Integrated systemic inflammatory response syndrome epidemic model in scale-free networks
Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model...
Saved in:
Published in | Chinese physics B Vol. 20; no. 9; pp. 77 - 78 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.09.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/20/9/090503 |
Cover
Abstract | Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system. |
---|---|
AbstractList | Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system. |
Author | 蔡绍洪 张达敏 龚光武 郭长睿 |
Author_xml | – sequence: 1 fullname: 蔡绍洪 张达敏 龚光武 郭长睿 |
BookMark | eNqFkE1LxDAQhoMouK7-BKHerTtptmmLJxG_YMHLHryFNJms0TapSUD239t1RUEW9jSHeZ75eE_IofMOCTmncEWhrmeUV_OcQslnBcyaGTRQAjsgkwLKOmc1mx-SyS9zTE5ifAPgFAo2IS9PLuEqyIQ6i-uYsLcqs850su9l8mGdBYyDdxHHttPB95jhYPU313uN3UhnUckOcxMQM4fp04f3eEqOjOwinv3UKVne3y1vH_PF88PT7c0iV6ysUm4Ucl4jKwHLoih4qxptaMs0p5Qb2eo5gKKtbMCMjGqrqtUwN6rhLQJr2ZRcb8eq4GMMaISySSbrXQrSdoKC2GQkNv-Lzf-iANGIbUajXf6zh2B7GdZ7vcutZ_3wp-xCxaDNiMMOfM-Gi5_LXr1bfVi3-hVZQxlUZcG-ABarlZY |
CitedBy_id | crossref_primary_10_1155_2021_3816221 |
Cites_doi | 10.1126/science.286.5439.509 10.1088/0256-307X/23/5/077 10.1016/j.physa.2003.08.002 10.1103/PhysRevE.64.016131 10.1103/PhysRevLett.92.178701 10.1140/epjd/e2009-00163-0 10.1103/RevModPhys.74.47 10.1126/science.1061076 10.1038/30918 10.1209/0295-5075/86/50002 10.1063/1.3479977 10.1088/1674-1056/19/2/020203 10.1103/PhysRevE.63.066117 10.1103/PhysRevLett.86.3200 10.1103/PhysRevLett.86.2909 10.1016/j.jtbi.2005.01.011 10.1088/1674-1056/19/2/020501 10.7498/aps.59.6725 10.1038/35075138 10.1103/PhysRevE.65.035108 10.7498/aps.59.6734 10.1140/epjb/e2004-00119-8 10.1103/PhysRevE.81.061118 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1088/1674-1056/20/9/090503 |
DatabaseName | 维普中文科技期刊数据库 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Integrated systemic inflammatory response syndrome epidemic model in scale-free networks |
EISSN | 2058-3834 |
EndPage | 78 |
ExternalDocumentID | 10_1088_1674_1056_20_9_090503 39130752 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA AAPBV ABPTK CDYEO UNR -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K |
ID | FETCH-LOGICAL-c357t-fce668e350e52226bc9df1b3d6116fabd400c1ba90f350cb77bd04fc96be03b3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu Apr 24 23:08:15 EDT 2025 Tue Jul 01 03:59:56 EDT 2025 Tue Nov 10 14:17:27 EST 2020 Mon May 13 13:02:29 EDT 2019 Wed Feb 14 10:32:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-fce668e350e52226bc9df1b3d6116fabd400c1ba90f350cb77bd04fc96be03b3 |
Notes | scale-free networks, systemic inflammatory response syndrome model, analog simulation Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system. Cai Shao-Hong Zhang Da-MinI Gong Guang-Wu( and Guo Chang-Rui a) School of Informatics, Guizhou College of Finance and Economics, Guiyang 550004, China b) School of Computer Science and Information, Cuizhou University, Guiyang 550025, China 11-5639/O4 |
PageCount | 2 |
ParticipantIDs | iop_primary_10_1088_1674_1056_20_9_090503 crossref_citationtrail_10_1088_1674_1056_20_9_090503 chongqing_primary_39130752 crossref_primary_10_1088_1674_1056_20_9_090503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2011 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 24 Wang X H (14) 2010; 19 25 Moreno Y (23) 2002; 26 Xia C Y (28) 2008; 23 Wang Y Q (26) 2010; 59 Fang J Q (9) 2007; 27 Broder A (5) 2000; 33 10 32 12 Kuperman M (18) 2001; 86 13 Lin G J (30) 2003; 35 16 17 19 Newman M E J (21) 2002; 66 Guan J Y (15) 2010; 19 Liu Z R (29) 2006; 23 1 2 3 4 6 Zhang D M (31) 2009; 2 Wu D (11) 2009; 86 Li G Z (33) 2006; 65 Wang Y Q (27) 2010; 59 20 Wu J S (7) 2004; 24 Fang J Q (8) 2007; 27 |
References_xml | – ident: 2 doi: 10.1126/science.286.5439.509 – volume: 23 start-page: 1343 issn: 0256-307X year: 2006 ident: 29 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/23/5/077 – ident: 24 doi: 10.1016/j.physa.2003.08.002 – volume: 23 start-page: 468 year: 2008 ident: 28 publication-title: Control Decision – volume: 24 start-page: 18 year: 2004 ident: 7 publication-title: Prog. Phys. – ident: 6 doi: 10.1103/PhysRevE.64.016131 – ident: 16 doi: 10.1103/PhysRevLett.92.178701 – volume: 2 start-page: 556 year: 2009 ident: 31 – ident: 10 doi: 10.1140/epjd/e2009-00163-0 – ident: 3 doi: 10.1103/RevModPhys.74.47 – ident: 22 doi: 10.1126/science.1061076 – ident: 1 doi: 10.1038/30918 – volume: 86 start-page: 50002 issn: 0295-5075 year: 2009 ident: 11 publication-title: Eur. Phys. Lett. doi: 10.1209/0295-5075/86/50002 – ident: 12 doi: 10.1063/1.3479977 – volume: 19 start-page: 020203 issn: 1674-1056 year: 2010 ident: 15 publication-title: Chin. Phys. doi: 10.1088/1674-1056/19/2/020203 – volume: 27 start-page: 361 year: 2007 ident: 9 publication-title: Prog. Phys. – volume: 33 start-page: 309 year: 2000 ident: 5 – ident: 20 doi: 10.1103/PhysRevE.63.066117 – ident: 19 doi: 10.1103/PhysRevLett.86.3200 – volume: 86 start-page: 2902 year: 2001 ident: 18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.2909 – ident: 17 doi: 10.1016/j.jtbi.2005.01.011 – volume: 65 start-page: 508 issn: 1002-0071 year: 2006 ident: 33 publication-title: Prog. Nat. Sci. – volume: 19 start-page: 020501 issn: 1674-1056 year: 2010 ident: 14 publication-title: Chin. Phys. doi: 10.1088/1674-1056/19/2/020501 – volume: 66 start-page: 06128 issn: 1063-651X year: 2002 ident: 21 publication-title: Phys. Rev. – volume: 59 start-page: 6725 issn: 0372-736X year: 2010 ident: 27 publication-title: Acta Phys. Sin. doi: 10.7498/aps.59.6725 – volume: 26 start-page: 521 issn: 1434-6028 year: 2002 ident: 23 publication-title: Eur. Phys. J. – volume: 27 start-page: 239 year: 2007 ident: 8 publication-title: Prog. Phys. – ident: 4 doi: 10.1038/35075138 – ident: 32 doi: 10.1103/PhysRevE.65.035108 – volume: 59 start-page: 6734 issn: 0372-736X year: 2010 ident: 26 publication-title: Acta Phys. Sin. doi: 10.7498/aps.59.6734 – ident: 25 doi: 10.1140/epjb/e2004-00119-8 – volume: 35 start-page: 66 year: 2003 ident: 30 publication-title: J. Peking Univ. (Health Sci.) – ident: 13 doi: 10.1103/PhysRevE.81.061118 |
SSID | ssj0061023 |
Score | 1.8661765 |
SecondaryResourceType | review_article |
Snippet | Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and... |
SourceID | crossref iop chongqing |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 77 |
SubjectTerms | 传播过程 影响系统 无标度网络 炎症反应 疫情 综合征 网络模型 集成 |
Title | Integrated systemic inflammatory response syndrome epidemic model in scale-free networks |
URI | http://lib.cqvip.com/qk/85823A/201109/39130752.html http://iopscience.iop.org/1674-1056/20/9/090503 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYKEhILb0R5yQMMDC6Jkzj1iBAVIPEYQOpmxfYZEJCWtiz8es5xjUAgAVuGs6OcL_ewz99HyJ4nXaxAFow7sCzHhJqhz-NM-PxVpxxE5Tf0Ly7F6W1-3i_6LRKZ6R4Gw6nn7-BjOMkXZc48PzzW6YfyMJEewQR9LsZ-b9FnV9fR8woPQ-ALrDgi3tjBIu_HWTyewv2gvnvBKPElLs3gyz-Fmd4iuY6XdUJ3yWPndaI75u07duNfv2CJLExTTnoUbGSZtKBeIXNN66cZr5L-WUSMsDTgOj8YinaHpvLcHMHTUeijBRrhDSgEXllDGyIdlKZjXGtgbgRA69BZPl4jN72Tm-NTNuVbYCYryglzBoToQlYkgFkZF9pI61KdWZGmwlXa4v9uUl3JxKGM0WWpbZI7I4WGJNPZOpmtBzVsEFqA4ZXlBQcHufX01lKnuS26Oqk4Vn1tsvmheDUMsBoqkxhPy4K3SR5XQpkpULnny3hSzYF5t6u8QpVXqOKJkiootE06H8PilL8MOMAV-qvs_hfZn2TU0LrNf8y5RebDBrVvWNsms5PRK-xghjPRu41ZvwOYzutD |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxQxDLbaIhAXoDzEtjxygAOH7M5kJtnJsaKsWmhLD0XaWzRJnIKA2WV3e-HX40xmVrSiKojbHOwoY1u2k9ifAV7FoYs1aslFQM9LSqg5-TzBVcxfbS5Q1fFC__hEHXwq30_ldAP2170ws3nn-of0mYCCkwi7grhqFOvmeRwYTwf3kR5lOkKajOY-bMItWVAAjW18H097f6wiOEE8dvVsfR_PdUtFlIXPs-b8B8WOS9Fqk3b0W_CZ3Afst51qTr4OL1Z26H5eQXT83_96APe67JTtJZ5t2MDmIdxuq0Td8hFMD3twCc8SBPQXx8hEyaq-t6_1bJFKbpH1SAgM0whax9qZO0TNlmQWyMMCkTWpCH35GM4m787eHvBuNAN3hRyveHCoVIWFzJASOKGs0z7ktvAqz1WorSfX4HJb6ywQjbPjsfVZGZxWFrPCFk9gq5k1-BSYRCdqL6TAgKWPk7C1zUsvK5vVgg6IA9hZa8PMEwKHKTSF3rEUAyh79RjXYZrH0RrfTPu2XlUmCtVEoRqRGW2SUAcwXLP1S97A8Ia09re0ry_R_onGkFZ3_mHNl3DndH9ijg5PPuzC3XStHcvcnsHWanGBzykvWtkXrdn_As_6-y4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+systemic+inflammatory+response+syndrome+epidemic+model+in+scale-free+networks&rft.jtitle=Chinese+physics+B&rft.au=Cai%2C+Shao-Hong+%28%E7%BB%8D%E6%B4%AA+%E8%94%A1%29&rft.au=Zhang%2C+Da-Min+%28%E8%BE%BE%E6%95%8F+%E5%BC%A0%29&rft.au=Gong%2C+Guang-Wu+%28%E5%85%89%E6%AD%A6+%E9%BE%9A%29&rft.au=Guo%2C+Chang-Rui+%28%E9%95%BF%E7%9D%BF+%E9%83%AD%29&rft.date=2011-09-01&rft.pub=IOP+Publishing&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=20&rft.spage=090503&rft_id=info:doi/10.1088%2F1674-1056%2F20%2F9%2F090503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_20_9_090503 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |