A Hybrid Optimization Framework with Dynamic Transition Scheme for Large-Scale Portfolio Management
Meta-heuristic algorithms have successfully solved many real-world problems in recent years. Inspired by different natural phenomena, the algorithms with special search mechanisms can be good at tackling certain problems. However, they may fail to solve other problems. Among the various approaches,...
Saved in:
| Published in | Algorithms Vol. 15; no. 11; p. 404 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.11.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-4893 1999-4893 |
| DOI | 10.3390/a15110404 |
Cover
| Abstract | Meta-heuristic algorithms have successfully solved many real-world problems in recent years. Inspired by different natural phenomena, the algorithms with special search mechanisms can be good at tackling certain problems. However, they may fail to solve other problems. Among the various approaches, hybridizing meta-heuristic algorithms may possibly help to enrich their search behaviors while promoting the search adaptability. Accordingly, an efficient hybrid population-based optimization framework, namely the HYPO, is proposed in this study in which two meta-heuristic algorithms with different search ideas are connected by a dynamic contribution-based state transition scheme. Specifically, the dynamic transition scheme determines the directions of information transitions after considering the current contribution and system state at each iteration so that useful information can be shared and learnt between the concerned meta-heuristic algorithms throughout the search process. To carefully examine the effectiveness of the dynamic transition scheme, the proposed HYPO framework is compared against various well-known meta-heuristic algorithms on a set of large-scale benchmark functions and portfolio management problems of different scales in which the HYPO attains outstanding performances on the problems with complex features. Last but not least, the hybrid framework sheds lights on many possible directions for further improvements and investigations. |
|---|---|
| AbstractList | Meta-heuristic algorithms have successfully solved many real-world problems in recent years. Inspired by different natural phenomena, the algorithms with special search mechanisms can be good at tackling certain problems. However, they may fail to solve other problems. Among the various approaches, hybridizing meta-heuristic algorithms may possibly help to enrich their search behaviors while promoting the search adaptability. Accordingly, an efficient hybrid population-based optimization framework, namely the HYPO, is proposed in this study in which two meta-heuristic algorithms with different search ideas are connected by a dynamic contribution-based state transition scheme. Specifically, the dynamic transition scheme determines the directions of information transitions after considering the current contribution and system state at each iteration so that useful information can be shared and learnt between the concerned meta-heuristic algorithms throughout the search process. To carefully examine the effectiveness of the dynamic transition scheme, the proposed HYPO framework is compared against various well-known meta-heuristic algorithms on a set of large-scale benchmark functions and portfolio management problems of different scales in which the HYPO attains outstanding performances on the problems with complex features. Last but not least, the hybrid framework sheds lights on many possible directions for further improvements and investigations. |
| Audience | Academic |
| Author | Li, Zhenglong Tam, Vincent |
| Author_xml | – sequence: 1 givenname: Zhenglong orcidid: 0000-0003-0305-9799 surname: Li fullname: Li, Zhenglong – sequence: 2 givenname: Vincent orcidid: 0000-0003-4697-8277 surname: Tam fullname: Tam, Vincent |
| BookMark | eNp9kUFr3DAQhU1JoUnaQ_-BoKcWnEqWZFnHJU2awJYUkp7FWB5ttLWlraxl2f76KnEJPZU5aHj65jF6OqtOQgxYVe8ZveBc08_AJGNUUPGqOmVa61p0mp_807-pzuZ5S2krdctOK7siN8c--YHc7bKf_G_IPgZynWDCQ0w_ycHnR_LlGGDyljwkCLN_Ju7tI05IXExkDWmD9b2FEcn3mLKLo4_kGwTYFCTkt9VrB-OM7_6e59WP66uHy5t6fff19nK1ri2XKtdOodY4DD210mmpetujarCVXCgp0KLsJOeul1aWGw2NZTAo3fYdtZQC8PPqdvEdImzNLvkJ0tFE8OZZiGljIGVvRzSMN9KqTqN2naCW9y1rZDuInuqOC8GK16fFax92cDzAOL4YMmqeojYvURf4wwLvUvy1xzmbbdynUN5qGsWF1I1QT9TFQm1KUMYHF3MCW2rAkm35RueLvlJCMtFoTcvAx2XApjjPCd1_VvgDCoeb3A |
| Cites_doi | 10.1109/ACCESS.2020.3019809 10.1109/TEVC.2008.927706 10.1007/s00500-017-2626-3 10.1023/A:1008202821328 10.1016/j.eswa.2011.02.075 10.1016/j.eswa.2009.02.062 10.1145/1553374.1553425 10.1109/IntelliSys.2017.8324237 10.1016/j.swevo.2011.02.002 10.3390/a14120358 10.1111/j.0000-0000.2012.01042.x 10.1007/s11721-007-0002-0 10.1109/SSCI47803.2020.9308167 10.4018/978-1-5225-4151-6.ch008 10.1109/HPCC-SmartCity-DSS50907.2020.00170 10.1007/s11408-019-00326-3 10.1016/j.eswa.2016.02.006 10.1186/s11782-020-00082-6 10.1016/j.cam.2020.113065 10.1016/S0960-0779(03)00071-7 10.1007/s00500-019-03934-3 10.1155/2014/721521 10.1145/2541315 10.1609/aaai.v35i1.16144 10.1109/4235.585893 10.1016/j.ejor.2006.07.038 10.3905/JPM.2009.35.2.061 10.1145/1143844.1143846 10.3905/jfds.2020.1.042 10.1186/s40854-019-0140-6 10.1371/journal.pone.0212913 10.1002/asmb.2209 10.1016/S0927-0507(05)80047-7 10.1016/j.advengsoft.2016.01.008 10.1109/ACCESS.2021.3054636 10.1007/s00500-017-2685-5 10.1007/s00521-017-3012-x 10.1109/TKDE.2016.2563433 10.1145/2435209.2435213 10.1109/TEVC.2009.2014613 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/a15110404 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_1325c789e9f840c3b61256d4b0983441 10.3390/a15110404 A745142990 10_3390_a15110404 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK COVID FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c357t-f7e99eddb0c5f957bcbe72e6534754ece58533fb5c5cbe9a2c1ad796b80c00aa3 |
| IEDL.DBID | DOA |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:51:37 EDT 2025 Sun Oct 26 04:04:01 EDT 2025 Fri Jul 25 11:44:40 EDT 2025 Tue Jul 15 03:26:26 EDT 2025 Thu Oct 16 04:36:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-f7e99eddb0c5f957bcbe72e6534754ece58533fb5c5cbe9a2c1ad796b80c00aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0305-9799 0000-0003-4697-8277 |
| OpenAccessLink | https://doaj.org/article/1325c789e9f840c3b61256d4b0983441 |
| PQID | 2734592474 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1325c789e9f840c3b61256d4b0983441 unpaywall_primary_10_3390_a15110404 proquest_journals_2734592474 gale_infotracacademiconefile_A745142990 crossref_primary_10_3390_a15110404 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | French (ref_13) 2003; 1 Li (ref_34) 2013; 7 Chi (ref_27) 2019; 31 Chang (ref_43) 2009; 36 Zhang (ref_19) 2009; 13 Ye (ref_10) 2020; 34 ref_12 Storn (ref_18) 1997; 11 ref_33 Huang (ref_11) 2021; 382 Ammar (ref_41) 2003; 18 Kaucic (ref_45) 2019; 5 ref_30 Zhu (ref_3) 2011; 38 Wolpert (ref_5) 1997; 1 Lee (ref_14) 2009; 35 ref_17 ref_39 Huang (ref_7) 2020; 14 ref_37 Sun (ref_31) 2020; 24 Qin (ref_46) 2008; 13 Li (ref_28) 2021; 9 Weigand (ref_9) 2019; 33 Mirjalili (ref_22) 2016; 95 Cui (ref_21) 2018; 22 Derrac (ref_48) 2011; 1 Huang (ref_35) 2016; 28 Zhang (ref_38) 2020; 2 Poorzahedy (ref_24) 2007; 182 ref_44 Poli (ref_23) 2007; 1 ref_42 Li (ref_47) 2013; 7 ref_40 Cavalcante (ref_6) 2016; 55 Hakansson (ref_15) 1995; 9 ref_2 ref_29 Lugosi (ref_36) 2006; 16 Heaton (ref_16) 2017; 33 ref_26 Sun (ref_20) 2018; 22 ref_8 Griffis (ref_1) 2012; 33 Li (ref_32) 2014; 46 ref_4 Sheikh (ref_25) 2020; 8 |
| References_xml | – volume: 8 start-page: 158125 year: 2020 ident: ref_25 article-title: EHHM: Electrical harmony based hybrid meta-heuristic for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019809 – volume: 13 start-page: 398 year: 2008 ident: ref_46 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.927706 – volume: 22 start-page: 5747 year: 2018 ident: ref_20 article-title: Differential evolution with individual-dependent and dynamic parameter adjustment publication-title: Soft Comput. doi: 10.1007/s00500-017-2626-3 – volume: 11 start-page: 341 year: 1997 ident: ref_18 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 38 start-page: 10161 year: 2011 ident: ref_3 article-title: Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.075 – volume: 36 start-page: 10529 year: 2009 ident: ref_43 article-title: Portfolio optimization problems in different risk measures using genetic algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.062 – ident: ref_37 doi: 10.1145/1553374.1553425 – ident: ref_39 doi: 10.1109/IntelliSys.2017.8324237 – volume: 1 start-page: 3 year: 2011 ident: ref_48 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – ident: ref_26 doi: 10.3390/a14120358 – volume: 33 start-page: 90 year: 2012 ident: ref_1 article-title: Metaheuristics in logistics and supply chain management publication-title: J. Bus. Logist. doi: 10.1111/j.0000-0000.2012.01042.x – volume: 1 start-page: 33 year: 2007 ident: ref_23 article-title: Particle swarm optimization publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – ident: ref_30 doi: 10.1109/SSCI47803.2020.9308167 – ident: ref_4 doi: 10.4018/978-1-5225-4151-6.ch008 – ident: ref_29 doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00170 – volume: 33 start-page: 93 year: 2019 ident: ref_9 article-title: Machine learning in empirical asset pricing publication-title: Financ. Mark. Portf. Manag. doi: 10.1007/s11408-019-00326-3 – volume: 55 start-page: 194 year: 2016 ident: ref_6 article-title: Computational intelligence and financial markets: A survey and future directions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.02.006 – volume: 14 start-page: 1 year: 2020 ident: ref_7 article-title: Deep learning in finance and banking: A literature review and classification publication-title: Front. Bus. Res. China doi: 10.1186/s11782-020-00082-6 – volume: 382 start-page: 113065 year: 2021 ident: ref_11 article-title: Applying deep learning method in TVP-VAR model under systematic financial risk monitoring and early warning publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.113065 – volume: 18 start-page: 1045 year: 2003 ident: ref_41 article-title: Fuzzy portfolio optimization a quadratic programming approach publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(03)00071-7 – volume: 7 start-page: 8 year: 2013 ident: ref_47 article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization publication-title: Gene – volume: 24 start-page: 6277 year: 2020 ident: ref_31 article-title: An adaptive differential evolution with combined strategy for global numerical optimization publication-title: Soft Comput. doi: 10.1007/s00500-019-03934-3 – ident: ref_8 – ident: ref_44 doi: 10.1155/2014/721521 – volume: 46 start-page: 1 year: 2014 ident: ref_32 article-title: Online portfolio selection: A survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/2541315 – ident: ref_40 doi: 10.1609/aaai.v35i1.16144 – volume: 1 start-page: 67 year: 1997 ident: ref_5 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 182 start-page: 578 year: 2007 ident: ref_24 article-title: Hybrid meta-heuristic algorithms for solving network design problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.07.038 – ident: ref_2 – volume: 1 start-page: 60 year: 2003 ident: ref_13 article-title: The Treynor capital asset pricing model publication-title: J. Invest. Manag. – volume: 35 start-page: 61 year: 2009 ident: ref_14 article-title: The Black–Litterman model for active portfolio management publication-title: J. Portf. Manag. doi: 10.3905/JPM.2009.35.2.061 – ident: ref_33 doi: 10.1145/1143844.1143846 – volume: 2 start-page: 8 year: 2020 ident: ref_38 article-title: Deep learning for portfolio optimization publication-title: J. Financ. Data Sci. doi: 10.3905/jfds.2020.1.042 – volume: 5 start-page: 1 year: 2019 ident: ref_45 article-title: Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures publication-title: Financ. Innov. doi: 10.1186/s40854-019-0140-6 – ident: ref_12 – ident: ref_42 doi: 10.1371/journal.pone.0212913 – volume: 33 start-page: 3 year: 2017 ident: ref_16 article-title: Deep learning for finance: Deep portfolios publication-title: Appl. Stoch. Model. Bus. Ind. doi: 10.1002/asmb.2209 – volume: 9 start-page: 65 year: 1995 ident: ref_15 article-title: Capital growth theory publication-title: Handbooks Oper. Res. Manag. Sci. doi: 10.1016/S0927-0507(05)80047-7 – volume: 95 start-page: 51 year: 2016 ident: ref_22 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 9 start-page: 19960 year: 2021 ident: ref_28 article-title: An adaptive multi-population optimization algorithm for global continuous optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054636 – volume: 22 start-page: 6171 year: 2018 ident: ref_21 article-title: A novel differential evolution algorithm with a self-adaptation parameter control method by differential evolution publication-title: Soft Comput. doi: 10.1007/s00500-017-2685-5 – ident: ref_17 – volume: 16 start-page: 337 year: 2006 ident: ref_36 article-title: Nonparametric kernel-based sequential investment strategies publication-title: Math. Financ. Int. J. Math. Stat. Financ. Econ. – volume: 31 start-page: 653 year: 2019 ident: ref_27 article-title: A hybridization of cuckoo search and particle swarm optimization for solving optimization problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3012-x – volume: 28 start-page: 2480 year: 2016 ident: ref_35 article-title: Robust median reversion strategy for online portfolio selection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2563433 – volume: 7 start-page: 1 year: 2013 ident: ref_34 article-title: Confidence weighted mean reversion strategy for online portfolio selection publication-title: ACM Trans. Knowl. Discov. Data (TKDD) doi: 10.1145/2435209.2435213 – volume: 34 start-page: 1112 year: 2020 ident: ref_10 article-title: Reinforcement-learning based portfolio management with augmented asset movement prediction states publication-title: Proc. Aaai Conf. Artif. Intell. – volume: 13 start-page: 945 year: 2009 ident: ref_19 article-title: JADE: Adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 |
| SSID | ssj0065961 |
| Score | 2.2519233 |
| Snippet | Meta-heuristic algorithms have successfully solved many real-world problems in recent years. Inspired by different natural phenomena, the algorithms with... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 404 |
| SubjectTerms | Algorithms Cooperation Evolution Heuristic Heuristic methods hybridized algorithm information transition Investment analysis large-scale optimization meta-heuristic Mutation Optimization Population Portfolio management portfolio optimization Search process |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_OvQf1wW-xekpQwady3TZpOg8ie3rLIrqKenBvIUlTFfa267qH3H_vTDfZE0Rf2xLCTOYrnfn9AJ4jJQX8Nylnsrhceixz1K3LO8o-sGlRaseF4vt5PTuRb0_V6R7M0ywMt1Umnzg46rb3fEd-yDAsiooFLV-tfuTMGsV_VxOFho3UCu3LAWLsCuyXjIw1gv2j4_nHT8k31wrr8RZfqKJi_9BSvKN6JLK0pag0gPf_7aKvw9Xz5cpe_LKLxR8xaHoLbsTkUUy22r4Ne2F5B24mYgYR7fQu-ImYXfAolvhAHuEsjlqKaWrEEnz7Kt5syejFEK6Gzi1a4Vs4C4ISWfGOW8Tzz6TCILjdtOsX33tx2S1zD06mx19ez_LIppD7SulN3umAGNrWFV51qLTzLugy1KqSWsngAxUOVdU55RW9QVv6sW011q4pfFFYW92H0bJfhgcgrHNlV2JwmhTSoEXlGlf7sdetxA6bDJ4maZrVFjTDULHBIjc7kWdwxHLefcA418ODfv3VRLMxVCsrrxsM2FEl6ivHCVndSlcgE4SMM3jBWjJsjZu19TYOFdA-GdfKTLSkjJBDbgYHSZEmmulPc3moMni2U-6_9_zw_4s8gmslT0cMo4oHMNqsz8Njylk27kk8iL8BvifrKw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-y96A-eH7i6ilBBZ96_UqazpOsH8siegq6cD7FJE30cG932esq51_vTJuuogiCr21aEmYmM79k5jeMPQIMCug2KaFmcYlwUCSgGpsEjD6gbkAoS0Dx9VE1m4uXx_I49jk9i2mVCMVPuk26K5EndpQ0l2mepyIT6boJT77Go6S8qhDAiJLqt_YqicH4iO3Nj95OPnR3yfHjnk-oRHCfGvRviD9iV7bBC3Vk_X9uyZfZxe1ybc6_mcXiF58z3Wcfh9n2qSZfDretPXTffyNy_I_lXGVXYjzKJ70CXWMX_PI62x96PfBo-jeYm_DZOVV38Te4yZzG6k0-HXK7OB3o8ud9f3veecAuGQz_8Nmfeo6xMX9FWefJO9QKzymDNawWJyv-MwHnJptPX7x_Nktig4bElVK1SVAewDeNzZwMIJV11qvCV7IUSgrvPGKRsgxWOolvwBQuN42CytaZyzJjyltstFwt_W3GjbVFKMBbhYCwBgPS1rZyuVONgAD1mD0YBKbXPQ-HRvxCUtU7qY7ZUxLlbgBRZ3cPVptPOlqiRvgtnarBQ0Bw60pLMV7VCJsB9RzJx-wxKYImA283xplYp4DzJKosPVECg0zy4mN2MOiKjpZ_pokuSOIaFM7m4U5__j7nO_806i67VFDdRVcEecBG7Wbr72E01Nr7UeN_AHOAAmU priority: 102 providerName: Unpaywall |
| Title | A Hybrid Optimization Framework with Dynamic Transition Scheme for Large-Scale Portfolio Management |
| URI | https://www.proquest.com/docview/2734592474 https://www.mdpi.com/1999-4893/15/11/404/pdf?version=1667214301 https://doaj.org/article/1325c789e9f840c3b61256d4b0983441 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4VOAAHHgVEII1WtFJPFo7t9XqOCZBGFaSoNBKcVrvrtVopJAiCEP-eGT9SJIR66dEP2eMZz8589sx8AF-QkgL-mxQwWVyQOIwCVLkNCso-MMsxUZaB4sUoHY6T79fy-hXVF9eEVeOBK8UdE1qSTmXosSAs4mLLITnNExsiU0SUwIdu1oCpag1OJabdao5QTKD-2FBcI9xRs7E10acc0v92KV6H1cfpnXl-MpPJq1gz2IKNOkkUvUq4bfjgpx9hsyFgELU_7oDrieEzt1yJH-T5t3VLpRg0BVeCv7KK04p0XpRhqazQoiv89rdeUMIqzrkUPLgiU3nBZaXFbPJnJv5WxezCeHD262QY1KwJgYulmgeF8og-z23oZIFSWWe9inwq40TJxDtPACGOCyudpCNoItc1ucLUZqELQ2PiPViezqZ-H4SxNioi9FYRSsvQoLSZTV3XqTzBArMWHDXa1HfVcAxNoIJVrhcqb0Gf9bw4gedZlzvIyrq2sv6XlVvwla2k2evm98aZunmA5OT5VbqnEsr8OLS2oN0YUtfu-KB5ho-kZ1AkzeeFcd-X-eB_yHwIaxH3SpSNi21Ynt8_-k-UwcxtB5aywbcOrPTPRpc_O-WrS1vj0WXv5gWNFu-W |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48EYsFLB4iFPUbGLHmUOFtrSrLd0uCFqpt9R2HKi0L7ZbVfvn-G3MZJ0tEoJbr0lkWTPjmfmcmfkA3iIlBfw3KWKyuEg6TCLUpY0qyj4wL1Fqy0DxaJD1TuSnU3W6Br-aXhguq2x8Yu2oy4njO_JtHsOiCCxo-WH6M2LWKP672lBomECtUO7UI8ZCY8ehX1wRhLvYOdgjfb9Lku7-8cdeFFgGIpcqPY8q7RF9WdrYqQqVts56nfhMpVIr6Z2nhDpNK6ucojdoEtc2pcbM5rGLY2NSWvcWbMhUIoG_jd39wZevTSzIFGbt5TyjNMV421B8JfwTWOGaKFiTBfwdEu7A5uV4ahZXZjj8I-Z178PdkKyKztK6HsCaHz-Eew0RhAh-4RG4jugtuPVLfCYPNAqtnaLbFH4Jvu0Ve4uxGZ07UYfHulKMVvjhR15Q4iz6XJIefSOT8YLLW6vJ8HwirqtzHsPJjcj1CayPJ2P_FISxNqkS9FaTAeRoUNncZq7tdCmxwrwFrxtpFtPlkI6CwA2LvFiJvAW7LOfVBzxXu34wmX0vwjEtCJsrp3P0WBHydanlBDArpY2RCUnaLXjPWir49M9nxpnQxED75DlaRUdLykA5xLdgq1FkEdzCRXFtxC14s1Luv_f87P-LvILN3vFRv-gfDA6fw-2EOzPqNsktWJ_PLv0Lypfm9mUwSgFnN30OfgPBbCpU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkXgceCMCBUY8xCnabJLJxAeEFpawpaUgQaXehpnJpEXabpbtVtX-NX4ddh5bJAS3XpNoNLI99ueJ7Q_gBRIo4L9JIZPFhanDOERV2rAi9IF5iamynCh-2ssm--nHA3mwAb_6Xhguq-x9YuOoy9rxHfmAx7BIShZUOqi6sogv4-LN_GfIDFL8p7Wn02hNZMevzih9O3m9PSZdv4zj4v23d5OwYxgIXSLVMqyUR_RlaSMnK5TKOutV7DOZpEqm3nkC00lSWekkvUETu6EpFWY2j1wUGZPQupfgsuIp7tylXnzoo0AmMRu2k4ySBKOBochKmU_HB9fHv4Ym4O9gcB2uns7mZnVmptM_ol1xC250MFWMWru6DRt-dgdu9hQQovMId8GNxGTFTV_iM_me466pUxR9yZfge14xbmnvRRMYmxoxWuHIH3tBkFnscjF6-JWMxQsubK3q6Y9anNfl3IP9C5Hqfdic1TP_AISxNq5i9FaR6nM0KG1uMzd0qkyxwjyAZ7009bwdz6EprWGR67XIA3jLcl5_wBO1mwf14lB3B1RTVi6dytFjRTmvSyxDv6xMbYRMRTIM4BVrSfO5Xy6MM137Au2TJ2jpkUoJe3JwD2CrV6TuHMKJPjffAJ6vlfvvPT_8_yJP4QpZv97d3tt5BNdibslo-iO3YHO5OPWPCSgt7ZPGIgV8v-gj8BupmSfu |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-y96A-eH7i6ilBBZ96_UqazpOsH8siegq6cD7FJE30cG932esq51_vTJuuogiCr21aEmYmM79k5jeMPQIMCug2KaFmcYlwUCSgGpsEjD6gbkAoS0Dx9VE1m4uXx_I49jk9i2mVCMVPuk26K5EndpQ0l2mepyIT6boJT77Go6S8qhDAiJLqt_YqicH4iO3Nj95OPnR3yfHjnk-oRHCfGvRviD9iV7bBC3Vk_X9uyZfZxe1ybc6_mcXiF58z3Wcfh9n2qSZfDretPXTffyNy_I_lXGVXYjzKJ70CXWMX_PI62x96PfBo-jeYm_DZOVV38Te4yZzG6k0-HXK7OB3o8ud9f3veecAuGQz_8Nmfeo6xMX9FWefJO9QKzymDNawWJyv-MwHnJptPX7x_Nktig4bElVK1SVAewDeNzZwMIJV11qvCV7IUSgrvPGKRsgxWOolvwBQuN42CytaZyzJjyltstFwt_W3GjbVFKMBbhYCwBgPS1rZyuVONgAD1mD0YBKbXPQ-HRvxCUtU7qY7ZUxLlbgBRZ3cPVptPOlqiRvgtnarBQ0Bw60pLMV7VCJsB9RzJx-wxKYImA283xplYp4DzJKosPVECg0zy4mN2MOiKjpZ_pokuSOIaFM7m4U5__j7nO_806i67VFDdRVcEecBG7Wbr72E01Nr7UeN_AHOAAmU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Optimization+Framework+with+Dynamic+Transition+Scheme+for+Large-Scale+Portfolio+Management&rft.jtitle=Algorithms&rft.au=Li%2C+Zhenglong&rft.au=Tam%2C+Vincent&rft.date=2022-11-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=15&rft.issue=11&rft.spage=404&rft_id=info:doi/10.3390%2Fa15110404&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a15110404 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |