High resolution Godunov-type schemes with small stencils
Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping...
Saved in:
| Published in | International journal for numerical methods in fluids Vol. 44; no. 10; pp. 1119 - 1162 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
10.04.2004
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0271-2091 1097-0363 |
| DOI | 10.1002/fld.690 |
Cover
| Abstract | Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10‐4. Linear waves are subject to negligible damping. Application of the method to the DPM for one‐dimensional advection–dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One‐ and two‐dimensional shallow water simulations show an improvement over classical methods, in particular for two‐dimensional problems with strongly distorted meshes. The quality of the computational solution in the two‐dimensional case remains acceptable even for mesh aspect ratios Δx/Δy as large as 10. The method can be extend to the discretization of higher‐order PDEs, allowing third‐order space derivatives to be discretized using only two cells in space. Copyright © 2004 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | Higher-order Godunov-type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony-preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection-dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10@@u-4@. Linear waves are subject to negligible damping. Application of the method to the DPM for one-dimensional advection-dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One- and two-dimensional shallow water simulations show an improvement over classical methods, in particular for two-dimensional problems with strongly distorted meshes. The quality of the computational solution in the two-dimensional case remains acceptable even for mesh aspect ratios [Delta]x/[Delta]y as large as 10. The method can be extend to the discretization of higher-order PDEs, allowing third- order space derivatives to be discretized using only two cells in space. Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10 ‐4 . Linear waves are subject to negligible damping. Application of the method to the DPM for one‐dimensional advection–dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One‐ and two‐dimensional shallow water simulations show an improvement over classical methods, in particular for two‐dimensional problems with strongly distorted meshes. The quality of the computational solution in the two‐dimensional case remains acceptable even for mesh aspect ratios Δx/Δy as large as 10. The method can be extend to the discretization of higher‐order PDEs, allowing third‐order space derivatives to be discretized using only two cells in space. Copyright © 2004 John Wiley & Sons, Ltd. Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10‐4. Linear waves are subject to negligible damping. Application of the method to the DPM for one‐dimensional advection–dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One‐ and two‐dimensional shallow water simulations show an improvement over classical methods, in particular for two‐dimensional problems with strongly distorted meshes. The quality of the computational solution in the two‐dimensional case remains acceptable even for mesh aspect ratios Δx/Δy as large as 10. The method can be extend to the discretization of higher‐order PDEs, allowing third‐order space derivatives to be discretized using only two cells in space. Copyright © 2004 John Wiley & Sons, Ltd. |
| Author | Guinot, Vincent |
| Author_xml | – sequence: 1 givenname: Vincent surname: Guinot fullname: Guinot, Vincent email: guinot@msem.univ.montp2.fr organization: Université Montpellier 2, Maison des Sciences de l'Eau, 34095 Montpellier Cedex 5, France |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15599488$$DView record in Pascal Francis |
| BookMark | eNp10EtP4zAUBWALgUR5iL-QzTALFLh-JLaXI6AFVIEQoLKznOSGenCTYqdA_z1BrViAWN3Np6Nzzw7ZbNoGCTmgcEwB2Entq-NcwwYZUNAyBZ7zTTIAJmnKQNNtshPjfwDQTPEBURfuaZoEjK1fdK5tklFbLZr2Ne2Wc0xiOcUZxuTNddMkzqz3SeywKZ2Pe2Srtj7i_vrukofh-f3pRTq-GV2e_hunJc8UpAViLiuotcqsKHQuCmQgVSWpVNYqgaxkvMiZysAqlBUriprnhciorKUQlO-Sw1XuPLQvC4ydmblYove2wXYRDVNUCw6yh3_W0MbS-jrYvmc08-BmNiwNzTKthVK9S1euDG2MAWtTus5-_t4F67yhYD53NP2Opt-x93-_-a_IH_JoJd-cx-VvzAzHZyu97uH6Sd-_tA3PJpdcZmZyPTIgJhN99XhnbvkHyzWQ5Q |
| CODEN | IJNFDW |
| CitedBy_id | crossref_primary_10_1002_fld_3950 crossref_primary_10_1134_S0965542507120081 crossref_primary_10_1016_j_jcp_2009_07_007 crossref_primary_10_2166_hydro_2020_119 crossref_primary_10_1002_num_20275 crossref_primary_10_1016_j_advwatres_2007_04_003 |
| Cites_doi | 10.1006/jcph.1999.6329 10.1016/S0045-7930(01)00075-5 10.1007/BF01061287 10.1016/0021-9991(92)90324-R 10.1016/0021-9991(84)90013-5 10.1137/0906009 10.1006/jcph.1999.6354 10.1002/fld.177 10.1006/jcph.1996.5608 10.1016/0021-9991(84)90143-8 10.1007/978-3-0348-8629-1 10.1016/0021-9991(77)90095-X 10.1002/fld.488 10.1002/cpa.3160100406 10.1002/(SICI)1097-0207(19980630)42:4<647::AID-NME376>3.0.CO;2-U 10.1006/jcph.2001.6731 10.1006/jcph.2000.6610 10.1006/jcph.1995.1137 |
| ContentType | Journal Article |
| Copyright | Copyright © 2004 John Wiley & Sons, Ltd. 2004 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2004 John Wiley & Sons, Ltd. – notice: 2004 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 8FD H8D L7M |
| DOI | 10.1002/fld.690 |
| DatabaseName | Istex CrossRef Pascal-Francis Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1097-0363 |
| EndPage | 1162 |
| ExternalDocumentID | 15599488 10_1002_fld_690 FLD690 ark_67375_WNG_04WW9JXS_Q |
| Genre | article |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION 6TJ AAHHS ABEML ABTAH ACCFJ ACSCC ADZOD AEEZP AEQDE AGHNM AI. AIWBW AJBDE HF~ IQODW M6O PALCI RIWAO RJQFR RYL SAMSI VH1 VOH ZY4 ~A~ 8FD H8D L7M |
| ID | FETCH-LOGICAL-c3580-bee67d0f985a4b964be2078d7178aa84e2c23b62850a8e7d2bbf36b4517f74413 |
| IEDL.DBID | DR2 |
| ISSN | 0271-2091 |
| IngestDate | Wed Oct 01 13:45:51 EDT 2025 Wed Apr 02 07:26:34 EDT 2025 Wed Oct 01 04:44:22 EDT 2025 Thu Apr 24 23:06:44 EDT 2025 Wed Aug 20 07:28:10 EDT 2025 Tue Sep 09 05:32:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Conservation laws Godunov scheme Dams Ruptures Computational fluid dynamics Digital simulation Free surface flow Convection diffusion equation Mesh generation Numerical stability Shallow-water equations |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3580-bee67d0f985a4b964be2078d7178aa84e2c23b62850a8e7d2bbf36b4517f74413 |
| Notes | ark:/67375/WNG-04WW9JXS-Q istex:900DCF43429281615082BA2D4A999BD079402652 ArticleID:FLD690 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 28194307 |
| PQPubID | 23500 |
| PageCount | 44 |
| ParticipantIDs | proquest_miscellaneous_28194307 pascalfrancis_primary_15599488 crossref_citationtrail_10_1002_fld_690 crossref_primary_10_1002_fld_690 wiley_primary_10_1002_fld_690_FLD690 istex_primary_ark_67375_WNG_04WW9JXS_Q |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 10 April 2004 |
| PublicationDateYYYYMMDD | 2004-04-10 |
| PublicationDate_xml | – month: 04 year: 2004 text: 10 April 2004 day: 10 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in fluids |
| PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
| PublicationYear | 2004 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Van Leer B. Toward the ultimate conservative difference scheme, IV: a new approach to numerical convection. Journal of Computational Physics 1977; 23:276-299. Colella P. A direct Eulerian MUSCL method for gas dynamics. SIAM Journal on Scientific and Statistical Computing 1985; 6:104-117. Hubbard ME. Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. Journal of Computational Physics 1999; 155:54-74. Ben-Artzi M, Falcovitz J. A second-order Godunov-type scheme for compressible fluid dynamics. Journal of Computational Physics 1984; 55:1-32. Toro EF. Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley: New York, 2001. Lerat A, Corre P. Residual-based compact schemes for multidimensional hyperbolic systems of conservation laws. Computers & Fluids 2002; 31:639-661. Toda K, Holly Jr FM. Hybrid numerical method for linear advection diffusion. Microsoftware for Engineers 1987; 3(4):199-205. LeVeque RJ. Numerical Methods for Conservation Laws. Birkhaüser: Basel, 1992. Guinot V. Godunov-Type Schemes: an Introduction for Engineers. Elsevier: Amsterdam, 2003. Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 1992; 103:16-42. Chang S-C. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations. Journal of Computational Physics 1995; 119:295-324. Abarbanel S, Kumar A. Compact high-order schemes for the Euler equations. SIAM Journal on Scientific and Statistical Computing 1988; 3:275. Komatsu T, Ohgushi K, Asai K, Holly Jr FM. Accurate simulation of scalar advective transport. Journal of Hydroscience and Hydraulic Engineering 1989; 7(1):63-73. Guinot V. Boundary condition treatment for 2×2 systems of propagation equations. International Journal for Numerical methods in Engineering 1988; 42:647-666. Guinot V. The Discontinuous Profile Method (DPM) for simulating two-phase flow in pipes using the single-component approximation. International Journal for Numerical Methods in Fluids 2001; 37:341-359. Toda K, Holly Jr FM. Hybrid numerical method for nonlinear advection diffusion. Journal of Hydroscience and Hydraulic Engineering 1998; 6(1):1-11. Molls T, Moll F. Space-time conservation method applied to Saint-Venant equations. Journal of Hydraulic Engineering (ASCE) 1999; 124(5):891. Godunov SK. A difference method for numerical calculation of discontinuous equations of hydrodynamics. Matematicheski Sbornik 1959; 47:271-300. Chang S-C, Wang XY, Chow CY. The space-time conservation element and solution element method: a new high-resolution and genuinely multidimensional paradigm for solving conservation laws. Journal of Computational Physics 1999; 156:89-136. Yee HC. Explicit and implicit multidimensional compact high-resolution shock-capturing methods: formulation. Journal of Computational Physics 1997; 131:216-232. Holly Jr FM, Preissmann A. Accurate calculation of two-dimensional advection. Journal of the Hydraulics Division (ASCE) 1997; 98:1259-1277. Colella P, Woodward PR. The piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics 1984; 54:174-201. Chang S-C, Wang X-Y, To W-M. Application of the space-time conservation element and solution element method to one-dimensional convection-diffusion problems. Journal of Computational Physics 1999; 165:189-215. Lax PD. Hyperbolic systems of conservation laws, II. Communications in Pure and Applied Mathematics 1957; 10:537-566. Billet G, Louedin O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows. Journal of Computational Physics 2001; 170:161-183. Guinot V. Riemann solvers and boundary conditions for two-dimensional shallow water simulations. International Journal for Numerical Methods in Fluids 2003; 41:1191-1219. 1957; 10 1987; 3 2002; 31 1997; 131 1989; 7 1992; 103 1995; 119 1985; 6 1999; 165 1999; 124 1992 2003 1977; 23 1959; 47 1988; 3 2001 1997; 98 2001; 170 1984; 54 1984; 55 2001; 37 1999; 155 1999; 156 1988; 42 1998; 6 2003; 41 Molls T (e_1_2_1_17_2) 1999; 124 Guinot V (e_1_2_1_23_2) 2003 e_1_2_1_22_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 Holly FM (e_1_2_1_11_2) 1997; 98 Toro EF (e_1_2_1_24_2) 2001 Godunov SK (e_1_2_1_25_2) 1959; 47 Toda K (e_1_2_1_13_2) 1987; 3 Toda K (e_1_2_1_14_2) 1998; 6 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_3_2 e_1_2_1_12_2 Komatsu T (e_1_2_1_15_2) 1989; 7 e_1_2_1_10_2 e_1_2_1_16_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_9_2 e_1_2_1_18_2 |
| References_xml | – reference: Guinot V. Boundary condition treatment for 2×2 systems of propagation equations. International Journal for Numerical methods in Engineering 1988; 42:647-666. – reference: Toda K, Holly Jr FM. Hybrid numerical method for linear advection diffusion. Microsoftware for Engineers 1987; 3(4):199-205. – reference: Holly Jr FM, Preissmann A. Accurate calculation of two-dimensional advection. Journal of the Hydraulics Division (ASCE) 1997; 98:1259-1277. – reference: Hubbard ME. Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. Journal of Computational Physics 1999; 155:54-74. – reference: Lax PD. Hyperbolic systems of conservation laws, II. Communications in Pure and Applied Mathematics 1957; 10:537-566. – reference: Toro EF. Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley: New York, 2001. – reference: Chang S-C, Wang X-Y, To W-M. Application of the space-time conservation element and solution element method to one-dimensional convection-diffusion problems. Journal of Computational Physics 1999; 165:189-215. – reference: Billet G, Louedin O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows. Journal of Computational Physics 2001; 170:161-183. – reference: Chang S-C. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations. Journal of Computational Physics 1995; 119:295-324. – reference: Colella P. A direct Eulerian MUSCL method for gas dynamics. SIAM Journal on Scientific and Statistical Computing 1985; 6:104-117. – reference: Toda K, Holly Jr FM. Hybrid numerical method for nonlinear advection diffusion. Journal of Hydroscience and Hydraulic Engineering 1998; 6(1):1-11. – reference: Komatsu T, Ohgushi K, Asai K, Holly Jr FM. Accurate simulation of scalar advective transport. Journal of Hydroscience and Hydraulic Engineering 1989; 7(1):63-73. – reference: Guinot V. Riemann solvers and boundary conditions for two-dimensional shallow water simulations. International Journal for Numerical Methods in Fluids 2003; 41:1191-1219. – reference: Guinot V. Godunov-Type Schemes: an Introduction for Engineers. Elsevier: Amsterdam, 2003. – reference: Yee HC. Explicit and implicit multidimensional compact high-resolution shock-capturing methods: formulation. Journal of Computational Physics 1997; 131:216-232. – reference: Lerat A, Corre P. Residual-based compact schemes for multidimensional hyperbolic systems of conservation laws. Computers & Fluids 2002; 31:639-661. – reference: Ben-Artzi M, Falcovitz J. A second-order Godunov-type scheme for compressible fluid dynamics. Journal of Computational Physics 1984; 55:1-32. – reference: LeVeque RJ. Numerical Methods for Conservation Laws. Birkhaüser: Basel, 1992. – reference: Guinot V. The Discontinuous Profile Method (DPM) for simulating two-phase flow in pipes using the single-component approximation. International Journal for Numerical Methods in Fluids 2001; 37:341-359. – reference: Godunov SK. A difference method for numerical calculation of discontinuous equations of hydrodynamics. Matematicheski Sbornik 1959; 47:271-300. – reference: Van Leer B. Toward the ultimate conservative difference scheme, IV: a new approach to numerical convection. Journal of Computational Physics 1977; 23:276-299. – reference: Colella P, Woodward PR. The piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics 1984; 54:174-201. – reference: Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 1992; 103:16-42. – reference: Chang S-C, Wang XY, Chow CY. The space-time conservation element and solution element method: a new high-resolution and genuinely multidimensional paradigm for solving conservation laws. Journal of Computational Physics 1999; 156:89-136. – reference: Abarbanel S, Kumar A. Compact high-order schemes for the Euler equations. SIAM Journal on Scientific and Statistical Computing 1988; 3:275. – reference: Molls T, Moll F. Space-time conservation method applied to Saint-Venant equations. Journal of Hydraulic Engineering (ASCE) 1999; 124(5):891. – volume: 10 start-page: 537 year: 1957 end-page: 566 article-title: Hyperbolic systems of conservation laws, II publication-title: Communications in Pure and Applied Mathematics – volume: 155 start-page: 54 year: 1999 end-page: 74 article-title: Multidimensional slope limiters for MUSCL‐type finite volume schemes on unstructured grids publication-title: Journal of Computational Physics – volume: 131 start-page: 216 year: 1997 end-page: 232 article-title: Explicit and implicit multidimensional compact high‐resolution shock‐capturing methods: formulation publication-title: Journal of Computational Physics – volume: 37 start-page: 341 year: 2001 end-page: 359 article-title: The Discontinuous Profile Method (DPM) for simulating two‐phase flow in pipes using the single‐component approximation publication-title: International Journal for Numerical Methods in Fluids – year: 2001 – volume: 156 start-page: 89 year: 1999 end-page: 136 article-title: The space‐time conservation element and solution element method: a new high‐resolution and genuinely multidimensional paradigm for solving conservation laws publication-title: Journal of Computational Physics – year: 2003 – volume: 3 start-page: 199 issue: 4 year: 1987 end-page: 205 article-title: Hybrid numerical method for linear advection diffusion publication-title: Microsoftware for Engineers – volume: 165 start-page: 189 year: 1999 end-page: 215 article-title: Application of the space‐time conservation element and solution element method to one‐dimensional convection–diffusion problems publication-title: Journal of Computational Physics – volume: 98 start-page: 1259 year: 1997 end-page: 1277 article-title: Accurate calculation of two‐dimensional advection publication-title: Journal of the Hydraulics Division (ASCE) – year: 1992 – volume: 6 start-page: 104 year: 1985 end-page: 117 article-title: A direct Eulerian MUSCL method for gas dynamics publication-title: SIAM Journal on Scientific and Statistical Computing – volume: 41 start-page: 1191 year: 2003 end-page: 1219 article-title: Riemann solvers and boundary conditions for two‐dimensional shallow water simulations publication-title: International Journal for Numerical Methods in Fluids – volume: 54 start-page: 174 year: 1984 end-page: 201 article-title: The piecewise parabolic method (PPM) for gas‐dynamical simulations publication-title: Journal of Computational Physics – volume: 6 start-page: 1 issue: 1 year: 1998 end-page: 11 article-title: Hybrid numerical method for nonlinear advection diffusion publication-title: Journal of Hydroscience and Hydraulic Engineering – volume: 124 start-page: 891 issue: 5 year: 1999 article-title: Space‐time conservation method applied to Saint‐Venant equations publication-title: Journal of Hydraulic Engineering (ASCE) – volume: 119 start-page: 295 year: 1995 end-page: 324 article-title: The method of space‐time conservation element and solution element—a new approach for solving the Navier‐Stokes and Euler equations publication-title: Journal of Computational Physics – volume: 7 start-page: 63 issue: 1 year: 1989 end-page: 73 article-title: Accurate simulation of scalar advective transport publication-title: Journal of Hydroscience and Hydraulic Engineering – volume: 55 start-page: 1 year: 1984 end-page: 32 article-title: A second‐order Godunov‐type scheme for compressible fluid dynamics publication-title: Journal of Computational Physics – volume: 23 start-page: 276 year: 1977 end-page: 299 article-title: Toward the ultimate conservative difference scheme, IV: a new approach to numerical convection publication-title: Journal of Computational Physics – volume: 42 start-page: 647 year: 1988 end-page: 666 article-title: Boundary condition treatment for 2×2 systems of propagation equations publication-title: International Journal for Numerical methods in Engineering – volume: 31 start-page: 639 year: 2002 end-page: 661 article-title: Residual‐based compact schemes for multidimensional hyperbolic systems of conservation laws publication-title: Computers & Fluids – volume: 47 start-page: 271 year: 1959 end-page: 300 article-title: A difference method for numerical calculation of discontinuous equations of hydrodynamics publication-title: Matematicheski Sbornik – volume: 3 start-page: 275 year: 1988 article-title: Compact high‐order schemes for the Euler equations publication-title: SIAM Journal on Scientific and Statistical Computing – volume: 170 start-page: 161 year: 2001 end-page: 183 article-title: Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows publication-title: Journal of Computational Physics – volume: 103 start-page: 16 year: 1992 end-page: 42 article-title: Compact finite difference schemes with spectral‐like resolution publication-title: Journal of Computational Physics – ident: e_1_2_1_6_2 doi: 10.1006/jcph.1999.6329 – volume: 98 start-page: 1259 year: 1997 ident: e_1_2_1_11_2 article-title: Accurate calculation of two‐dimensional advection publication-title: Journal of the Hydraulics Division (ASCE) – ident: e_1_2_1_10_2 doi: 10.1016/S0045-7930(01)00075-5 – ident: e_1_2_1_7_2 doi: 10.1007/BF01061287 – volume: 7 start-page: 63 issue: 1 year: 1989 ident: e_1_2_1_15_2 article-title: Accurate simulation of scalar advective transport publication-title: Journal of Hydroscience and Hydraulic Engineering – ident: e_1_2_1_8_2 doi: 10.1016/0021-9991(92)90324-R – volume: 6 start-page: 1 issue: 1 year: 1998 ident: e_1_2_1_14_2 article-title: Hybrid numerical method for nonlinear advection diffusion publication-title: Journal of Hydroscience and Hydraulic Engineering – ident: e_1_2_1_3_2 doi: 10.1016/0021-9991(84)90013-5 – ident: e_1_2_1_21_2 doi: 10.1137/0906009 – ident: e_1_2_1_16_2 doi: 10.1006/jcph.1999.6354 – ident: e_1_2_1_22_2 doi: 10.1002/fld.177 – ident: e_1_2_1_9_2 doi: 10.1006/jcph.1996.5608 – volume-title: Shock‐Capturing Methods for Free‐Surface Shallow Flows year: 2001 ident: e_1_2_1_24_2 – ident: e_1_2_1_4_2 doi: 10.1016/0021-9991(84)90143-8 – volume-title: Godunov‐Type Schemes: an Introduction for Engineers year: 2003 ident: e_1_2_1_23_2 – ident: e_1_2_1_20_2 doi: 10.1007/978-3-0348-8629-1 – volume: 124 start-page: 891 issue: 5 year: 1999 ident: e_1_2_1_17_2 article-title: Space‐time conservation method applied to Saint‐Venant equations publication-title: Journal of Hydraulic Engineering (ASCE) – ident: e_1_2_1_2_2 doi: 10.1016/0021-9991(77)90095-X – volume: 3 start-page: 199 issue: 4 year: 1987 ident: e_1_2_1_13_2 article-title: Hybrid numerical method for linear advection diffusion publication-title: Microsoftware for Engineers – volume: 47 start-page: 271 year: 1959 ident: e_1_2_1_25_2 article-title: A difference method for numerical calculation of discontinuous equations of hydrodynamics publication-title: Matematicheski Sbornik – ident: e_1_2_1_26_2 doi: 10.1002/fld.488 – ident: e_1_2_1_19_2 doi: 10.1002/cpa.3160100406 – ident: e_1_2_1_27_2 doi: 10.1002/(SICI)1097-0207(19980630)42:4<647::AID-NME376>3.0.CO;2-U – ident: e_1_2_1_5_2 doi: 10.1006/jcph.2001.6731 – ident: e_1_2_1_18_2 doi: 10.1006/jcph.2000.6610 – ident: e_1_2_1_12_2 doi: 10.1006/jcph.1995.1137 |
| SSID | ssj0009283 |
| Score | 1.726491 |
| Snippet | Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme... Higher-order Godunov-type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1119 |
| SubjectTerms | advection-dispersion Applied sciences Buildings. Public works Computational methods in fluid dynamics conservation laws Dams and subsidiary installations Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Godunov-type schemes Hydraulic constructions Physics reconstruction reduced stencils shallow water equations |
| Title | High resolution Godunov-type schemes with small stencils |
| URI | https://api.istex.fr/ark:/67375/WNG-04WW9JXS-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.690 https://www.proquest.com/docview/28194307 |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0271-2091 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009283 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hcoEDhQIibSk-VL1lGztOnPSGgG1VoUo8KlZcLDu2JdQ0i5pdhDjxE_iN_BJmkuwLhIQ4RUrsKJmXZzzjbwAOyxCCsd7FQXEXy9RIShImsRKJy43yMtiuyvciP7uU55Nsstbqq8eHWG64kWZ09poU3Nj2eAUaGmo3wtAOrS9P8y6YersCjipFD8ApFEc5KHl_XJZmHg_zNtah20TSr1QXaVokTeh7Wmw4neuua7f2jLfh4-Kr-5KTq9F8ZkfVt98AHf_rt-7DvcEjZc97EXoAt3yzA9uDd8oG3W934O4adOFDOKECEYax-iC67HTq5s30y8_vP2hXl2HQ7K99y2ifl7XXpq5ZS-75p7p9BJfjV-9fnMVDH4a4oiRpbL3PlUtCWWRG2jKX1gv0LBxGgoUxhfSiEqmls5iJKbxywtqQ5lZmXAWF7lb6GLaaaeOfAFOce2czk8sslTZVlhvuRYF3hKwC5xEcLbiiqwGknHpl1LqHVxYa6aORPhGw5cDPPS7Hn0OOOrYun5ubKypjU5n-cHGqEyowP5-8028iONjg--qFBMeGFi6CZwtB0Kh9lFIxjZ_OW01pSIlmMoLDjql_-xY9fv0SL7v_NmwP7iwKhHiyD1uzm7l_ir7PzB50Yv4LvzYCSg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH-C7QAcGAwmwmDzYdotXew4ccJtAroySiVgE5U4WHZsS2hZipYWIU77CPuM-yTzS9J2BSEhTpESO0qe37N_749_BtjLnXNKWxM6QU3IY8UxSRiFgkUmVcJyp5sq31E6OOXH42TcVVXiXpiWH2IRcEPLaOZrNHAMSB8sWUNdaXret7sL6zz1XgoCok9L6qictRScTFCvCTltN8xi14Ou48pKtI5C_YmVkar2wnHtqRYrsPM2eG1Wn_4GfJ1_d1t0ctabTXWv-PUbpeP__dgjeNiBUnLYatFjuGOrTdjoACrpzL_ehAe32AufwCusESHeXe-0lxxNzKya_Li-vMLALvF-sz23NcFQL6nPVVmSGhH6t7J-Cqf9tyevB2F3FENYYJ401NamwkQuzxLFdZ5ybZkHF8Y7g5lSGbesYLHG7ZiRyqwwTGsXp5onVDjhEVe8BWvVpLLPgAhKrdGJSnkScx0LTRW1LPN3GC8cpQHsz4dFFh1POR6XUcqWYZlJLx_p5RMAWTT83lJz_NlkvxnXxXN1cYaVbCKRX0ZHMsIa8-PxZ_kxgJ2VgV--EBnZ_CQXwO5cE6Q3QMyqqMpOZrXETCT3M2UAe82o_u1bZH_4xl-e_1uzXbg3OPkwlMN3o_fbcH9eL0SjF7A2vZjZlx4KTfVOo_M34B4Gaw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKyE4UFpABGjrQ9VbtrHjxElviO32qRWvipU4WHZsS6hptmp2EeqJn8Bv5JfgSbK7XSokxClSYkfJPOwZz-fPADu5c05pa0InqAl5rDgWCaNQsMikSljudIPyHaZH5_xklIw6VCXuhWn5IeYLbugZzXiNDm6vjNtbsIa60vR8bncfVnmSZwjn639YUEflrKXgZIJ6S8hpu2EWu-51HZdmolUU6ndERqraC8e1p1oshZ23g9dm9hmswZfZd7egk4vedKJ7xc0flI7_92NP4HEXlJI3rRWtwz1bbcBaF6CSzv3rDXh0i73wKewjRoT4dL2zXnI4NtNq_O3Xj5-4sEt83mwvbU1wqZfUl6osSY0R-teyfgbng4NPb4_C7iiGsMA6aaitTYWJnJez4jpPubbMBxfGJ4OZUhm3rGCxxu2YkcqsMExrF6eaJ1Q44SOu-DmsVOPKvgAiKLVGJyrlScx1LDRV1LLM32G8cJQGsDtTiyw6nnI8LqOULcMyk14-0ssnADJveNVSc9xtstvodf5cXV8gkk0k8vPwUEaIMT8ZfZTvA9haUvzihcjI5ge5ALZnliC9A2JVRVV2PK0lViK5HykD2Gm0-rdvkYOzvr-8_Ldm2_DgXX8gz46Hp6_g4QwuRKPXsDK5ntpNHwlN9FZj8r8BgagF7w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+resolution+Godunov%E2%80%90type+schemes+with+small+stencils&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Guinot%2C+Vincent&rft.date=2004-04-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=44&rft.issue=10&rft.spage=1119&rft.epage=1162&rft_id=info:doi/10.1002%2Ffld.690&rft.externalDBID=10.1002%252Ffld.690&rft.externalDocID=FLD690 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |