High resolution Godunov-type schemes with small stencils

Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 44; no. 10; pp. 1119 - 1162
Main Author Guinot, Vincent
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 10.04.2004
Wiley
Subjects
Online AccessGet full text
ISSN0271-2091
1097-0363
DOI10.1002/fld.690

Cover

Abstract Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10‐4. Linear waves are subject to negligible damping. Application of the method to the DPM for one‐dimensional advection–dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One‐ and two‐dimensional shallow water simulations show an improvement over classical methods, in particular for two‐dimensional problems with strongly distorted meshes. The quality of the computational solution in the two‐dimensional case remains acceptable even for mesh aspect ratios Δx/Δy as large as 10. The method can be extend to the discretization of higher‐order PDEs, allowing third‐order space derivatives to be discretized using only two cells in space. Copyright © 2004 John Wiley & Sons, Ltd.
AbstractList Higher-order Godunov-type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony-preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection-dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10@@u-4@. Linear waves are subject to negligible damping. Application of the method to the DPM for one-dimensional advection-dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One- and two-dimensional shallow water simulations show an improvement over classical methods, in particular for two-dimensional problems with strongly distorted meshes. The quality of the computational solution in the two-dimensional case remains acceptable even for mesh aspect ratios [Delta]x/[Delta]y as large as 10. The method can be extend to the discretization of higher-order PDEs, allowing third- order space derivatives to be discretized using only two cells in space.
Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10 ‐4 . Linear waves are subject to negligible damping. Application of the method to the DPM for one‐dimensional advection–dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One‐ and two‐dimensional shallow water simulations show an improvement over classical methods, in particular for two‐dimensional problems with strongly distorted meshes. The quality of the computational solution in the two‐dimensional case remains acceptable even for mesh aspect ratios Δx/Δy as large as 10. The method can be extend to the discretization of higher‐order PDEs, allowing third‐order space derivatives to be discretized using only two cells in space. Copyright © 2004 John Wiley & Sons, Ltd.
Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme computationally expensive, and (ii) the monotony‐preserving treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenomena) via the artificial amplification of the shorter modes. The present paper proposes a new approach to carry out the reconstruction. In this approach, the values of the flow variable at the edges of the computational cells are obtained directly from the reconstruction within these cells. This method is applied to the MUSCL and DPM schemes for the solution of the linear advection equation. The modified DPM scheme can capture contact discontinuities within one computational cell, even after millions of time steps at Courant numbers ranging from 1 to values as low as 10‐4. Linear waves are subject to negligible damping. Application of the method to the DPM for one‐dimensional advection–dispersion problems shows that the numerical instability of oscillatory solutions caused by the over compressive, original DPM limiter is eliminated. One‐ and two‐dimensional shallow water simulations show an improvement over classical methods, in particular for two‐dimensional problems with strongly distorted meshes. The quality of the computational solution in the two‐dimensional case remains acceptable even for mesh aspect ratios Δx/Δy as large as 10. The method can be extend to the discretization of higher‐order PDEs, allowing third‐order space derivatives to be discretized using only two cells in space. Copyright © 2004 John Wiley & Sons, Ltd.
Author Guinot, Vincent
Author_xml – sequence: 1
  givenname: Vincent
  surname: Guinot
  fullname: Guinot, Vincent
  email: guinot@msem.univ.montp2.fr
  organization: Université Montpellier 2, Maison des Sciences de l'Eau, 34095 Montpellier Cedex 5, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15599488$$DView record in Pascal Francis
BookMark eNp10EtP4zAUBWALgUR5iL-QzTALFLh-JLaXI6AFVIEQoLKznOSGenCTYqdA_z1BrViAWN3Np6Nzzw7ZbNoGCTmgcEwB2Entq-NcwwYZUNAyBZ7zTTIAJmnKQNNtshPjfwDQTPEBURfuaZoEjK1fdK5tklFbLZr2Ne2Wc0xiOcUZxuTNddMkzqz3SeywKZ2Pe2Srtj7i_vrukofh-f3pRTq-GV2e_hunJc8UpAViLiuotcqsKHQuCmQgVSWpVNYqgaxkvMiZysAqlBUriprnhciorKUQlO-Sw1XuPLQvC4ydmblYove2wXYRDVNUCw6yh3_W0MbS-jrYvmc08-BmNiwNzTKthVK9S1euDG2MAWtTus5-_t4F67yhYD53NP2Opt-x93-_-a_IH_JoJd-cx-VvzAzHZyu97uH6Sd-_tA3PJpdcZmZyPTIgJhN99XhnbvkHyzWQ5Q
CODEN IJNFDW
CitedBy_id crossref_primary_10_1002_fld_3950
crossref_primary_10_1134_S0965542507120081
crossref_primary_10_1016_j_jcp_2009_07_007
crossref_primary_10_2166_hydro_2020_119
crossref_primary_10_1002_num_20275
crossref_primary_10_1016_j_advwatres_2007_04_003
Cites_doi 10.1006/jcph.1999.6329
10.1016/S0045-7930(01)00075-5
10.1007/BF01061287
10.1016/0021-9991(92)90324-R
10.1016/0021-9991(84)90013-5
10.1137/0906009
10.1006/jcph.1999.6354
10.1002/fld.177
10.1006/jcph.1996.5608
10.1016/0021-9991(84)90143-8
10.1007/978-3-0348-8629-1
10.1016/0021-9991(77)90095-X
10.1002/fld.488
10.1002/cpa.3160100406
10.1002/(SICI)1097-0207(19980630)42:4<647::AID-NME376>3.0.CO;2-U
10.1006/jcph.2001.6731
10.1006/jcph.2000.6610
10.1006/jcph.1995.1137
ContentType Journal Article
Copyright Copyright © 2004 John Wiley & Sons, Ltd.
2004 INIST-CNRS
Copyright_xml – notice: Copyright © 2004 John Wiley & Sons, Ltd.
– notice: 2004 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
8FD
H8D
L7M
DOI 10.1002/fld.690
DatabaseName Istex
CrossRef
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 1162
ExternalDocumentID 15599488
10_1002_fld_690
FLD690
ark_67375_WNG_04WW9JXS_Q
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
6TJ
AAHHS
ABEML
ABTAH
ACCFJ
ACSCC
ADZOD
AEEZP
AEQDE
AGHNM
AI.
AIWBW
AJBDE
HF~
IQODW
M6O
PALCI
RIWAO
RJQFR
RYL
SAMSI
VH1
VOH
ZY4
~A~
8FD
H8D
L7M
ID FETCH-LOGICAL-c3580-bee67d0f985a4b964be2078d7178aa84e2c23b62850a8e7d2bbf36b4517f74413
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Wed Oct 01 13:45:51 EDT 2025
Wed Apr 02 07:26:34 EDT 2025
Wed Oct 01 04:44:22 EDT 2025
Thu Apr 24 23:06:44 EDT 2025
Wed Aug 20 07:28:10 EDT 2025
Tue Sep 09 05:32:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Conservation laws
Godunov scheme
Dams
Ruptures
Computational fluid dynamics
Digital simulation
Free surface flow
Convection diffusion equation
Mesh generation
Numerical stability
Shallow-water equations
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3580-bee67d0f985a4b964be2078d7178aa84e2c23b62850a8e7d2bbf36b4517f74413
Notes ark:/67375/WNG-04WW9JXS-Q
istex:900DCF43429281615082BA2D4A999BD079402652
ArticleID:FLD690
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28194307
PQPubID 23500
PageCount 44
ParticipantIDs proquest_miscellaneous_28194307
pascalfrancis_primary_15599488
crossref_citationtrail_10_1002_fld_690
crossref_primary_10_1002_fld_690
wiley_primary_10_1002_fld_690_FLD690
istex_primary_ark_67375_WNG_04WW9JXS_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 April 2004
PublicationDateYYYYMMDD 2004-04-10
PublicationDate_xml – month: 04
  year: 2004
  text: 10 April 2004
  day: 10
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2004
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Van Leer B. Toward the ultimate conservative difference scheme, IV: a new approach to numerical convection. Journal of Computational Physics 1977; 23:276-299.
Colella P. A direct Eulerian MUSCL method for gas dynamics. SIAM Journal on Scientific and Statistical Computing 1985; 6:104-117.
Hubbard ME. Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. Journal of Computational Physics 1999; 155:54-74.
Ben-Artzi M, Falcovitz J. A second-order Godunov-type scheme for compressible fluid dynamics. Journal of Computational Physics 1984; 55:1-32.
Toro EF. Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley: New York, 2001.
Lerat A, Corre P. Residual-based compact schemes for multidimensional hyperbolic systems of conservation laws. Computers & Fluids 2002; 31:639-661.
Toda K, Holly Jr FM. Hybrid numerical method for linear advection diffusion. Microsoftware for Engineers 1987; 3(4):199-205.
LeVeque RJ. Numerical Methods for Conservation Laws. Birkhaüser: Basel, 1992.
Guinot V. Godunov-Type Schemes: an Introduction for Engineers. Elsevier: Amsterdam, 2003.
Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 1992; 103:16-42.
Chang S-C. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations. Journal of Computational Physics 1995; 119:295-324.
Abarbanel S, Kumar A. Compact high-order schemes for the Euler equations. SIAM Journal on Scientific and Statistical Computing 1988; 3:275.
Komatsu T, Ohgushi K, Asai K, Holly Jr FM. Accurate simulation of scalar advective transport. Journal of Hydroscience and Hydraulic Engineering 1989; 7(1):63-73.
Guinot V. Boundary condition treatment for 2×2 systems of propagation equations. International Journal for Numerical methods in Engineering 1988; 42:647-666.
Guinot V. The Discontinuous Profile Method (DPM) for simulating two-phase flow in pipes using the single-component approximation. International Journal for Numerical Methods in Fluids 2001; 37:341-359.
Toda K, Holly Jr FM. Hybrid numerical method for nonlinear advection diffusion. Journal of Hydroscience and Hydraulic Engineering 1998; 6(1):1-11.
Molls T, Moll F. Space-time conservation method applied to Saint-Venant equations. Journal of Hydraulic Engineering (ASCE) 1999; 124(5):891.
Godunov SK. A difference method for numerical calculation of discontinuous equations of hydrodynamics. Matematicheski Sbornik 1959; 47:271-300.
Chang S-C, Wang XY, Chow CY. The space-time conservation element and solution element method: a new high-resolution and genuinely multidimensional paradigm for solving conservation laws. Journal of Computational Physics 1999; 156:89-136.
Yee HC. Explicit and implicit multidimensional compact high-resolution shock-capturing methods: formulation. Journal of Computational Physics 1997; 131:216-232.
Holly Jr FM, Preissmann A. Accurate calculation of two-dimensional advection. Journal of the Hydraulics Division (ASCE) 1997; 98:1259-1277.
Colella P, Woodward PR. The piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics 1984; 54:174-201.
Chang S-C, Wang X-Y, To W-M. Application of the space-time conservation element and solution element method to one-dimensional convection-diffusion problems. Journal of Computational Physics 1999; 165:189-215.
Lax PD. Hyperbolic systems of conservation laws, II. Communications in Pure and Applied Mathematics 1957; 10:537-566.
Billet G, Louedin O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows. Journal of Computational Physics 2001; 170:161-183.
Guinot V. Riemann solvers and boundary conditions for two-dimensional shallow water simulations. International Journal for Numerical Methods in Fluids 2003; 41:1191-1219.
1957; 10
1987; 3
2002; 31
1997; 131
1989; 7
1992; 103
1995; 119
1985; 6
1999; 165
1999; 124
1992
2003
1977; 23
1959; 47
1988; 3
2001
1997; 98
2001; 170
1984; 54
1984; 55
2001; 37
1999; 155
1999; 156
1988; 42
1998; 6
2003; 41
Molls T (e_1_2_1_17_2) 1999; 124
Guinot V (e_1_2_1_23_2) 2003
e_1_2_1_22_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
Holly FM (e_1_2_1_11_2) 1997; 98
Toro EF (e_1_2_1_24_2) 2001
Godunov SK (e_1_2_1_25_2) 1959; 47
Toda K (e_1_2_1_13_2) 1987; 3
Toda K (e_1_2_1_14_2) 1998; 6
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_3_2
e_1_2_1_12_2
Komatsu T (e_1_2_1_15_2) 1989; 7
e_1_2_1_10_2
e_1_2_1_16_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Guinot V. Boundary condition treatment for 2×2 systems of propagation equations. International Journal for Numerical methods in Engineering 1988; 42:647-666.
– reference: Toda K, Holly Jr FM. Hybrid numerical method for linear advection diffusion. Microsoftware for Engineers 1987; 3(4):199-205.
– reference: Holly Jr FM, Preissmann A. Accurate calculation of two-dimensional advection. Journal of the Hydraulics Division (ASCE) 1997; 98:1259-1277.
– reference: Hubbard ME. Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. Journal of Computational Physics 1999; 155:54-74.
– reference: Lax PD. Hyperbolic systems of conservation laws, II. Communications in Pure and Applied Mathematics 1957; 10:537-566.
– reference: Toro EF. Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley: New York, 2001.
– reference: Chang S-C, Wang X-Y, To W-M. Application of the space-time conservation element and solution element method to one-dimensional convection-diffusion problems. Journal of Computational Physics 1999; 165:189-215.
– reference: Billet G, Louedin O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows. Journal of Computational Physics 2001; 170:161-183.
– reference: Chang S-C. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations. Journal of Computational Physics 1995; 119:295-324.
– reference: Colella P. A direct Eulerian MUSCL method for gas dynamics. SIAM Journal on Scientific and Statistical Computing 1985; 6:104-117.
– reference: Toda K, Holly Jr FM. Hybrid numerical method for nonlinear advection diffusion. Journal of Hydroscience and Hydraulic Engineering 1998; 6(1):1-11.
– reference: Komatsu T, Ohgushi K, Asai K, Holly Jr FM. Accurate simulation of scalar advective transport. Journal of Hydroscience and Hydraulic Engineering 1989; 7(1):63-73.
– reference: Guinot V. Riemann solvers and boundary conditions for two-dimensional shallow water simulations. International Journal for Numerical Methods in Fluids 2003; 41:1191-1219.
– reference: Guinot V. Godunov-Type Schemes: an Introduction for Engineers. Elsevier: Amsterdam, 2003.
– reference: Yee HC. Explicit and implicit multidimensional compact high-resolution shock-capturing methods: formulation. Journal of Computational Physics 1997; 131:216-232.
– reference: Lerat A, Corre P. Residual-based compact schemes for multidimensional hyperbolic systems of conservation laws. Computers & Fluids 2002; 31:639-661.
– reference: Ben-Artzi M, Falcovitz J. A second-order Godunov-type scheme for compressible fluid dynamics. Journal of Computational Physics 1984; 55:1-32.
– reference: LeVeque RJ. Numerical Methods for Conservation Laws. Birkhaüser: Basel, 1992.
– reference: Guinot V. The Discontinuous Profile Method (DPM) for simulating two-phase flow in pipes using the single-component approximation. International Journal for Numerical Methods in Fluids 2001; 37:341-359.
– reference: Godunov SK. A difference method for numerical calculation of discontinuous equations of hydrodynamics. Matematicheski Sbornik 1959; 47:271-300.
– reference: Van Leer B. Toward the ultimate conservative difference scheme, IV: a new approach to numerical convection. Journal of Computational Physics 1977; 23:276-299.
– reference: Colella P, Woodward PR. The piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics 1984; 54:174-201.
– reference: Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 1992; 103:16-42.
– reference: Chang S-C, Wang XY, Chow CY. The space-time conservation element and solution element method: a new high-resolution and genuinely multidimensional paradigm for solving conservation laws. Journal of Computational Physics 1999; 156:89-136.
– reference: Abarbanel S, Kumar A. Compact high-order schemes for the Euler equations. SIAM Journal on Scientific and Statistical Computing 1988; 3:275.
– reference: Molls T, Moll F. Space-time conservation method applied to Saint-Venant equations. Journal of Hydraulic Engineering (ASCE) 1999; 124(5):891.
– volume: 10
  start-page: 537
  year: 1957
  end-page: 566
  article-title: Hyperbolic systems of conservation laws, II
  publication-title: Communications in Pure and Applied Mathematics
– volume: 155
  start-page: 54
  year: 1999
  end-page: 74
  article-title: Multidimensional slope limiters for MUSCL‐type finite volume schemes on unstructured grids
  publication-title: Journal of Computational Physics
– volume: 131
  start-page: 216
  year: 1997
  end-page: 232
  article-title: Explicit and implicit multidimensional compact high‐resolution shock‐capturing methods: formulation
  publication-title: Journal of Computational Physics
– volume: 37
  start-page: 341
  year: 2001
  end-page: 359
  article-title: The Discontinuous Profile Method (DPM) for simulating two‐phase flow in pipes using the single‐component approximation
  publication-title: International Journal for Numerical Methods in Fluids
– year: 2001
– volume: 156
  start-page: 89
  year: 1999
  end-page: 136
  article-title: The space‐time conservation element and solution element method: a new high‐resolution and genuinely multidimensional paradigm for solving conservation laws
  publication-title: Journal of Computational Physics
– year: 2003
– volume: 3
  start-page: 199
  issue: 4
  year: 1987
  end-page: 205
  article-title: Hybrid numerical method for linear advection diffusion
  publication-title: Microsoftware for Engineers
– volume: 165
  start-page: 189
  year: 1999
  end-page: 215
  article-title: Application of the space‐time conservation element and solution element method to one‐dimensional convection–diffusion problems
  publication-title: Journal of Computational Physics
– volume: 98
  start-page: 1259
  year: 1997
  end-page: 1277
  article-title: Accurate calculation of two‐dimensional advection
  publication-title: Journal of the Hydraulics Division (ASCE)
– year: 1992
– volume: 6
  start-page: 104
  year: 1985
  end-page: 117
  article-title: A direct Eulerian MUSCL method for gas dynamics
  publication-title: SIAM Journal on Scientific and Statistical Computing
– volume: 41
  start-page: 1191
  year: 2003
  end-page: 1219
  article-title: Riemann solvers and boundary conditions for two‐dimensional shallow water simulations
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 54
  start-page: 174
  year: 1984
  end-page: 201
  article-title: The piecewise parabolic method (PPM) for gas‐dynamical simulations
  publication-title: Journal of Computational Physics
– volume: 6
  start-page: 1
  issue: 1
  year: 1998
  end-page: 11
  article-title: Hybrid numerical method for nonlinear advection diffusion
  publication-title: Journal of Hydroscience and Hydraulic Engineering
– volume: 124
  start-page: 891
  issue: 5
  year: 1999
  article-title: Space‐time conservation method applied to Saint‐Venant equations
  publication-title: Journal of Hydraulic Engineering (ASCE)
– volume: 119
  start-page: 295
  year: 1995
  end-page: 324
  article-title: The method of space‐time conservation element and solution element—a new approach for solving the Navier‐Stokes and Euler equations
  publication-title: Journal of Computational Physics
– volume: 7
  start-page: 63
  issue: 1
  year: 1989
  end-page: 73
  article-title: Accurate simulation of scalar advective transport
  publication-title: Journal of Hydroscience and Hydraulic Engineering
– volume: 55
  start-page: 1
  year: 1984
  end-page: 32
  article-title: A second‐order Godunov‐type scheme for compressible fluid dynamics
  publication-title: Journal of Computational Physics
– volume: 23
  start-page: 276
  year: 1977
  end-page: 299
  article-title: Toward the ultimate conservative difference scheme, IV: a new approach to numerical convection
  publication-title: Journal of Computational Physics
– volume: 42
  start-page: 647
  year: 1988
  end-page: 666
  article-title: Boundary condition treatment for 2×2 systems of propagation equations
  publication-title: International Journal for Numerical methods in Engineering
– volume: 31
  start-page: 639
  year: 2002
  end-page: 661
  article-title: Residual‐based compact schemes for multidimensional hyperbolic systems of conservation laws
  publication-title: Computers & Fluids
– volume: 47
  start-page: 271
  year: 1959
  end-page: 300
  article-title: A difference method for numerical calculation of discontinuous equations of hydrodynamics
  publication-title: Matematicheski Sbornik
– volume: 3
  start-page: 275
  year: 1988
  article-title: Compact high‐order schemes for the Euler equations
  publication-title: SIAM Journal on Scientific and Statistical Computing
– volume: 170
  start-page: 161
  year: 2001
  end-page: 183
  article-title: Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows
  publication-title: Journal of Computational Physics
– volume: 103
  start-page: 16
  year: 1992
  end-page: 42
  article-title: Compact finite difference schemes with spectral‐like resolution
  publication-title: Journal of Computational Physics
– ident: e_1_2_1_6_2
  doi: 10.1006/jcph.1999.6329
– volume: 98
  start-page: 1259
  year: 1997
  ident: e_1_2_1_11_2
  article-title: Accurate calculation of two‐dimensional advection
  publication-title: Journal of the Hydraulics Division (ASCE)
– ident: e_1_2_1_10_2
  doi: 10.1016/S0045-7930(01)00075-5
– ident: e_1_2_1_7_2
  doi: 10.1007/BF01061287
– volume: 7
  start-page: 63
  issue: 1
  year: 1989
  ident: e_1_2_1_15_2
  article-title: Accurate simulation of scalar advective transport
  publication-title: Journal of Hydroscience and Hydraulic Engineering
– ident: e_1_2_1_8_2
  doi: 10.1016/0021-9991(92)90324-R
– volume: 6
  start-page: 1
  issue: 1
  year: 1998
  ident: e_1_2_1_14_2
  article-title: Hybrid numerical method for nonlinear advection diffusion
  publication-title: Journal of Hydroscience and Hydraulic Engineering
– ident: e_1_2_1_3_2
  doi: 10.1016/0021-9991(84)90013-5
– ident: e_1_2_1_21_2
  doi: 10.1137/0906009
– ident: e_1_2_1_16_2
  doi: 10.1006/jcph.1999.6354
– ident: e_1_2_1_22_2
  doi: 10.1002/fld.177
– ident: e_1_2_1_9_2
  doi: 10.1006/jcph.1996.5608
– volume-title: Shock‐Capturing Methods for Free‐Surface Shallow Flows
  year: 2001
  ident: e_1_2_1_24_2
– ident: e_1_2_1_4_2
  doi: 10.1016/0021-9991(84)90143-8
– volume-title: Godunov‐Type Schemes: an Introduction for Engineers
  year: 2003
  ident: e_1_2_1_23_2
– ident: e_1_2_1_20_2
  doi: 10.1007/978-3-0348-8629-1
– volume: 124
  start-page: 891
  issue: 5
  year: 1999
  ident: e_1_2_1_17_2
  article-title: Space‐time conservation method applied to Saint‐Venant equations
  publication-title: Journal of Hydraulic Engineering (ASCE)
– ident: e_1_2_1_2_2
  doi: 10.1016/0021-9991(77)90095-X
– volume: 3
  start-page: 199
  issue: 4
  year: 1987
  ident: e_1_2_1_13_2
  article-title: Hybrid numerical method for linear advection diffusion
  publication-title: Microsoftware for Engineers
– volume: 47
  start-page: 271
  year: 1959
  ident: e_1_2_1_25_2
  article-title: A difference method for numerical calculation of discontinuous equations of hydrodynamics
  publication-title: Matematicheski Sbornik
– ident: e_1_2_1_26_2
  doi: 10.1002/fld.488
– ident: e_1_2_1_19_2
  doi: 10.1002/cpa.3160100406
– ident: e_1_2_1_27_2
  doi: 10.1002/(SICI)1097-0207(19980630)42:4<647::AID-NME376>3.0.CO;2-U
– ident: e_1_2_1_5_2
  doi: 10.1006/jcph.2001.6731
– ident: e_1_2_1_18_2
  doi: 10.1006/jcph.2000.6610
– ident: e_1_2_1_12_2
  doi: 10.1006/jcph.1995.1137
SSID ssj0009283
Score 1.726491
Snippet Higher‐order Godunov‐type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme...
Higher-order Godunov-type schemes have to cope with the following two problems: (i) the increase in the size of the stencil that make the scheme...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1119
SubjectTerms advection-dispersion
Applied sciences
Buildings. Public works
Computational methods in fluid dynamics
conservation laws
Dams and subsidiary installations
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Godunov-type schemes
Hydraulic constructions
Physics
reconstruction
reduced stencils
shallow water equations
Title High resolution Godunov-type schemes with small stencils
URI https://api.istex.fr/ark:/67375/WNG-04WW9JXS-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.690
https://www.proquest.com/docview/28194307
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0271-2091
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hcoEDhQIibSk-VL1lGztOnPSGgG1VoUo8KlZcLDu2JdQ0i5pdhDjxE_iN_BJmkuwLhIQ4RUrsKJmXZzzjbwAOyxCCsd7FQXEXy9RIShImsRKJy43yMtiuyvciP7uU55Nsstbqq8eHWG64kWZ09poU3Nj2eAUaGmo3wtAOrS9P8y6YersCjipFD8ApFEc5KHl_XJZmHg_zNtah20TSr1QXaVokTeh7Wmw4neuua7f2jLfh4-Kr-5KTq9F8ZkfVt98AHf_rt-7DvcEjZc97EXoAt3yzA9uDd8oG3W934O4adOFDOKECEYax-iC67HTq5s30y8_vP2hXl2HQ7K99y2ifl7XXpq5ZS-75p7p9BJfjV-9fnMVDH4a4oiRpbL3PlUtCWWRG2jKX1gv0LBxGgoUxhfSiEqmls5iJKbxywtqQ5lZmXAWF7lb6GLaaaeOfAFOce2czk8sslTZVlhvuRYF3hKwC5xEcLbiiqwGknHpl1LqHVxYa6aORPhGw5cDPPS7Hn0OOOrYun5ubKypjU5n-cHGqEyowP5-8028iONjg--qFBMeGFi6CZwtB0Kh9lFIxjZ_OW01pSIlmMoLDjql_-xY9fv0SL7v_NmwP7iwKhHiyD1uzm7l_ir7PzB50Yv4LvzYCSg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH-C7QAcGAwmwmDzYdotXew4ccJtAroySiVgE5U4WHZsS2hZipYWIU77CPuM-yTzS9J2BSEhTpESO0qe37N_749_BtjLnXNKWxM6QU3IY8UxSRiFgkUmVcJyp5sq31E6OOXH42TcVVXiXpiWH2IRcEPLaOZrNHAMSB8sWUNdaXret7sL6zz1XgoCok9L6qictRScTFCvCTltN8xi14Ou48pKtI5C_YmVkar2wnHtqRYrsPM2eG1Wn_4GfJ1_d1t0ctabTXWv-PUbpeP__dgjeNiBUnLYatFjuGOrTdjoACrpzL_ehAe32AufwCusESHeXe-0lxxNzKya_Li-vMLALvF-sz23NcFQL6nPVVmSGhH6t7J-Cqf9tyevB2F3FENYYJ401NamwkQuzxLFdZ5ybZkHF8Y7g5lSGbesYLHG7ZiRyqwwTGsXp5onVDjhEVe8BWvVpLLPgAhKrdGJSnkScx0LTRW1LPN3GC8cpQHsz4dFFh1POR6XUcqWYZlJLx_p5RMAWTT83lJz_NlkvxnXxXN1cYaVbCKRX0ZHMsIa8-PxZ_kxgJ2VgV--EBnZ_CQXwO5cE6Q3QMyqqMpOZrXETCT3M2UAe82o_u1bZH_4xl-e_1uzXbg3OPkwlMN3o_fbcH9eL0SjF7A2vZjZlx4KTfVOo_M34B4Gaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKyE4UFpABGjrQ9VbtrHjxElviO32qRWvipU4WHZsS6hptmp2EeqJn8Bv5JfgSbK7XSokxClSYkfJPOwZz-fPADu5c05pa0InqAl5rDgWCaNQsMikSljudIPyHaZH5_xklIw6VCXuhWn5IeYLbugZzXiNDm6vjNtbsIa60vR8bncfVnmSZwjn639YUEflrKXgZIJ6S8hpu2EWu-51HZdmolUU6ndERqraC8e1p1oshZ23g9dm9hmswZfZd7egk4vedKJ7xc0flI7_92NP4HEXlJI3rRWtwz1bbcBaF6CSzv3rDXh0i73wKewjRoT4dL2zXnI4NtNq_O3Xj5-4sEt83mwvbU1wqZfUl6osSY0R-teyfgbng4NPb4_C7iiGsMA6aaitTYWJnJez4jpPubbMBxfGJ4OZUhm3rGCxxu2YkcqsMExrF6eaJ1Q44SOu-DmsVOPKvgAiKLVGJyrlScx1LDRV1LLM32G8cJQGsDtTiyw6nnI8LqOULcMyk14-0ssnADJveNVSc9xtstvodf5cXV8gkk0k8vPwUEaIMT8ZfZTvA9haUvzihcjI5ge5ALZnliC9A2JVRVV2PK0lViK5HykD2Gm0-rdvkYOzvr-8_Ldm2_DgXX8gz46Hp6_g4QwuRKPXsDK5ntpNHwlN9FZj8r8BgagF7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+resolution+Godunov%E2%80%90type+schemes+with+small+stencils&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Guinot%2C+Vincent&rft.date=2004-04-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=44&rft.issue=10&rft.spage=1119&rft.epage=1162&rft_id=info:doi/10.1002%2Ffld.690&rft.externalDBID=10.1002%252Ffld.690&rft.externalDocID=FLD690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon