Prediction of the biogas production using GA and ACO input features selection method for ANN model

This paper presents a fast and reliable approach to analyze the biogas production process with respect to the biogas production rate. The experimental data used for the developed models included 15 process variables measured at an agricultural biogas plant in Germany. In this context, the concentrat...

Full description

Saved in:
Bibliographic Details
Published inInformation processing in agriculture Vol. 6; no. 3; pp. 349 - 356
Main Authors Beltramo, Tanja, Klocke, Michael, Hitzmann, Bernd
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2019
Elsevier
Subjects
Online AccessGet full text
ISSN2214-3173
2214-3173
DOI10.1016/j.inpa.2019.01.002

Cover

Abstract This paper presents a fast and reliable approach to analyze the biogas production process with respect to the biogas production rate. The experimental data used for the developed models included 15 process variables measured at an agricultural biogas plant in Germany. In this context, the concentration of volatile fatty acids, total solids, volatile solids acid detergent fibre, acid detergent lignin, neutral detergent fibre, ammonium nitrogen, hydraulic retention time, and organic loading rate were used. Artificial neural networks (ANN) were established to predict the biogas production rate. An ant colony optimization and genetic algorithms were implemented to perform the variable selection. They identified the significant process variables, reduced the model dimension and improved the prediction capacity of the ANN models. The best prediction of the biogas production rate was obtained with an error of prediction of 6.24% and a coefficient of determination of R2 = 0.9.
AbstractList This paper presents a fast and reliable approach to analyze the biogas production process with respect to the biogas production rate. The experimental data used for the developed models included 15 process variables measured at an agricultural biogas plant in Germany. In this context, the concentration of volatile fatty acids, total solids, volatile solids acid detergent fibre, acid detergent lignin, neutral detergent fibre, ammonium nitrogen, hydraulic retention time, and organic loading rate were used. Artificial neural networks (ANN) were established to predict the biogas production rate. An ant colony optimization and genetic algorithms were implemented to perform the variable selection. They identified the significant process variables, reduced the model dimension and improved the prediction capacity of the ANN models. The best prediction of the biogas production rate was obtained with an error of prediction of 6.24% and a coefficient of determination of R2 = 0.9.
This paper presents a fast and reliable approach to analyze the biogas production process with respect to the biogas production rate. The experimental data used for the developed models included 15 process variables measured at an agricultural biogas plant in Germany. In this context, the concentration of volatile fatty acids, total solids, volatile solids acid detergent fibre, acid detergent lignin, neutral detergent fibre, ammonium nitrogen, hydraulic retention time, and organic loading rate were used. Artificial neural networks (ANN) were established to predict the biogas production rate. An ant colony optimization and genetic algorithms were implemented to perform the variable selection. They identified the significant process variables, reduced the model dimension and improved the prediction capacity of the ANN models. The best prediction of the biogas production rate was obtained with an error of prediction of 6.24% and a coefficient of determination of R2 = 0.9. Keywords: Ant colony optimization, Artificial neural networks, Biogas, Genetic algorithm
Author Klocke, Michael
Hitzmann, Bernd
Beltramo, Tanja
Author_xml – sequence: 1
  givenname: Tanja
  surname: Beltramo
  fullname: Beltramo, Tanja
  email: tanja.beltramo@gmail.com
  organization: Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart 70599, Germany
– sequence: 2
  givenname: Michael
  surname: Klocke
  fullname: Klocke, Michael
  organization: Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam 14469, Germany
– sequence: 3
  givenname: Bernd
  surname: Hitzmann
  fullname: Hitzmann, Bernd
  organization: Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart 70599, Germany
BookMark eNqNkUtvEzEUhS1UJErpH2DlJZsMfo4diU0UQalUtV3A2vLjOnU0GQd7BtR_X4dBCLGo6o0t-5xzre-8RWdjHgGh95R0lND-475L49F2jNB1R2hHCHuFzhmjYsWp4mf_nN-gy1r3hBCqei4IOUfuvkBIfkp5xDni6QGwS3lnKz6WHOblYa5p3OGrDbZjwJvtHW7z5glHsNNcoOIKAyzKA0wPOeCYC97c3uJDDjC8Q6-jHSpc_tkv0Pcvn79tv65u7q6ut5ubledSs5V0CrSTsqdRO2-5cpo7r6JiPAopmXa6d04rpoiIbUnhuF4rYddOcCIpv0DXS27Idm-OJR1seTTZJvP7IpedsWVKfgCjvV73QROrJBOspXJtNdGhD1z4KKBl8SVrbmQff9lh-BtIiTlRN3tzom5O1A2hplFvrg-Lq7H7MUOdzCFVD8NgR8hzNawVQbhWSjWpXqS-5FoLROPTZE8Mp2LT8PwU9p_1RV_7tJigNfAzQTHVJxh9K7-07hqi9Jz9CYMEvMI
CitedBy_id crossref_primary_10_1016_j_cej_2024_149826
crossref_primary_10_1016_j_jclepro_2024_140666
crossref_primary_10_35291_2454_9150_2020_0464
crossref_primary_10_1007_s11356_022_23780_5
crossref_primary_10_1016_j_fbio_2021_101299
crossref_primary_10_1186_s40323_023_00251_1
crossref_primary_10_1007_s42853_022_00173_7
crossref_primary_10_1051_e3sconf_202122901022
crossref_primary_10_1088_1742_6596_2089_1_012003
crossref_primary_10_1016_j_jclepro_2024_142909
crossref_primary_10_22531_muglajsci_618373
crossref_primary_10_1016_j_cec_2024_100088
crossref_primary_10_1007_s10098_020_01816_z
crossref_primary_10_1021_acsestengg_3c00043
crossref_primary_10_1007_s13399_020_01057_6
crossref_primary_10_1016_j_renene_2023_118904
crossref_primary_10_1007_s13399_023_04958_4
crossref_primary_10_1016_j_renene_2024_120554
crossref_primary_10_1021_acssuschemeng_1c04612
crossref_primary_10_1111_gcbb_12816
crossref_primary_10_1016_j_fuel_2020_119081
crossref_primary_10_1080_15435075_2021_1914630
crossref_primary_10_1007_s42108_022_00226_9
crossref_primary_10_1155_2024_4599371
crossref_primary_10_1155_2023_2871769
crossref_primary_10_1155_2021_9202127
crossref_primary_10_1021_acsestengg_4c00276
Cites_doi 10.1016/0003-2670(94)80307-2
10.1002/rnc.727
10.1016/j.biosystemseng.2016.01.006
10.1023/A:1022602019183
10.1016/j.knosys.2012.11.005
10.2166/wst.2002.0292
10.1186/1471-2105-6-30
10.1093/bioinformatics/btl474
10.1002/bit.21282
10.1016/j.renene.2012.03.027
10.1016/j.resconrec.2009.08.012
10.1002/cem.1180080107
10.1016/S0168-1656(98)00118-7
10.1016/j.envsoft.2006.03.004
10.1016/j.tcs.2005.05.020
10.1007/s00253-015-6627-9
10.1007/s10666-008-9150-x
10.1016/j.jtbi.2005.05.016
10.1016/j.chemolab.2015.02.002
10.1016/S0169-7439(01)00155-1
10.1016/j.chemolab.2014.01.012
10.1016/j.envsoft.2004.09.006
10.1111/1751-7915.12263
10.1016/j.cam.2004.07.034
ContentType Journal Article
Copyright 2019 China Agricultural University
Copyright_xml – notice: 2019 China Agricultural University
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1016/j.inpa.2019.01.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals 免費期刊
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2214-3173
EndPage 356
ExternalDocumentID oai_doaj_org_article_8c896d80a75242bb838a808d6d34cf4e
10.1016/j.inpa.2019.01.002
10_1016_j_inpa_2019_01_002
S2214317318302270
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c3582-5b7e8b5561f8bca37b83bc7f723f45528b86bb872704ffff54b38974a9b430513
IEDL.DBID UNPAY
ISSN 2214-3173
IngestDate Fri Oct 03 12:42:14 EDT 2025
Tue Aug 19 19:35:19 EDT 2025
Thu Sep 04 18:51:43 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Tue Jul 01 03:27:31 EDT 2025
Wed May 17 02:05:02 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Ant colony optimization
Biogas
Genetic algorithm
Artificial neural networks
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3582-5b7e8b5561f8bca37b83bc7f723f45528b86bb872704ffff54b38974a9b430513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.inpa.2019.01.002
PQID 2221038777
PQPubID 24069
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_8c896d80a75242bb838a808d6d34cf4e
unpaywall_primary_10_1016_j_inpa_2019_01_002
proquest_miscellaneous_2221038777
crossref_citationtrail_10_1016_j_inpa_2019_01_002
crossref_primary_10_1016_j_inpa_2019_01_002
elsevier_sciencedirect_doi_10_1016_j_inpa_2019_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
20190901
2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle Information processing in agriculture
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Leardi (b0160) 1994; 8
Samadianfard, Ghorbani, Mohammadi (b0185) 2018; 5
Mccall (b0155) 2005; 184
Hitzmann, Ritzka, Ulber, Schöngarth, Broxtermann (b0025) 1998; 65
Shmygelska, Hoos (b0100) 2005; 6
Sabzi, Abbaspour-Gilandeh, Garcia-Mateos (b0035) 2018; 5
Tsai, Eberle, Chu (b0165) 2013; 39
Kessler (b0020) 2007
Klang, Theuerl, Szewzyk, Huth, Tölle, Klocke (b0005) 2015; 8
Beltramo, Ranzan, Hinrichs, Hitzmann (b0085) 2016; 143
Silalahi, Reano, Lansigan, Panopio, Bantayan (b0125) 2016; 4
Demuth, Beale (b0140) 2000
Golhani, Balasundram, Vadamalai, Pradhan (b0040) 2018; 5
Ozkaya, Demir, Bilgili (b0065) 2007; 22
Abu Qdais, Bani Hani, Shatnawi (b0175) 2010; 54
Gueguim Kana, Oloke, Lateef, Adesiyan (b0170) 2012; 46
Sahinkaya, Ozkaya, Kaksonen, Puhakka (b0060) 2007; 97
Nache, Scheier, Schmidt, Hitzmann (b0120) 2015; 142
Lindner, Hitzmann (b0110) 2006; 238
Ma, Fan, Li, Tang (b0045) 2018; 5
Theuerl, Kohrs, Benndorf, Maus, Wibberg, Schlüter (b0010) 2015; 99
Dorigo, Blum (b0095) 2005; 344
Hitzmann, Kullick (b0030) 1994; 294
Ranzan, Strohm, Ranzan, Trierweiler, Hitzmann, Trierweiler (b0115) 2014; 132
Goldberg, Holland (b0090) 1988; 3
Strik, Domnanovich, Zani, Braun, Holubar (b0055) 2005; 20
Friedmann H, Görtz G, Helm M, Kaltschmitt M, Knopf U, et al. Fermentation of organic materials – characterisation of the substrate, sampling, collection of material data fermentation tests (Vdi 4630). In: Vdi-Handbuch Energietechnik, Verein Deutscher Ingenieure. Düsseldorf: Beuth; 2006. p. 1–48.
Taki, Mehdizadeh, Rahnama, Rahmati-Joneidabad (b0130) 2018; 2
Hagan, Demuth, Jesus (b0150) 2002; 12
Kosakovsky Pond Sl, Posada D, Gravenor MB, Woelk CH, Frost SDW. GARD: a genetic algorithm for recombination detection. Bioinformatics 2006;22:3096–8.
Klocke M, editor. Prozessmikrobiologie In Landwirtschaftlichen Biogasanlagen: Ermittlung Der Mikrobiellen Diversität Sowie Von Hauptsächlichen Verfahrenstechnischen Einflussfaktoren Auf Die Mikroflora. Potsdam-Bornim: Leibniz-Institut Für Agrartechnik Potsdam-Bornim E.V.; 2014 [in German].
Sehgal, Charkraborty, Sahoo (b0050) 2018; 3
Bernardi, Zema, Tamburino, Zimbalatti (b0075) 2017; 4
Li, Li, Wu, Zhu, Yue (b0180) 2018; 5
Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, et al. Anaerobic digestion model No. 1: [(Adm1)]. London: Iwa Publ; 2002.
Wold, Sjöström, Eriksson (b0145) 2001; 58
Kanat, Saral (b0070) 2009; 14
Strik (10.1016/j.inpa.2019.01.002_b0055) 2005; 20
Sabzi (10.1016/j.inpa.2019.01.002_b0035) 2018; 5
Kessler (10.1016/j.inpa.2019.01.002_b0020) 2007
Sahinkaya (10.1016/j.inpa.2019.01.002_b0060) 2007; 97
Theuerl (10.1016/j.inpa.2019.01.002_b0010) 2015; 99
Ranzan (10.1016/j.inpa.2019.01.002_b0115) 2014; 132
Samadianfard (10.1016/j.inpa.2019.01.002_b0185) 2018; 5
Hitzmann (10.1016/j.inpa.2019.01.002_b0030) 1994; 294
Ozkaya (10.1016/j.inpa.2019.01.002_b0065) 2007; 22
Taki (10.1016/j.inpa.2019.01.002_b0130) 2018; 2
Gueguim Kana (10.1016/j.inpa.2019.01.002_b0170) 2012; 46
Ma (10.1016/j.inpa.2019.01.002_b0045) 2018; 5
Beltramo (10.1016/j.inpa.2019.01.002_b0085) 2016; 143
Silalahi (10.1016/j.inpa.2019.01.002_b0125) 2016; 4
10.1016/j.inpa.2019.01.002_b0105
Hitzmann (10.1016/j.inpa.2019.01.002_b0025) 1998; 65
Sehgal (10.1016/j.inpa.2019.01.002_b0050) 2018; 3
Goldberg (10.1016/j.inpa.2019.01.002_b0090) 1988; 3
Shmygelska (10.1016/j.inpa.2019.01.002_b0100) 2005; 6
Demuth (10.1016/j.inpa.2019.01.002_b0140) 2000
10.1016/j.inpa.2019.01.002_b0080
Mccall (10.1016/j.inpa.2019.01.002_b0155) 2005; 184
Tsai (10.1016/j.inpa.2019.01.002_b0165) 2013; 39
Lindner (10.1016/j.inpa.2019.01.002_b0110) 2006; 238
Dorigo (10.1016/j.inpa.2019.01.002_b0095) 2005; 344
Leardi (10.1016/j.inpa.2019.01.002_b0160) 1994; 8
Abu Qdais (10.1016/j.inpa.2019.01.002_b0175) 2010; 54
10.1016/j.inpa.2019.01.002_b0135
Hagan (10.1016/j.inpa.2019.01.002_b0150) 2002; 12
Klang (10.1016/j.inpa.2019.01.002_b0005) 2015; 8
Kanat (10.1016/j.inpa.2019.01.002_b0070) 2009; 14
10.1016/j.inpa.2019.01.002_b0015
Bernardi (10.1016/j.inpa.2019.01.002_b0075) 2017; 4
Golhani (10.1016/j.inpa.2019.01.002_b0040) 2018; 5
Li (10.1016/j.inpa.2019.01.002_b0180) 2018; 5
Wold (10.1016/j.inpa.2019.01.002_b0145) 2001; 58
Nache (10.1016/j.inpa.2019.01.002_b0120) 2015; 142
References_xml – volume: 5
  start-page: 308
  year: 2018
  end-page: 319
  ident: b0045
  article-title: Raw milk service platform using BP neural network and fuzzy inference
  publication-title: Inform Process Agric
– reference: Klocke M, editor. Prozessmikrobiologie In Landwirtschaftlichen Biogasanlagen: Ermittlung Der Mikrobiellen Diversität Sowie Von Hauptsächlichen Verfahrenstechnischen Einflussfaktoren Auf Die Mikroflora. Potsdam-Bornim: Leibniz-Institut Für Agrartechnik Potsdam-Bornim E.V.; 2014 [in German].
– volume: 5
  start-page: 11
  year: 2018
  end-page: 20
  ident: b0180
  article-title: A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features
  publication-title: Inform Process Agric
– volume: 294
  start-page: 243
  year: 1994
  end-page: 249
  ident: b0030
  article-title: Evaluation of ph field effect transistor measurement signals by neural networks
  publication-title: Anal Chim Acta
– volume: 238
  start-page: 111
  year: 2006
  end-page: 123
  ident: b0110
  article-title: Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the fisher information matrix
  publication-title: J Theor Biol
– volume: 143
  start-page: 68
  year: 2016
  end-page: 78
  ident: b0085
  article-title: Artificial neural network prediction of the biogas flow rate optimised with an ant colony algorithm
  publication-title: Biosyst Eng
– volume: 4
  start-page: 316
  year: 2017
  end-page: 320
  ident: b0075
  article-title: An automated medium scale prototype for anearobic co-digestion of olive mill wastewater
  publication-title: Inform Process Agric
– volume: 6
  start-page: 30
  year: 2005
  ident: b0100
  article-title: An ant colony optimisation algorithm for the 2d and 3d hydrophobic polar protein folding problem
  publication-title: BMC Bioinf
– volume: 22
  start-page: 815
  year: 2007
  end-page: 822
  ident: b0065
  article-title: Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors
  publication-title: Environ Modell Softw
– volume: 344
  start-page: 243
  year: 2005
  end-page: 278
  ident: b0095
  article-title: Ant colony optimization theory: a survey
  publication-title: Theoret Comput Sci
– volume: 46
  start-page: 276
  year: 2012
  end-page: 281
  ident: b0170
  article-title: Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm
  publication-title: Renew Energ
– volume: 132
  start-page: 133
  year: 2014
  end-page: 140
  ident: b0115
  article-title: Wheat flour characterization using NIR and spectral filter based on ant colony optimization
  publication-title: Chemometr Intell Lab
– volume: 8
  start-page: 65
  year: 1994
  end-page: 79
  ident: b0160
  article-title: Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection
  publication-title: J. Chemometrics
– volume: 8
  start-page: 764
  year: 2015
  end-page: 775
  ident: b0005
  article-title: Dynamic variation of the microbial community structure during the long-time mono-fermentation of maize and sugar beet silage
  publication-title: Microb Biotechnol
– reference: Friedmann H, Görtz G, Helm M, Kaltschmitt M, Knopf U, et al. Fermentation of organic materials – characterisation of the substrate, sampling, collection of material data fermentation tests (Vdi 4630). In: Vdi-Handbuch Energietechnik, Verein Deutscher Ingenieure. Düsseldorf: Beuth; 2006. p. 1–48.
– volume: 99
  start-page: 7791
  year: 2015
  end-page: 7803
  ident: b0010
  article-title: Community shifts in a well-operating agricultural biogas plant: how process variations are handled by the microbiome
  publication-title: Appl Microbiol Biotechnol
– year: 2007
  ident: b0020
  article-title: Multivariate Datenanalyse: Für Die Pharma-, Bio- Und Prozessanalytik; Ein Lehrbuch
– volume: 142
  start-page: 197
  year: 2015
  end-page: 205
  ident: b0120
  article-title: Non-invasive lactate- and pH-monitoring in porcine meat using Raman spectroscopy and chemometrics
  publication-title: Chemometr Intell Lab
– year: 2000
  ident: b0140
  article-title: Neural network toolbox user's guide
– volume: 2
  start-page: 253
  year: 2018
  end-page: 268
  ident: b0130
  article-title: Applied machine learning in greenhouse simulation; new application and analysis
  publication-title: Inform Process Agric
– volume: 3
  start-page: 107
  year: 2018
  end-page: 118
  ident: b0050
  article-title: Inversion of radiative transfer model for retrieval of wheat biophysical parameters from broadband reflectance measurements
  publication-title: Inform Process Agric
– volume: 54
  start-page: 359
  year: 2010
  end-page: 363
  ident: b0175
  article-title: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm
  publication-title: Resour Conserv Recy
– volume: 14
  start-page: 607
  year: 2009
  end-page: 614
  ident: b0070
  article-title: Estimation of biogas production rate in a thermophilic UASB reactor using artificial neural networks
  publication-title: Environ Model Assess
– volume: 39
  start-page: 240
  year: 2013
  end-page: 247
  ident: b0165
  article-title: Genetic algorithms in feature and instance selection
  publication-title: Knowl-Based Syst
– volume: 4
  start-page: 252
  year: 2016
  end-page: 261
  ident: b0125
  article-title: Using genetic algorithm neural network on near infrared spectral data for ripeness grading of oil palm (Elaeis Guineensis Jacq.) fresh fruit
  publication-title: Inform Process Agric
– volume: 12
  start-page: 959
  year: 2002
  end-page: 985
  ident: b0150
  article-title: An introduction to the use of neural networks in control systems
  publication-title: Int J Robust Nonlinear Control
– volume: 5
  start-page: 162
  year: 2018
  end-page: 172
  ident: b0035
  article-title: New approach for visual identification of orange varieties using neural networks and metaheuristic algorithms
  publication-title: Inform Process Agric
– volume: 184
  start-page: 205
  year: 2005
  end-page: 222
  ident: b0155
  article-title: Genetic algorithms for modelling and optimisation
  publication-title: J Comput Appl Math
– volume: 5
  start-page: 465
  year: 2018
  end-page: 476
  ident: b0185
  article-title: Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm
  publication-title: Inform Process Agric
– volume: 97
  start-page: 780
  year: 2007
  end-page: 787
  ident: b0060
  article-title: Neural network prediction of thermophilic (65 °C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater
  publication-title: Biotechnol Bioeng
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: b0090
  article-title: Genetic algorithms and machine learning
  publication-title: Mach Learn
– reference: Kosakovsky Pond Sl, Posada D, Gravenor MB, Woelk CH, Frost SDW. GARD: a genetic algorithm for recombination detection. Bioinformatics 2006;22:3096–8.
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  ident: b0145
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemometr Intell Lab
– reference: Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, et al. Anaerobic digestion model No. 1: [(Adm1)]. London: Iwa Publ; 2002.
– volume: 5
  start-page: 354
  year: 2018
  end-page: 371
  ident: b0040
  article-title: A review of neural networks in plant disease detection using hyperspectral data
  publication-title: Inform Process Agric
– volume: 20
  start-page: 803
  year: 2005
  end-page: 810
  ident: b0055
  article-title: Prediction of trace compounds in biogas from anaerobic digestion using the matlab neural network toolbox
  publication-title: Environ Modell Softw
– volume: 65
  start-page: 15
  year: 1998
  end-page: 22
  ident: b0025
  article-title: Neural networks as a modeling tool for the evaluation and analysis of FIA signals
  publication-title: J Biotechnol
– volume: 294
  start-page: 243
  year: 1994
  ident: 10.1016/j.inpa.2019.01.002_b0030
  article-title: Evaluation of ph field effect transistor measurement signals by neural networks
  publication-title: Anal Chim Acta
  doi: 10.1016/0003-2670(94)80307-2
– volume: 3
  start-page: 107
  year: 2018
  ident: 10.1016/j.inpa.2019.01.002_b0050
  article-title: Inversion of radiative transfer model for retrieval of wheat biophysical parameters from broadband reflectance measurements
  publication-title: Inform Process Agric
– volume: 12
  start-page: 959
  year: 2002
  ident: 10.1016/j.inpa.2019.01.002_b0150
  article-title: An introduction to the use of neural networks in control systems
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.727
– volume: 143
  start-page: 68
  year: 2016
  ident: 10.1016/j.inpa.2019.01.002_b0085
  article-title: Artificial neural network prediction of the biogas flow rate optimised with an ant colony algorithm
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2016.01.006
– volume: 5
  start-page: 11
  year: 2018
  ident: 10.1016/j.inpa.2019.01.002_b0180
  article-title: A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features
  publication-title: Inform Process Agric
– volume: 5
  start-page: 162
  year: 2018
  ident: 10.1016/j.inpa.2019.01.002_b0035
  article-title: New approach for visual identification of orange varieties using neural networks and metaheuristic algorithms
  publication-title: Inform Process Agric
– volume: 3
  start-page: 95
  year: 1988
  ident: 10.1016/j.inpa.2019.01.002_b0090
  article-title: Genetic algorithms and machine learning
  publication-title: Mach Learn
  doi: 10.1023/A:1022602019183
– volume: 39
  start-page: 240
  year: 2013
  ident: 10.1016/j.inpa.2019.01.002_b0165
  article-title: Genetic algorithms in feature and instance selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.11.005
– ident: 10.1016/j.inpa.2019.01.002_b0080
  doi: 10.2166/wst.2002.0292
– volume: 5
  start-page: 308
  year: 2018
  ident: 10.1016/j.inpa.2019.01.002_b0045
  article-title: Raw milk service platform using BP neural network and fuzzy inference
  publication-title: Inform Process Agric
– volume: 2
  start-page: 253
  year: 2018
  ident: 10.1016/j.inpa.2019.01.002_b0130
  article-title: Applied machine learning in greenhouse simulation; new application and analysis
  publication-title: Inform Process Agric
– volume: 5
  start-page: 354
  year: 2018
  ident: 10.1016/j.inpa.2019.01.002_b0040
  article-title: A review of neural networks in plant disease detection using hyperspectral data
  publication-title: Inform Process Agric
– volume: 6
  start-page: 30
  year: 2005
  ident: 10.1016/j.inpa.2019.01.002_b0100
  article-title: An ant colony optimisation algorithm for the 2d and 3d hydrophobic polar protein folding problem
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-6-30
– ident: 10.1016/j.inpa.2019.01.002_b0105
  doi: 10.1093/bioinformatics/btl474
– year: 2000
  ident: 10.1016/j.inpa.2019.01.002_b0140
– volume: 97
  start-page: 780
  issue: 4
  year: 2007
  ident: 10.1016/j.inpa.2019.01.002_b0060
  article-title: Neural network prediction of thermophilic (65 °C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21282
– volume: 46
  start-page: 276
  year: 2012
  ident: 10.1016/j.inpa.2019.01.002_b0170
  article-title: Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2012.03.027
– volume: 54
  start-page: 359
  year: 2010
  ident: 10.1016/j.inpa.2019.01.002_b0175
  article-title: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm
  publication-title: Resour Conserv Recy
  doi: 10.1016/j.resconrec.2009.08.012
– volume: 5
  start-page: 465
  year: 2018
  ident: 10.1016/j.inpa.2019.01.002_b0185
  article-title: Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm
  publication-title: Inform Process Agric
– volume: 8
  start-page: 65
  year: 1994
  ident: 10.1016/j.inpa.2019.01.002_b0160
  article-title: Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection
  publication-title: J. Chemometrics
  doi: 10.1002/cem.1180080107
– volume: 4
  start-page: 316
  year: 2017
  ident: 10.1016/j.inpa.2019.01.002_b0075
  article-title: An automated medium scale prototype for anearobic co-digestion of olive mill wastewater
  publication-title: Inform Process Agric
– volume: 65
  start-page: 15
  year: 1998
  ident: 10.1016/j.inpa.2019.01.002_b0025
  article-title: Neural networks as a modeling tool for the evaluation and analysis of FIA signals
  publication-title: J Biotechnol
  doi: 10.1016/S0168-1656(98)00118-7
– volume: 22
  start-page: 815
  year: 2007
  ident: 10.1016/j.inpa.2019.01.002_b0065
  article-title: Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors
  publication-title: Environ Modell Softw
  doi: 10.1016/j.envsoft.2006.03.004
– volume: 344
  start-page: 243
  year: 2005
  ident: 10.1016/j.inpa.2019.01.002_b0095
  article-title: Ant colony optimization theory: a survey
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2005.05.020
– volume: 4
  start-page: 252
  year: 2016
  ident: 10.1016/j.inpa.2019.01.002_b0125
  article-title: Using genetic algorithm neural network on near infrared spectral data for ripeness grading of oil palm (Elaeis Guineensis Jacq.) fresh fruit
  publication-title: Inform Process Agric
– ident: 10.1016/j.inpa.2019.01.002_b0015
– volume: 99
  start-page: 7791
  year: 2015
  ident: 10.1016/j.inpa.2019.01.002_b0010
  article-title: Community shifts in a well-operating agricultural biogas plant: how process variations are handled by the microbiome
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-015-6627-9
– volume: 14
  start-page: 607
  year: 2009
  ident: 10.1016/j.inpa.2019.01.002_b0070
  article-title: Estimation of biogas production rate in a thermophilic UASB reactor using artificial neural networks
  publication-title: Environ Model Assess
  doi: 10.1007/s10666-008-9150-x
– volume: 238
  start-page: 111
  year: 2006
  ident: 10.1016/j.inpa.2019.01.002_b0110
  article-title: Experimental design for optimal parameter estimation of an enzyme kinetic process based on the analysis of the fisher information matrix
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2005.05.016
– volume: 142
  start-page: 197
  year: 2015
  ident: 10.1016/j.inpa.2019.01.002_b0120
  article-title: Non-invasive lactate- and pH-monitoring in porcine meat using Raman spectroscopy and chemometrics
  publication-title: Chemometr Intell Lab
  doi: 10.1016/j.chemolab.2015.02.002
– volume: 58
  start-page: 109
  year: 2001
  ident: 10.1016/j.inpa.2019.01.002_b0145
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemometr Intell Lab
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 132
  start-page: 133
  year: 2014
  ident: 10.1016/j.inpa.2019.01.002_b0115
  article-title: Wheat flour characterization using NIR and spectral filter based on ant colony optimization
  publication-title: Chemometr Intell Lab
  doi: 10.1016/j.chemolab.2014.01.012
– volume: 20
  start-page: 803
  year: 2005
  ident: 10.1016/j.inpa.2019.01.002_b0055
  article-title: Prediction of trace compounds in biogas from anaerobic digestion using the matlab neural network toolbox
  publication-title: Environ Modell Softw
  doi: 10.1016/j.envsoft.2004.09.006
– volume: 8
  start-page: 764
  year: 2015
  ident: 10.1016/j.inpa.2019.01.002_b0005
  article-title: Dynamic variation of the microbial community structure during the long-time mono-fermentation of maize and sugar beet silage
  publication-title: Microb Biotechnol
  doi: 10.1111/1751-7915.12263
– volume: 184
  start-page: 205
  year: 2005
  ident: 10.1016/j.inpa.2019.01.002_b0155
  article-title: Genetic algorithms for modelling and optimisation
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2004.07.034
– year: 2007
  ident: 10.1016/j.inpa.2019.01.002_b0020
– ident: 10.1016/j.inpa.2019.01.002_b0135
SSID ssj0001763400
Score 2.3551853
Snippet This paper presents a fast and reliable approach to analyze the biogas production process with respect to the biogas production rate. The experimental data...
SourceID doaj
unpaywall
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 349
SubjectTerms acid detergent fiber
acid insoluble lignin
algorithms
ammonium nitrogen
Ant colony optimization
Artificial neural networks
Biogas
gas production (biological)
Genetic algorithm
Germany
neural networks
neutral detergent fiber
prediction
system optimization
total solids
volatile fatty acids
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals 免費期刊
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQl8IB9QFiKa2M1BtE5GHHzjGsSlEltj2AxM2yHXu1aJVd7UOIf8-MnayWC_TQHBPbscdjz2d7_A0hP4xPrdOwTK1KWSaMNXlSVa4BIFc4yz2YCI37kLej8uae_X7gD1uhvtAnLNIDR8FdSiurspGpFhysiTGykFqmsimbglnPHM6-qay2FlNhdwWGDQv3T_I8YzDRiKK7MROduybtHEmHsipwdnZ7Kr1VCuT9r4zTFvj8sIasz096Ot2yQ9cfyUEHIGkdK_6J7Lj2M9mvx4uORMN9IebvAo9fUOR05ilAPGoms7Fe0nnkd8UP6PA-pr9qqtuG1sM_FCq7XlHvAtPnki5DgBxMGYNMU0C3tB6NaIidc0jur3_eDW-SLpZCYvEubMKNcNJgLEwvjdWFAEEaK7zIC884z6WRJQgX0EzKPDycGYAygunKIClYVhyR3XbWumNCLSTWJcty6ExWpdpwm3koxvmsyXPtBiTrZalsRzSO8S6mqvcoe1Qof4XyV2mmQP4Dcr7JM480G2-mvsIu2qREiuzwAhRHdYqj3lOcAeF9B6sObUQUAUVN3vz5Wa8NCoYinq_o1s3WSwVQC-nmhRADcrFRk39oz8n_aM9XsodFRv-3U7K7WqzdNwBMK_M9jI0X7xUPng
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXoADojzEAq2MxA2izcOOnWO6ohQkFiSotDfLduxV0CpZ7UNV_z0zjrO0l6oityTjxBmPPZ-d8TeEfDA-tU7DNLUqZZkw1uRJVbkGgFzhLPfgIjSuQ36fl5dX7NuCL47IbNwLg2GVcewfxvQwWscr06jN6bptp7_yPEPvh0aJPHg4by-YxPQNXxfn_9ZZoAOxsBMF5RMsEPfODGFebbdG-qGsCuydcXVl9E-Bxv-Om7oFQx_toejNtV6tbnmki2fkaYSStB5qe0KOXPecPKmXm0in4V4Q83ODP2JQ-bT3FMAeNW2_1Fu6Hphe8QaGvi_pl5rqrqH17AeFyu531LvA-bml25AqByWHdNMUcC6t53Masui8JFcXn3_PLpOYVSGxuCs24UY4aTArppfG6kIYWRgrvMgLzzjPpZGlMRJwTco8HJwZADWC6cogPVhWvCLHXd-514RaENYly3JoVlal2nCbeXiM81mT59pNSDbqUtlIOY6ZL1ZqjC37o1D_CvWv0kyB_ifk46HMeiDcuFf6HJvoIIlk2eFCv1mqaC1KWlmVjUy14ABI4NsKqWUqm7IpmPUMqsnHBlZ3bA8e1d778vejNSjolPinRXeu328VgC4knhdCTMing5k84Hve_GdV3pLHeDYEv70jx7vN3p0CWtqZs9Ad_gIoBBAP
  priority: 102
  providerName: Elsevier
Title Prediction of the biogas production using GA and ACO input features selection method for ANN model
URI https://dx.doi.org/10.1016/j.inpa.2019.01.002
https://www.proquest.com/docview/2221038777
https://doi.org/10.1016/j.inpa.2019.01.002
https://doaj.org/article/8c896d80a75242bb838a808d6d34cf4e
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2214-3173
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001763400
  issn: 2214-3173
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2214-3173
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001763400
  issn: 2214-3173
  databaseCode: KQ8
  dateStart: 20140801
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-3173
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001763400
  issn: 2214-3173
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 2214-3173
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001763400
  issn: 2214-3173
  databaseCode: IXB
  dateStart: 20140801
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2214-3173
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001763400
  issn: 2214-3173
  databaseCode: AKRWK
  dateStart: 20140801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQe0AceCOKlspI3CCrPOzYOWZXLAsrygpRUU6W7dhVoUqrptEKfj0ziVttEVotOeSQjOPYM858scffEPLa-Ng6Db-pRS7ziLEqjYrCVQDkMme5BxehcR7y0yQ_n7KPMz4LNDm4F-Zg_b6Lw1rUa-QHSoqOXhN5I4c5B9w9IMPp5LL8jtnj0oTBx0RkYVfMvwseeJ6OoP_AAV0DmHdbKPrrSi-X13zN2YM-aVHTURRiiMnP43Zrju3vvwgcb9eMh-R-gJy07G3kEbnj6sfkXjnfBNoN94SYyw0u2KCS6MpTAIXULFZz3dB1zwiLNzBEfk7fl1TXFS1PP1OorN1S7zpu0IY2XUodlOzTUlPAw7ScTGiXbecpmZ69-3p6HoXsC5HF3bMRN8JJg9kzvTRWZ8LIzFjhRZp5xnkqjcyNkYB_Yubh4MwA-BFMFwZpxJLsGRnUq9o9J9SCsM5ZkoL6WRFrw23i4THOJ1WaajciyU4zygZqcsyQsVS7GLQfCvtPYf-pOFHQfyPyZl9m3RNz3Ch9ggrfSyKpdncBlKTCGFXSyiKvZKwFB-ACbcuklrGs8ipj1jN4Tb4zFxXwSY874FGLGyt_tbMtBYMXV2R07VZtowCcIUG9EGJE3u6N7hbtefF_4kdksN207iXgp60Zk2F58eXbxbibf4Dzh9nJOAymPzmEGfg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcigcKp5iKVAjcYNo83Bi55iuaBdoFyRaaW-W7diroFWy2ocQ_54Zx1naS4XIMX7EGY89X5yZbwh5r11srILP1LIQRcRYnUZlaWsAcpk1uQMTofAc8mpWTG_Yl3k-PyCTIRYG3SrD3t_v6X63DnfGQZrjVdOMf6RpgtYPlRJ58OC7_QHLAZ1gFN_87O9BC6wg5kNRsEGELULwTO_n1bQr5B9KSk_fGY5XBgPlefzv2KlbOPRoB01__1LL5S2TdP6YHAcsSat-uE_IgW2fkkfVYh34NOwzor-v8U8MSp92jgLao7rpFmpDVz3VKxag7_uCXlRUtTWtJt8oDHa3pc560s8N3fhcOVizzzdNAejSajajPo3Oc3Jz_ul6Mo1CWoXIYFhslGtuhca0mE5oozKuRaYNdzzNHAgwFVoUWgsANjFzcOVMA6rhTJUa-cGS7AU5bLvWviTUQGVVsCSFeWVlrHRuEgfdWJfUaarsiCSDLKUJnOOY-mIpB-eynxLlL1H-Mk4kyH9EPuzbrHrGjXtrn-EU7WsiW7a_0a0XMqiLFEaURS1ixXNAJPBumVAiFnVRZ8w4BsPMhwmWd5QPumruffi7QRskrEr81aJa2-02ElAXMs9zzkfk415N_uF9Xv3nUE7J0fT66lJefp59PSEPsaT3hHtNDrfrnX0D0Gmr3_ql8QfpABM1
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBYjeRh76G4dy-iKBnvbXHyRLPnRLb0wWNaHBdonIclSyBqcEMeM9df3HFsJzSil9aN9JFs6R9Zn6-j7CPlqfGydhs_UIpd5xFiVRkXhKgBymbPcwxSh8T_kz3F-MWE_rvhVoMnBvTA76_ddHtasXiI_UFJ09JrIGznMOeDuARlOxpflNarHpQmDl4nIwq6YhwvuzDwdQf_OBHQPYL5soei_v3o-vzfXnL3uRYuajqIQU0xujtq1ObK3_xE4Pq0Zb8hegJy07GPkLXnh6nfkVTldBdoN956YyxUu2KCT6MJTAIXUzBZT3dBlzwiLFzBFfkrPS6rripYnvyjcrF1T7zpu0IY2naQOWvay1BTwMC3HY9qp7eyTydnp75OLKKgvRBZ3z0bcCCcNqmd6aazOhJGZscKLNPOM81QamRsjAf_EzMPBmQHwI5guDNKIJdkHMqgXtftIqAVjnbMkBfezItaG28RDNc4nVZpqNyLJxjPKBmpyVMiYq00O2h-F_aew_1ScKOi_Efm2LbPsiTketT5Gh28tkVS7OwFOUmGMKmllkVcy1oIDcIG2ZVLLWFZ5lTHrGTwm34SLCvikxx1Q1ezRm3_ZxJaCwYsrMrp2i7ZRAM6QoF4IMSLft0H3hPZ8ep75ARmsV637DPhpbQ7DwLkDW04WXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+biogas+production+using+GA+and+ACO+input+features+selection+method+for+ANN+model&rft.jtitle=Information+processing+in+agriculture&rft.au=Beltramo%2C+Tanja&rft.au=Klocke%2C+Michael&rft.au=Hitzmann%2C+Bernd&rft.date=2019-09-01&rft.issn=2214-3173&rft.eissn=2214-3173&rft.volume=6&rft.issue=3+p.349-356&rft.spage=349&rft.epage=356&rft_id=info:doi/10.1016%2Fj.inpa.2019.01.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-3173&client=summon