A Hybrid Optimization Framework with Dynamic Transition Scheme for Large-Scale Portfolio Management

Meta-heuristic algorithms have successfully solved many real-world problems in recent years. Inspired by different natural phenomena, the algorithms with special search mechanisms can be good at tackling certain problems. However, they may fail to solve other problems. Among the various approaches,...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 15; no. 11; p. 404
Main Authors Li, Zhenglong, Tam, Vincent
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2022
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a15110404

Cover

Abstract Meta-heuristic algorithms have successfully solved many real-world problems in recent years. Inspired by different natural phenomena, the algorithms with special search mechanisms can be good at tackling certain problems. However, they may fail to solve other problems. Among the various approaches, hybridizing meta-heuristic algorithms may possibly help to enrich their search behaviors while promoting the search adaptability. Accordingly, an efficient hybrid population-based optimization framework, namely the HYPO, is proposed in this study in which two meta-heuristic algorithms with different search ideas are connected by a dynamic contribution-based state transition scheme. Specifically, the dynamic transition scheme determines the directions of information transitions after considering the current contribution and system state at each iteration so that useful information can be shared and learnt between the concerned meta-heuristic algorithms throughout the search process. To carefully examine the effectiveness of the dynamic transition scheme, the proposed HYPO framework is compared against various well-known meta-heuristic algorithms on a set of large-scale benchmark functions and portfolio management problems of different scales in which the HYPO attains outstanding performances on the problems with complex features. Last but not least, the hybrid framework sheds lights on many possible directions for further improvements and investigations.
AbstractList Meta-heuristic algorithms have successfully solved many real-world problems in recent years. Inspired by different natural phenomena, the algorithms with special search mechanisms can be good at tackling certain problems. However, they may fail to solve other problems. Among the various approaches, hybridizing meta-heuristic algorithms may possibly help to enrich their search behaviors while promoting the search adaptability. Accordingly, an efficient hybrid population-based optimization framework, namely the HYPO, is proposed in this study in which two meta-heuristic algorithms with different search ideas are connected by a dynamic contribution-based state transition scheme. Specifically, the dynamic transition scheme determines the directions of information transitions after considering the current contribution and system state at each iteration so that useful information can be shared and learnt between the concerned meta-heuristic algorithms throughout the search process. To carefully examine the effectiveness of the dynamic transition scheme, the proposed HYPO framework is compared against various well-known meta-heuristic algorithms on a set of large-scale benchmark functions and portfolio management problems of different scales in which the HYPO attains outstanding performances on the problems with complex features. Last but not least, the hybrid framework sheds lights on many possible directions for further improvements and investigations.
Audience Academic
Author Li, Zhenglong
Tam, Vincent
Author_xml – sequence: 1
  givenname: Zhenglong
  orcidid: 0000-0003-0305-9799
  surname: Li
  fullname: Li, Zhenglong
– sequence: 2
  givenname: Vincent
  orcidid: 0000-0003-4697-8277
  surname: Tam
  fullname: Tam, Vincent
BookMark eNp9kUFr3DAQhU1JoUnaQ_-BoKcWnEqWZFnHJU2awJYUkp7FWB5ttLWlraxl2f76KnEJPZU5aHj65jF6OqtOQgxYVe8ZveBc08_AJGNUUPGqOmVa61p0mp_807-pzuZ5S2krdctOK7siN8c--YHc7bKf_G_IPgZynWDCQ0w_ycHnR_LlGGDyljwkCLN_Ju7tI05IXExkDWmD9b2FEcn3mLKLo4_kGwTYFCTkt9VrB-OM7_6e59WP66uHy5t6fff19nK1ri2XKtdOodY4DD210mmpetujarCVXCgp0KLsJOeul1aWGw2NZTAo3fYdtZQC8PPqdvEdImzNLvkJ0tFE8OZZiGljIGVvRzSMN9KqTqN2naCW9y1rZDuInuqOC8GK16fFax92cDzAOL4YMmqeojYvURf4wwLvUvy1xzmbbdynUN5qGsWF1I1QT9TFQm1KUMYHF3MCW2rAkm35RueLvlJCMtFoTcvAx2XApjjPCd1_VvgDCoeb3A
Cites_doi 10.1109/ACCESS.2020.3019809
10.1109/TEVC.2008.927706
10.1007/s00500-017-2626-3
10.1023/A:1008202821328
10.1016/j.eswa.2011.02.075
10.1016/j.eswa.2009.02.062
10.1145/1553374.1553425
10.1109/IntelliSys.2017.8324237
10.1016/j.swevo.2011.02.002
10.3390/a14120358
10.1111/j.0000-0000.2012.01042.x
10.1007/s11721-007-0002-0
10.1109/SSCI47803.2020.9308167
10.4018/978-1-5225-4151-6.ch008
10.1109/HPCC-SmartCity-DSS50907.2020.00170
10.1007/s11408-019-00326-3
10.1016/j.eswa.2016.02.006
10.1186/s11782-020-00082-6
10.1016/j.cam.2020.113065
10.1016/S0960-0779(03)00071-7
10.1007/s00500-019-03934-3
10.1155/2014/721521
10.1145/2541315
10.1609/aaai.v35i1.16144
10.1109/4235.585893
10.1016/j.ejor.2006.07.038
10.3905/JPM.2009.35.2.061
10.1145/1143844.1143846
10.3905/jfds.2020.1.042
10.1186/s40854-019-0140-6
10.1371/journal.pone.0212913
10.1002/asmb.2209
10.1016/S0927-0507(05)80047-7
10.1016/j.advengsoft.2016.01.008
10.1109/ACCESS.2021.3054636
10.1007/s00500-017-2685-5
10.1007/s00521-017-3012-x
10.1109/TKDE.2016.2563433
10.1145/2435209.2435213
10.1109/TEVC.2009.2014613
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a15110404
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database ProQuest
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_1325c789e9f840c3b61256d4b0983441
10.3390/a15110404
A745142990
10_3390_a15110404
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c357t-f7e99eddb0c5f957bcbe72e6534754ece58533fb5c5cbe9a2c1ad796b80c00aa3
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Fri Oct 03 12:51:37 EDT 2025
Sun Oct 26 04:04:01 EDT 2025
Fri Jul 25 11:44:40 EDT 2025
Tue Jul 15 03:26:26 EDT 2025
Thu Oct 16 04:36:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-f7e99eddb0c5f957bcbe72e6534754ece58533fb5c5cbe9a2c1ad796b80c00aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0305-9799
0000-0003-4697-8277
OpenAccessLink https://doaj.org/article/1325c789e9f840c3b61256d4b0983441
PQID 2734592474
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_1325c789e9f840c3b61256d4b0983441
unpaywall_primary_10_3390_a15110404
proquest_journals_2734592474
gale_infotracacademiconefile_A745142990
crossref_primary_10_3390_a15110404
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References French (ref_13) 2003; 1
Li (ref_34) 2013; 7
Chi (ref_27) 2019; 31
Chang (ref_43) 2009; 36
Zhang (ref_19) 2009; 13
Ye (ref_10) 2020; 34
ref_12
Storn (ref_18) 1997; 11
ref_33
Huang (ref_11) 2021; 382
Ammar (ref_41) 2003; 18
Kaucic (ref_45) 2019; 5
ref_30
Zhu (ref_3) 2011; 38
Wolpert (ref_5) 1997; 1
Lee (ref_14) 2009; 35
ref_17
ref_39
Huang (ref_7) 2020; 14
ref_37
Sun (ref_31) 2020; 24
Qin (ref_46) 2008; 13
Li (ref_28) 2021; 9
Weigand (ref_9) 2019; 33
Mirjalili (ref_22) 2016; 95
Cui (ref_21) 2018; 22
Derrac (ref_48) 2011; 1
Huang (ref_35) 2016; 28
Zhang (ref_38) 2020; 2
Poorzahedy (ref_24) 2007; 182
ref_44
Poli (ref_23) 2007; 1
ref_42
Li (ref_47) 2013; 7
ref_40
Cavalcante (ref_6) 2016; 55
Hakansson (ref_15) 1995; 9
ref_2
ref_29
Lugosi (ref_36) 2006; 16
Heaton (ref_16) 2017; 33
ref_26
Sun (ref_20) 2018; 22
ref_8
Griffis (ref_1) 2012; 33
Li (ref_32) 2014; 46
ref_4
Sheikh (ref_25) 2020; 8
References_xml – volume: 8
  start-page: 158125
  year: 2020
  ident: ref_25
  article-title: EHHM: Electrical harmony based hybrid meta-heuristic for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019809
– volume: 13
  start-page: 398
  year: 2008
  ident: ref_46
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.927706
– volume: 22
  start-page: 5747
  year: 2018
  ident: ref_20
  article-title: Differential evolution with individual-dependent and dynamic parameter adjustment
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2626-3
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_18
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 38
  start-page: 10161
  year: 2011
  ident: ref_3
  article-title: Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.075
– volume: 36
  start-page: 10529
  year: 2009
  ident: ref_43
  article-title: Portfolio optimization problems in different risk measures using genetic algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.062
– ident: ref_37
  doi: 10.1145/1553374.1553425
– ident: ref_39
  doi: 10.1109/IntelliSys.2017.8324237
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_48
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref_26
  doi: 10.3390/a14120358
– volume: 33
  start-page: 90
  year: 2012
  ident: ref_1
  article-title: Metaheuristics in logistics and supply chain management
  publication-title: J. Bus. Logist.
  doi: 10.1111/j.0000-0000.2012.01042.x
– volume: 1
  start-page: 33
  year: 2007
  ident: ref_23
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– ident: ref_30
  doi: 10.1109/SSCI47803.2020.9308167
– ident: ref_4
  doi: 10.4018/978-1-5225-4151-6.ch008
– ident: ref_29
  doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00170
– volume: 33
  start-page: 93
  year: 2019
  ident: ref_9
  article-title: Machine learning in empirical asset pricing
  publication-title: Financ. Mark. Portf. Manag.
  doi: 10.1007/s11408-019-00326-3
– volume: 55
  start-page: 194
  year: 2016
  ident: ref_6
  article-title: Computational intelligence and financial markets: A survey and future directions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.006
– volume: 14
  start-page: 1
  year: 2020
  ident: ref_7
  article-title: Deep learning in finance and banking: A literature review and classification
  publication-title: Front. Bus. Res. China
  doi: 10.1186/s11782-020-00082-6
– volume: 382
  start-page: 113065
  year: 2021
  ident: ref_11
  article-title: Applying deep learning method in TVP-VAR model under systematic financial risk monitoring and early warning
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.113065
– volume: 18
  start-page: 1045
  year: 2003
  ident: ref_41
  article-title: Fuzzy portfolio optimization a quadratic programming approach
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(03)00071-7
– volume: 7
  start-page: 8
  year: 2013
  ident: ref_47
  article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization
  publication-title: Gene
– volume: 24
  start-page: 6277
  year: 2020
  ident: ref_31
  article-title: An adaptive differential evolution with combined strategy for global numerical optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03934-3
– ident: ref_8
– ident: ref_44
  doi: 10.1155/2014/721521
– volume: 46
  start-page: 1
  year: 2014
  ident: ref_32
  article-title: Online portfolio selection: A survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/2541315
– ident: ref_40
  doi: 10.1609/aaai.v35i1.16144
– volume: 1
  start-page: 67
  year: 1997
  ident: ref_5
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 182
  start-page: 578
  year: 2007
  ident: ref_24
  article-title: Hybrid meta-heuristic algorithms for solving network design problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.07.038
– ident: ref_2
– volume: 1
  start-page: 60
  year: 2003
  ident: ref_13
  article-title: The Treynor capital asset pricing model
  publication-title: J. Invest. Manag.
– volume: 35
  start-page: 61
  year: 2009
  ident: ref_14
  article-title: The Black–Litterman model for active portfolio management
  publication-title: J. Portf. Manag.
  doi: 10.3905/JPM.2009.35.2.061
– ident: ref_33
  doi: 10.1145/1143844.1143846
– volume: 2
  start-page: 8
  year: 2020
  ident: ref_38
  article-title: Deep learning for portfolio optimization
  publication-title: J. Financ. Data Sci.
  doi: 10.3905/jfds.2020.1.042
– volume: 5
  start-page: 1
  year: 2019
  ident: ref_45
  article-title: Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures
  publication-title: Financ. Innov.
  doi: 10.1186/s40854-019-0140-6
– ident: ref_12
– ident: ref_42
  doi: 10.1371/journal.pone.0212913
– volume: 33
  start-page: 3
  year: 2017
  ident: ref_16
  article-title: Deep learning for finance: Deep portfolios
  publication-title: Appl. Stoch. Model. Bus. Ind.
  doi: 10.1002/asmb.2209
– volume: 9
  start-page: 65
  year: 1995
  ident: ref_15
  article-title: Capital growth theory
  publication-title: Handbooks Oper. Res. Manag. Sci.
  doi: 10.1016/S0927-0507(05)80047-7
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_22
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 9
  start-page: 19960
  year: 2021
  ident: ref_28
  article-title: An adaptive multi-population optimization algorithm for global continuous optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054636
– volume: 22
  start-page: 6171
  year: 2018
  ident: ref_21
  article-title: A novel differential evolution algorithm with a self-adaptation parameter control method by differential evolution
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2685-5
– ident: ref_17
– volume: 16
  start-page: 337
  year: 2006
  ident: ref_36
  article-title: Nonparametric kernel-based sequential investment strategies
  publication-title: Math. Financ. Int. J. Math. Stat. Financ. Econ.
– volume: 31
  start-page: 653
  year: 2019
  ident: ref_27
  article-title: A hybridization of cuckoo search and particle swarm optimization for solving optimization problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3012-x
– volume: 28
  start-page: 2480
  year: 2016
  ident: ref_35
  article-title: Robust median reversion strategy for online portfolio selection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2563433
– volume: 7
  start-page: 1
  year: 2013
  ident: ref_34
  article-title: Confidence weighted mean reversion strategy for online portfolio selection
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
  doi: 10.1145/2435209.2435213
– volume: 34
  start-page: 1112
  year: 2020
  ident: ref_10
  article-title: Reinforcement-learning based portfolio management with augmented asset movement prediction states
  publication-title: Proc. Aaai Conf. Artif. Intell.
– volume: 13
  start-page: 945
  year: 2009
  ident: ref_19
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
SSID ssj0065961
Score 2.2519233
Snippet Meta-heuristic algorithms have successfully solved many real-world problems in recent years. Inspired by different natural phenomena, the algorithms with...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 404
SubjectTerms Algorithms
Cooperation
Evolution
Heuristic
Heuristic methods
hybridized algorithm
information transition
Investment analysis
large-scale optimization
meta-heuristic
Mutation
Optimization
Population
Portfolio management
portfolio optimization
Search process
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_OvQf1wW-xekpQwady3TZpOg8ie3rLIrqKenBvIUlTFfa267qH3H_vTDfZE0Rf2xLCTOYrnfn9AJ4jJQX8Nylnsrhceixz1K3LO8o-sGlRaseF4vt5PTuRb0_V6R7M0ywMt1Umnzg46rb3fEd-yDAsiooFLV-tfuTMGsV_VxOFho3UCu3LAWLsCuyXjIw1gv2j4_nHT8k31wrr8RZfqKJi_9BSvKN6JLK0pag0gPf_7aKvw9Xz5cpe_LKLxR8xaHoLbsTkUUy22r4Ne2F5B24mYgYR7fQu-ImYXfAolvhAHuEsjlqKaWrEEnz7Kt5syejFEK6Gzi1a4Vs4C4ISWfGOW8Tzz6TCILjdtOsX33tx2S1zD06mx19ez_LIppD7SulN3umAGNrWFV51qLTzLugy1KqSWsngAxUOVdU55RW9QVv6sW011q4pfFFYW92H0bJfhgcgrHNlV2JwmhTSoEXlGlf7sdetxA6bDJ4maZrVFjTDULHBIjc7kWdwxHLefcA418ODfv3VRLMxVCsrrxsM2FEl6ivHCVndSlcgE4SMM3jBWjJsjZu19TYOFdA-GdfKTLSkjJBDbgYHSZEmmulPc3moMni2U-6_9_zw_4s8gmslT0cMo4oHMNqsz8Njylk27kk8iL8BvifrKw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-y96A-eH7i6ilBBZ96_UqazpOsH8siegq6cD7FJE30cG932esq51_vTJuuogiCr21aEmYmM79k5jeMPQIMCug2KaFmcYlwUCSgGpsEjD6gbkAoS0Dx9VE1m4uXx_I49jk9i2mVCMVPuk26K5EndpQ0l2mepyIT6boJT77Go6S8qhDAiJLqt_YqicH4iO3Nj95OPnR3yfHjnk-oRHCfGvRviD9iV7bBC3Vk_X9uyZfZxe1ybc6_mcXiF58z3Wcfh9n2qSZfDretPXTffyNy_I_lXGVXYjzKJ70CXWMX_PI62x96PfBo-jeYm_DZOVV38Te4yZzG6k0-HXK7OB3o8ud9f3veecAuGQz_8Nmfeo6xMX9FWefJO9QKzymDNawWJyv-MwHnJptPX7x_Nktig4bElVK1SVAewDeNzZwMIJV11qvCV7IUSgrvPGKRsgxWOolvwBQuN42CytaZyzJjyltstFwt_W3GjbVFKMBbhYCwBgPS1rZyuVONgAD1mD0YBKbXPQ-HRvxCUtU7qY7ZUxLlbgBRZ3cPVptPOlqiRvgtnarBQ0Bw60pLMV7VCJsB9RzJx-wxKYImA283xplYp4DzJKosPVECg0zy4mN2MOiKjpZ_pokuSOIaFM7m4U5__j7nO_806i67VFDdRVcEecBG7Wbr72E01Nr7UeN_AHOAAmU
  priority: 102
  providerName: Unpaywall
Title A Hybrid Optimization Framework with Dynamic Transition Scheme for Large-Scale Portfolio Management
URI https://www.proquest.com/docview/2734592474
https://www.mdpi.com/1999-4893/15/11/404/pdf?version=1667214301
https://doaj.org/article/1325c789e9f840c3b61256d4b0983441
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4VOAAHHgVEII1WtFJPFo7t9XqOCZBGFaSoNBKcVrvrtVopJAiCEP-eGT9SJIR66dEP2eMZz8589sx8AF-QkgL-mxQwWVyQOIwCVLkNCso-MMsxUZaB4sUoHY6T79fy-hXVF9eEVeOBK8UdE1qSTmXosSAs4mLLITnNExsiU0SUwIdu1oCpag1OJabdao5QTKD-2FBcI9xRs7E10acc0v92KV6H1cfpnXl-MpPJq1gz2IKNOkkUvUq4bfjgpx9hsyFgELU_7oDrieEzt1yJH-T5t3VLpRg0BVeCv7KK04p0XpRhqazQoiv89rdeUMIqzrkUPLgiU3nBZaXFbPJnJv5WxezCeHD262QY1KwJgYulmgeF8og-z23oZIFSWWe9inwq40TJxDtPACGOCyudpCNoItc1ucLUZqELQ2PiPViezqZ-H4SxNioi9FYRSsvQoLSZTV3XqTzBArMWHDXa1HfVcAxNoIJVrhcqb0Gf9bw4gedZlzvIyrq2sv6XlVvwla2k2evm98aZunmA5OT5VbqnEsr8OLS2oN0YUtfu-KB5ho-kZ1AkzeeFcd-X-eB_yHwIaxH3SpSNi21Ynt8_-k-UwcxtB5aywbcOrPTPRpc_O-WrS1vj0WXv5gWNFu-W
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48EYsFLB4iFPUbGLHmUOFtrSrLd0uCFqpt9R2HKi0L7ZbVfvn-G3MZJ0tEoJbr0lkWTPjmfmcmfkA3iIlBfw3KWKyuEg6TCLUpY0qyj4wL1Fqy0DxaJD1TuSnU3W6Br-aXhguq2x8Yu2oy4njO_JtHsOiCCxo-WH6M2LWKP672lBomECtUO7UI8ZCY8ehX1wRhLvYOdgjfb9Lku7-8cdeFFgGIpcqPY8q7RF9WdrYqQqVts56nfhMpVIr6Z2nhDpNK6ucojdoEtc2pcbM5rGLY2NSWvcWbMhUIoG_jd39wZevTSzIFGbt5TyjNMV421B8JfwTWOGaKFiTBfwdEu7A5uV4ahZXZjj8I-Z178PdkKyKztK6HsCaHz-Eew0RhAh-4RG4jugtuPVLfCYPNAqtnaLbFH4Jvu0Ve4uxGZ07UYfHulKMVvjhR15Q4iz6XJIefSOT8YLLW6vJ8HwirqtzHsPJjcj1CayPJ2P_FISxNqkS9FaTAeRoUNncZq7tdCmxwrwFrxtpFtPlkI6CwA2LvFiJvAW7LOfVBzxXu34wmX0vwjEtCJsrp3P0WBHydanlBDArpY2RCUnaLXjPWir49M9nxpnQxED75DlaRUdLykA5xLdgq1FkEdzCRXFtxC14s1Luv_f87P-LvILN3vFRv-gfDA6fw-2EOzPqNsktWJ_PLv0Lypfm9mUwSgFnN30OfgPBbCpU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkXgceCMCBUY8xCnabJLJxAeEFpawpaUgQaXehpnJpEXabpbtVtX-NX4ddh5bJAS3XpNoNLI99ueJ7Q_gBRIo4L9JIZPFhanDOERV2rAi9IF5iamynCh-2ssm--nHA3mwAb_6Xhguq-x9YuOoy9rxHfmAx7BIShZUOqi6sogv4-LN_GfIDFL8p7Wn02hNZMevzih9O3m9PSZdv4zj4v23d5OwYxgIXSLVMqyUR_RlaSMnK5TKOutV7DOZpEqm3nkC00lSWekkvUETu6EpFWY2j1wUGZPQupfgsuIp7tylXnzoo0AmMRu2k4ySBKOBochKmU_HB9fHv4Ym4O9gcB2uns7mZnVmptM_ol1xC250MFWMWru6DRt-dgdu9hQQovMId8GNxGTFTV_iM_me466pUxR9yZfge14xbmnvRRMYmxoxWuHIH3tBkFnscjF6-JWMxQsubK3q6Y9anNfl3IP9C5Hqfdic1TP_AISxNq5i9FaR6nM0KG1uMzd0qkyxwjyAZ7009bwdz6EprWGR67XIA3jLcl5_wBO1mwf14lB3B1RTVi6dytFjRTmvSyxDv6xMbYRMRTIM4BVrSfO5Xy6MM137Au2TJ2jpkUoJe3JwD2CrV6TuHMKJPjffAJ6vlfvvPT_8_yJP4QpZv97d3tt5BNdibslo-iO3YHO5OPWPCSgt7ZPGIgV8v-gj8BupmSfu
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA-y96A-eH7i6ilBBZ96_UqazpOsH8siegq6cD7FJE30cG932esq51_vTJuuogiCr21aEmYmM79k5jeMPQIMCug2KaFmcYlwUCSgGpsEjD6gbkAoS0Dx9VE1m4uXx_I49jk9i2mVCMVPuk26K5EndpQ0l2mepyIT6boJT77Go6S8qhDAiJLqt_YqicH4iO3Nj95OPnR3yfHjnk-oRHCfGvRviD9iV7bBC3Vk_X9uyZfZxe1ybc6_mcXiF58z3Wcfh9n2qSZfDretPXTffyNy_I_lXGVXYjzKJ70CXWMX_PI62x96PfBo-jeYm_DZOVV38Te4yZzG6k0-HXK7OB3o8ud9f3veecAuGQz_8Nmfeo6xMX9FWefJO9QKzymDNawWJyv-MwHnJptPX7x_Nktig4bElVK1SVAewDeNzZwMIJV11qvCV7IUSgrvPGKRsgxWOolvwBQuN42CytaZyzJjyltstFwt_W3GjbVFKMBbhYCwBgPS1rZyuVONgAD1mD0YBKbXPQ-HRvxCUtU7qY7ZUxLlbgBRZ3cPVptPOlqiRvgtnarBQ0Bw60pLMV7VCJsB9RzJx-wxKYImA283xplYp4DzJKosPVECg0zy4mN2MOiKjpZ_pokuSOIaFM7m4U5__j7nO_806i67VFDdRVcEecBG7Wbr72E01Nr7UeN_AHOAAmU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Optimization+Framework+with+Dynamic+Transition+Scheme+for+Large-Scale+Portfolio+Management&rft.jtitle=Algorithms&rft.au=Li%2C+Zhenglong&rft.au=Tam%2C+Vincent&rft.date=2022-11-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=15&rft.issue=11&rft.spage=404&rft_id=info:doi/10.3390%2Fa15110404&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a15110404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon