5: 158-164. – reference: Conforti R, Boulet T, Tomasic G, Taranchon E, Arriagada R, Spielmann M, Ducourtieux M, Soria JC, Tursz T, Delaloge S, Michiels S, Andre F. 2007. Breast cancer molecular subclassification and estrogen receptor expression to predict efficacy of adjuvant anthracyclines-based chemotherapy: a biomarker study from two randomized trials. Ann Oncol 18: 1477-1483. – reference: Kamath K, Wilson L, Cabral F, Jordan MA. 2005. BetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 280: 12902-12907. – reference: Verhey KJ, Gaertig J. 2007. The tubulin code. Cell Cycle 6: 2152-2160. – reference: Seve P, Reiman T, Lai R, Hanson J, Santos C, Johnson L, Dabbagh L, Sawyer M, Dumontet C, Mackey JR. 2007b. Class III beta-tubulin is a marker of paclitaxel resistance in carcinomas of unknown primary site. Cancer Chemother Pharmacol 60: 27-34. – reference: Ferrandina G, Zannoni GF, Martinelli E, Paglia A, Gallotta V, Mozzetti S, Scambia G, Ferlini C. 2006. Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res 12: 2774-2779. – reference: Havercroft JC, Cleveland DW. 1984. Programmed expression of beta-tubulin genes during development and differentiation of the chicken. J Cell Biol 99: 1927-1935. – volume: 112 start-page: 2213 issue: Part 13 year: 1999 end-page: 2221 article-title: Overexpression of class I, II or IVb beta‐tubulin isotypes in CHO cells is insufficient to confer resistance to paclitaxel publication-title: J Cell Sci – volume: 68 start-page: 9817 year: 2008 end-page: 9824 article-title: Tubulin‐targeted drug action: functional significance of class ii and class IVb beta‐tubulin in vinca alkaloid sensitivity publication-title: Cancer Res – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method publication-title: Methods – volume: 19 start-page: 1299 year: 2005 end-page: 1301 article-title: Alterations of beta‐tubulin isotypes in breast cancer cells resistant to docetaxel publication-title: Faseb J – volume: 6 start-page: 2152 year: 2007 end-page: 2160 article-title: The tubulin code publication-title: Cell Cycle – volume: 35 start-page: 255 year: 2009 end-page: 261 article-title: Microtubule dynamics as a target in oncology publication-title: Cancer Treat Rev – volume: 7 start-page: 2912 year: 2001 end-page: 2922 article-title: Expression of beta‐tubulin isotypes in human ovarian carcinoma xenografts and in a sub‐panel of human cancer cell lines from the NCI‐Anticancer Drug Screen: correlation with sensitivity to microtubule active agents publication-title: Clin Cancer Res – volume: 97 start-page: 2904 year: 2000 end-page: 2909 article-title: A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells publication-title: Proc Natl Acad Sci USA – start-page: 21 year: 2001 end-page: 34 – volume: 5 start-page: R157 year: 2003 end-page: R169 article-title: Beta class II tubulin predominates in normal and tumor breast tissues publication-title: Breast Cancer Res – volume: 91 start-page: 11358 year: 1994 end-page: 11362 article-title: Microtubule dynamics in vitro are regulated by the tubulin isotype composition publication-title: Proc Natl Acad Sci USA – volume: 61 start-page: 5803 year: 2001 end-page: 5809 article-title: Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells publication-title: Cancer Res – volume: 11 start-page: 298 year: 2005 end-page: 305 article-title: Class III beta‐tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients publication-title: Clin Cancer Res – volume: 65 start-page: 675 year: 2008 end-page: 685 article-title: Beta‐tubulin isotype classes II and V expression patterns in nonsmall cell lung carcinomas publication-title: Cell Motil Cytoskeleton – volume: 105 start-page: 586 year: 2007 end-page: 592 article-title: Expression of beta‐tubulin isotypes in human primary ovarian carcinoma publication-title: Gynecol Oncol – volume: 104 start-page: 326 year: 2007 end-page: 330 article-title: Expression of class III beta tubulin in cervical cancer patients administered preoperative radiochemotherapy: correlation with response to treatment and clinical outcome publication-title: Gynecol Oncol – volume: 99 start-page: 1927 year: 1984 end-page: 1935 article-title: Programmed expression of beta‐tubulin genes during development and differentiation of the chicken publication-title: J Cell Biol – volume: 295 start-page: 1658 year: 2006 end-page: 1667 article-title: Estrogen‐receptor status and outcomes of modern chemotherapy for patients with node‐positive breast cancer publication-title: JAMA – volume: 272 start-page: 17118 year: 1997 end-page: 17125 article-title: Paclitaxel‐resistant human ovarian cancer cells have mutant beta‐tubulins that exhibit impaired paclitaxel‐driven polymerization publication-title: J Biol Chem – volume: 63 start-page: 41 year: 2006 end-page: 52 article-title: Comparison of beta‐tubulin mRNA and protein levels in 12 human cancer cell lines publication-title: Cell Motil Cytoskeleton – volume: 83 start-page: 4327 year: 1986 end-page: 4331 article-title: Identification of conserved isotype‐defining variable region sequences for four vertebrate beta tubulin polypeptide classes publication-title: Proc Natl Acad Sci USA – volume: 44 start-page: 15858 year: 2005 end-page: 15870 article-title: Detection of human betaV‐tubulin expression in epithelial cancer cell lines by tubulin proteomics publication-title: Biochemistry – volume: 103 start-page: 1903 year: 1986 end-page: 1910 article-title: The mammalian beta‐tubulin repertoire: hematopoietic expression of a novel, heterologous beta‐tubulin isotype publication-title: J Cell Biol – volume: 178 start-page: 207 year: 1998 end-page: 275 article-title: Multiple forms of tubulin: different gene products and covalent modifications publication-title: Int Rev Cytol – volume: 6 start-page: 4409 year: 1986 end-page: 4418 article-title: Sequence and expression of the chicken beta 5‐ and beta 4‐tubulin genes define a pair of divergent beta‐tubulins with complementary patterns of expression publication-title: Mol Cell Biol – volume: 60 start-page: 27 year: 2007b end-page: 34 article-title: Class III beta‐tubulin is a marker of paclitaxel resistance in carcinomas of unknown primary site publication-title: Cancer Chemother Pharmacol – volume: 10 start-page: 597 year: 2003 end-page: 607 article-title: Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug‐target interactions publication-title: Chem Biol – volume: 52 start-page: 174 year: 2002 end-page: 182 article-title: Distribution of the class II beta‐tubulin in developmental and adult rat tissues publication-title: Cell Motil Cytoskeleton – volume: 12 start-page: 2774 year: 2006 end-page: 2779 article-title: Class III beta‐tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients publication-title: Clin Cancer Res – volume: 5 start-page: 158 year: 2004 end-page: 164 article-title: Do beta‐tubulin mutations have a role in resistance to chemotherapy? publication-title: Lancet Oncol – volume: 105 start-page: 1707 year: 1987 end-page: 1720 article-title: In vivo microtubules are copolymers of available beta‐tubulin isotypes: localization of each of six vertebrate beta‐tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens publication-title: J Cell Biol – volume: 8 start-page: 3914 year: 2009 end-page: 3924 article-title: The hematopoietic‐specific 1‐tubulin is naturally resistant to 2‐Methoxyestradiol and protects patients from drug‐induced myelosuppression publication-title: Cell Cycle – volume: 13 start-page: 994 year: 2007a end-page: 999 article-title: Class III beta‐tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non‐small cell lung cancer: analysis of NCIC JBR. 10 publication-title: Clin Cancer Res – volume: 9 start-page: 2992 year: 2003 end-page: 2997 article-title: Prediction of response to docetaxel by quantitative analysis of class I and III beta‐tubulin isotype mRNA expression in human breast cancers publication-title: Clin Cancer Res – volume: 26 start-page: 2636 year: 2008 end-page: 2643 article-title: Estrogen receptor expression and efficacy of docetaxel‐containing adjuvant chemotherapy in patients with node‐positive breast cancer: results from a pooled analysis publication-title: J Clin Oncol – volume: 11 start-page: 5481 year: 2005 end-page: 5486 article-title: Expression of class III {beta}‐tubulin is predictive of patient outcome in patients with non‐small cell lung cancer receiving vinorelbine‐based chemotherapy publication-title: Clin Cancer Res – volume: 56 start-page: 45 year: 2003 end-page: 56 article-title: Expression of class III beta‐tubulin reduces microtubule assembly and confers resistance to paclitaxel publication-title: Cell Motil Cytoskeleton – volume: 265 start-page: 1794 year: 1990 end-page: 1799 article-title: Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta‐tubulin publication-title: J Biol Chem – volume: 36 start-page: 3554 year: 1997 end-page: 3562 article-title: Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta‐tubulin isotypes publication-title: Biochemistry – volume: 280 start-page: 12902 year: 2005 end-page: 12907 article-title: BetaIII‐tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability publication-title: J Biol Chem – volume: 94 start-page: 1971 year: 2008 end-page: 1982 article-title: Conformational analysis of the carboxy‐terminal tails of human beta‐tubulin isotypes publication-title: Biophys J – volume: 104 start-page: 381 year: 1987 end-page: 383 article-title: The multitubulin hypothesis revisited: what have we learned? publication-title: J Cell Biol – volume: 344 start-page: 389 year: 1990 article-title: Tubulin site interpretation publication-title: Nature – volume: 18 start-page: 1477 year: 2007 end-page: 1483 article-title: Breast cancer molecular subclassification and estrogen receptor expression to predict efficacy of adjuvant anthracyclines‐based chemotherapy: a biomarker study from two randomized trials publication-title: Ann Oncol – volume: 15 start-page: 3123 year: 2004 end-page: 3131 article-title: A ubiquitous beta‐tubulin disrupts microtubule assembly and inhibits cell proliferation publication-title: Mol Biol Cell – ident: e_1_2_6_35_1 doi: 10.1007/978-3-642-59524-0_3 – ident: e_1_2_6_37_1 doi: 10.1158/1078-0432.CCR-05-0285 – ident: e_1_2_6_11_1 doi: 10.1093/annonc/mdm209 – ident: e_1_2_6_28_1 doi: 10.1083/jcb.105.4.1707 – volume: 9 start-page: 2992 year: 2003 ident: e_1_2_6_22_1 article-title: Prediction of response to docetaxel by quantitative analysis of class I and III beta‐tubulin isotype mRNA expression in human breast cancers publication-title: Clin Cancer Res – ident: e_1_2_6_39_1 doi: 10.1007/s00280-006-0343-1 – ident: e_1_2_6_15_1 doi: 10.4161/cc.8.23.10105 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.91.24.11358 – ident: e_1_2_6_38_1 doi: 10.1158/1078-0432.CCR-06-1503 – ident: e_1_2_6_18_1 doi: 10.1158/0008-5472.CAN-08-1501 – volume: 7 start-page: 2912 year: 2001 ident: e_1_2_6_32_1 article-title: Expression of beta‐tubulin isotypes in human ovarian carcinoma xenografts and in a sub‐panel of human cancer cell lines from the NCI‐Anticancer Drug Screen: correlation with sensitivity to microtubule active agents publication-title: Clin Cancer Res – ident: e_1_2_6_20_1 doi: 10.1073/pnas.040546297 – ident: e_1_2_6_46_1 doi: 10.1083/jcb.103.5.1903 – ident: e_1_2_6_2_1 doi: 10.1200/JCO.2007.14.9146 – ident: e_1_2_6_33_1 doi: 10.1016/j.ygyno.2007.01.044 – ident: e_1_2_6_9_1 doi: 10.1083/jcb.104.3.381 – ident: e_1_2_6_29_1 doi: 10.1529/biophysj.107.115113 – ident: e_1_2_6_36_1 doi: 10.1016/j.ctrv.2008.11.001 – ident: e_1_2_6_16_1 doi: 10.1158/1078-0432.CCR-05-2715 – ident: e_1_2_6_43_1 doi: 10.1021/bi051004p – ident: e_1_2_6_24_1 doi: 10.1002/cm.20109 – ident: e_1_2_6_5_1 doi: 10.1016/S1470-2045(04)01411-1 – ident: e_1_2_6_17_1 doi: 10.1016/j.ygyno.2006.08.046 – ident: e_1_2_6_14_1 doi: 10.1186/bcr631 – ident: e_1_2_6_19_1 doi: 10.1074/jbc.272.27.17118 – ident: e_1_2_6_3_1 doi: 10.1002/cm.10042 – ident: e_1_2_6_6_1 doi: 10.1001/jama.295.14.1658 – ident: e_1_2_6_12_1 doi: 10.1002/cm.20297 – ident: e_1_2_6_30_1 doi: 10.1016/S0074-7696(08)62138-5 – ident: e_1_2_6_44_1 doi: 10.4161/cc.6.17.4633 – volume: 265 start-page: 1794 year: 1990 ident: e_1_2_6_4_1 article-title: Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta‐tubulin publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)40087-2 – ident: e_1_2_6_10_1 doi: 10.1038/344389a0 – volume: 61 start-page: 5803 year: 2001 ident: e_1_2_6_26_1 article-title: Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells publication-title: Cancer Res – ident: e_1_2_6_27_1 doi: 10.1006/meth.2001.1262 – ident: e_1_2_6_40_1 doi: 10.1096/fj.04-3178fje – ident: e_1_2_6_25_1 doi: 10.1074/jbc.M414477200 – ident: e_1_2_6_45_1 doi: 10.1016/S1074-5521(03)00141-8 – ident: e_1_2_6_7_1 doi: 10.1091/mbc.E04-01-0060 – ident: e_1_2_6_13_1 doi: 10.1021/bi962724m – ident: e_1_2_6_42_1 doi: 10.1128/MCB.6.12.4409 – volume: 112 start-page: 2213 issue: 13 year: 1999 ident: e_1_2_6_8_1 article-title: Overexpression of class I, II or IVb beta‐tubulin isotypes in CHO cells is insufficient to confer resistance to paclitaxel publication-title: J Cell Sci doi: 10.1242/jcs.112.13.2213 – ident: e_1_2_6_23_1 doi: 10.1083/jcb.99.6.1927 – ident: e_1_2_6_41_1 doi: 10.1073/pnas.83.12.4327 – volume: 11 start-page: 298 year: 2005 ident: e_1_2_6_31_1 article-title: Class III beta‐tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.298.11.1 – ident: e_1_2_6_21_1 doi: 10.1002/cm.10132 |
SSID | ssj0069303 |
Score | 2.391018 |
Snippet | The β‐tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several... The beta-tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 214 |
SubjectTerms | Gene Expression Regulation, Neoplastic Humans isotypes microtubule-binding drugs microtubules Neoplasms - genetics Organ Specificity Protein Isoforms - genetics Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - analysis RNA, Messenger - genetics Tubulin - genetics β-tubulin |
Title | Tumoral and tissue-specific expression of the major human β-tubulin isotypes |
URI | https://api.istex.fr/ark:/67375/WNG-PJTXTL96-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcm.20436 https://www.ncbi.nlm.nih.gov/pubmed/20191564 https://www.proquest.com/docview/733803832 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSuQwFA6iCN6suuru-LNkQfSq2kl_cym6KsM6qIw44EVI2hTccVqZaWH0ykfwWXwQH8In8Zz0Z3FRkL3qzWmb5iQ5X9LvfIeQzSiJHRbq0PJ14Fmu9GILUJFt2YkL6J7LmHFMTj7p-scXbqfv9StWJebClPoQzYEbzgyzXuMEl2q8-1c0NMI8ctdBte2246Ns_sF5oxyFBf4Mt5673HIgyNa6szbbrW98E4lmsFMn78HMt6jVhJ3DeXJVN7hkmwx2ilztRPf_aDn-3xctkC8VGqV75fBZJFM6_Upmy_qUd0vkrFcMMYOfyjSmuXHRy8MjJmciwYjqScWiTWmWUECSdCj_ZCNq6v7R5yewzQuFVHd6Pc7wsHe8TC4Of_X2j62qBoMVQbf5mLmjIg0RLG7HPPRhMyJ5ohNbcS9QKnQBUIY8jiDGYaqJw6XLbJWEsC7whNtMOStkOs1S_Z3QQLGEA6DwGcoUBihlrzHVyNVwB1dBi2zX_hBRJVCOdTJuRCmtzEQ0FKaDWuRnY3lbinK8Y7NlXNoYyNEASWyBJy67R-K00-v3fnNfHLUIrX0uYGrh_xKZ6qwYiwC27zbs4FmLfCvHQvMwgE0cZXbgLcajHzZD7J-Y6-pnDdfIXElQQHLQOpnOR4XeANyTqx9mhL8CKPb-Aw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5RUNVeKNC_hQJGQu0pkDq_FqcKAQvdXZUqqHuoZMWJI7V0k2o3kYATj9Bn4UF4CJ6EGWcTREUl1FMu48Tx2JnPzjffAGwmWerwUIeWrwPPcmMvtRAV2ZaduYjuRZxyQcnJ_YHfPXGPht5wBnaaXJhaH6I9cKOVYb7XtMDpQHr7TjU0oURy1_GfwJz5PUeI6GurHUUl_gy7XrjCcjDMNsqzNt9uWt6LRXM0rGcPAc37uNUEnv0X8L3pcs03Od2qSrWVXPyl5vif77QA81NAyj7VM2gRZnS-BE_rEpXnL-E4qkaUxM_iPGWl8dLN5R_KzySOEdNnUyJtzoqMIZhko_hnMWam9B-7vkLbslLEdmc_JgWd905ewcn-XrTbtaZlGKwEx82n5B2VaAxi6cdUhD7uR2KR6cxWwguUCl3ElKFIEwxzlG3iiNjltspC_DSITNhcOa9hNi9y_RZYoHgmEFP4nJQKA1Kz15Rt5GpsIVTQgQ-NQ2Qy1SinUhm_ZK2uzGUykmaAOrDRWv6udTkesHlvfNoaxONT4rEFnvw2OJBfjqJh1BO-POgAa5wucXXRL5M410U1kQHu4G3cxPMOvKknQ3szRE6ClHbwKcal_-yG3O2b6_JjDdfhWTfq92TvcPB5BZ7XfAXiCr2D2XJc6VWEQaVaM9P9FgeOAjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BqyIuQAuF5a9GquCUNnWcHx9RYVtKu2rRVqzUgxUnttSWTardRCqceASehQfhIXgSZpwfVFQkxCmXSeJ4bM9n55tvANYzmwc8MYkXmTj0RBrmHqIi3_OtQHQv05xLSk4-GEW7x2JvEk5aViXlwjT6EP2BG80Mt17TBL_I7eZv0dCM8shFEN2ERRFhlCRA9KGXjqIKf45cL4X0AoyynfCszze7O6-EokXq1cvrcOZV2OrizvAunHQtbugm5xt1pTeyL3-IOf7fJ92DOy0cZa-b8bMMN0yxAktNgcrP9-FoXE8phZ-lRc4q56OfX79RdiYxjJi5bGm0BSstQyjJpulZOWOu8B_78R1tq1oT152dzks67Z0_gOPh2_H2rtcWYfAy7LaIUnd0ZjCE5Vu5TCLcjaTSGutrGcZaJwIRZSLzDIMc5ZoEMhXc1zbBhUFa6XMdrMJCURbmEbBYcysRUUScdApj0rI3lGskDN4hdTyAV50_VNYqlFOhjE-q0VbmKpsq10EDeNFbXjSqHNfYvHQu7Q3S2Tmx2OJQfRztqMO98WS8LyO1MwDW-Vzh3KIfJmlhynquYty_-7iF5wN42IyF_mGImyTp7OBbnEf_2gy1feCuj__VcA1uHb4Zqv13o_dP4HZDViCi0FNYqGa1eYYYqNLP3WD_BQXkAN8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumoral+and+tissue%E2%80%90specific+expression+of+the+major+human+%CE%B2%E2%80%90tubulin+isotypes&rft.jtitle=Cytoskeleton+%28Hoboken%2C+N.J.%29&rft.au=Leandro%E2%80%90Garc%C3%ADa%2C+Luis+J.&rft.au=Leskel%C3%A4%2C+Susanna&rft.au=Landa%2C+I%C3%B1igo&rft.au=Montero%E2%80%90Conde%2C+Cristina&rft.date=2010-04-01&rft.issn=1949-3584&rft.eissn=1949-3592&rft.volume=67&rft.issue=4&rft.spage=214&rft.epage=223&rft_id=info:doi/10.1002%2Fcm.20436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cm_20436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3584&client=summon |