SVR optimization with soft computing algorithms for incipient SGTR diagnosis
•Proposed a hybrid of N-16 method and optimized SVR for incipient fault diagnosis.•Details soft computing optimization techniques for SVR model.•Optimized SVR model performance evaluated on CNP300 ruptured steam generator tubes.•The proposed method diagnoses SGTR faster than conventional methods. Fa...
Saved in:
| Published in | Annals of nuclear energy Vol. 121; pp. 89 - 100 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.11.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-4549 1873-2100 |
| DOI | 10.1016/j.anucene.2018.07.011 |
Cover
| Abstract | •Proposed a hybrid of N-16 method and optimized SVR for incipient fault diagnosis.•Details soft computing optimization techniques for SVR model.•Optimized SVR model performance evaluated on CNP300 ruptured steam generator tubes.•The proposed method diagnoses SGTR faster than conventional methods.
Fault severity awareness and fault identification are some of the key steps to a successful diagnosis in nuclear power plants. Currently, faults such as leak detection are being done using the N-16 method. However, traditional leak monitors are not sensitive to small leak rate changes, hence cannot be used for low-level leak rate detection under incipient fault conditions and are limited to post-accident analysis of significant releases. In this work, we present a diverse and implementable data-driven Support Vector Regression (SVR) model whose capability compensates for the weaknesses in the already established N-16 methods in the nuclear plant. The method can be integrated with the conventional N-16 method to form a robust hybrid diagnostic system, effective for detecting both incipient and large leakage in the steam generator. The purpose of the SVR model is to estimate uncertain parameters that are sensitive to certain faults, and the parameter estimation efficiency is evaluated using the mean squared error values (MSE). To obtain efficient predictive model capable of supporting decision-making process and to further optimize the model, minimize false alarm rate and reduce computation cost, we also utilized Particle Swarm Optimization algorithm, Sequential Feature Selection algorithm, and Genetic Algorithm for feature selection purposes. To demonstrate the method and evaluate the predictive model, we simulated steam generator tube rupture (SGTR) faults with varying severity in the reactor coolant system of CNP300 NPP, with RELAP5/SCDAP Mod4.0 code. The SVR’s relative error (MSE) with and without feature selection algorithms were compared using different solver algorithms. The feature selection performance of the algorithms and the resulting SVR model fault diagnosis performance evaluation are discussed in this paper. |
|---|---|
| AbstractList | •Proposed a hybrid of N-16 method and optimized SVR for incipient fault diagnosis.•Details soft computing optimization techniques for SVR model.•Optimized SVR model performance evaluated on CNP300 ruptured steam generator tubes.•The proposed method diagnoses SGTR faster than conventional methods.
Fault severity awareness and fault identification are some of the key steps to a successful diagnosis in nuclear power plants. Currently, faults such as leak detection are being done using the N-16 method. However, traditional leak monitors are not sensitive to small leak rate changes, hence cannot be used for low-level leak rate detection under incipient fault conditions and are limited to post-accident analysis of significant releases. In this work, we present a diverse and implementable data-driven Support Vector Regression (SVR) model whose capability compensates for the weaknesses in the already established N-16 methods in the nuclear plant. The method can be integrated with the conventional N-16 method to form a robust hybrid diagnostic system, effective for detecting both incipient and large leakage in the steam generator. The purpose of the SVR model is to estimate uncertain parameters that are sensitive to certain faults, and the parameter estimation efficiency is evaluated using the mean squared error values (MSE). To obtain efficient predictive model capable of supporting decision-making process and to further optimize the model, minimize false alarm rate and reduce computation cost, we also utilized Particle Swarm Optimization algorithm, Sequential Feature Selection algorithm, and Genetic Algorithm for feature selection purposes. To demonstrate the method and evaluate the predictive model, we simulated steam generator tube rupture (SGTR) faults with varying severity in the reactor coolant system of CNP300 NPP, with RELAP5/SCDAP Mod4.0 code. The SVR’s relative error (MSE) with and without feature selection algorithms were compared using different solver algorithms. The feature selection performance of the algorithms and the resulting SVR model fault diagnosis performance evaluation are discussed in this paper. |
| Author | Ayodeji, Abiodun Liu, Yong-kuo |
| Author_xml | – sequence: 1 givenname: Abiodun surname: Ayodeji fullname: Ayodeji, Abiodun organization: Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin, Heilongjiang 150001, China – sequence: 2 givenname: Yong-kuo surname: Liu fullname: Liu, Yong-kuo email: liuyongkuo@hrbeu.edu.cn organization: Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin, Heilongjiang 150001, China |
| BookMark | eNqFkNFKwzAUhoNMcE4fQcgLtCZp06Z4ITJ0CgNhm96GNE3nGWtSkkzRp7dzu_JmVwcOfD___12ikXXWIHRDSUoJLW43qbI7baxJGaEiJWVKKD1DYyrKLGGUkBEak4wUSc7z6gJdhrAhhDKR52M0X74vsOsjdPCjIjiLvyB-4ODaiLXr-l0Eu8Zqu3Z--HcBt85jsBp6MDbi5Wy1wA2otXUBwhU6b9U2mOvjnaC3p8fV9DmZv85epg_zRGe8jIlhNW2G5g0XnBZ11ei6LdqGt0yUVFeE50yVJqvrmpWKVUIYKmrOVK64bk3Oswnih1ztXQjetLL30Cn_LSmReyVyI49K5F6JJKUclAzc3T9OQ_xbHb2C7Un6_kCbYdonGC-DHiRo04A3OsrGwYmEXz6JhBo |
| CitedBy_id | crossref_primary_10_1016_j_isatra_2021_05_026 crossref_primary_10_1021_jacs_2c08993 crossref_primary_10_1016_j_net_2020_07_001 crossref_primary_10_1080_00207543_2020_1837407 crossref_primary_10_1016_j_anucene_2020_107945 crossref_primary_10_1080_00223131_2021_1953630 crossref_primary_10_1016_j_anucene_2019_07_036 crossref_primary_10_1016_j_anucene_2020_108015 crossref_primary_10_1016_j_atech_2025_100879 crossref_primary_10_1155_2021_5511735 crossref_primary_10_1109_ACCESS_2022_3161506 crossref_primary_10_1007_s12652_021_03051_w crossref_primary_10_1111_jfpp_14198 crossref_primary_10_1080_00295450_2023_2169042 crossref_primary_10_1016_j_anucene_2023_110038 crossref_primary_10_1016_j_pnucene_2023_105021 crossref_primary_10_1038_s41598_023_28205_y crossref_primary_10_3390_w16192771 crossref_primary_10_3389_fenrg_2021_663296 crossref_primary_10_1016_j_net_2018_07_013 crossref_primary_10_1016_j_heliyon_2023_e13883 crossref_primary_10_1016_j_anucene_2022_109519 crossref_primary_10_1016_j_nucengdes_2021_111100 crossref_primary_10_1007_s41365_019_0708_x crossref_primary_10_1016_j_anucene_2021_108262 crossref_primary_10_1016_j_geothermics_2024_102924 crossref_primary_10_1016_j_pnucene_2018_12_017 crossref_primary_10_1002_for_2655 crossref_primary_10_1016_j_pnucene_2022_104263 crossref_primary_10_1016_j_net_2020_05_012 crossref_primary_10_3389_fenrg_2021_685634 |
| Cites_doi | 10.1016/j.pnucene.2017.12.013 10.2172/236258 10.1016/j.isatra.2017.03.018 10.1016/j.nima.2012.02.039 10.1016/j.anucene.2015.09.017 10.1109/TEVC.2015.2504420 10.1016/j.neucom.2015.02.043 10.1016/j.net.2017.11.014 10.1016/S0098-1354(00)00374-4 10.1016/j.asoc.2013.09.018 10.1016/j.sigpro.2008.07.001 10.1371/journal.pone.0122827 10.1016/j.asoc.2017.04.042 10.1016/j.dss.2017.12.001 10.1109/TMC.2007.42 10.1016/j.epsr.2012.12.013 10.1016/j.asoc.2016.01.044 10.1016/S0029-5493(03)00132-8 10.1016/j.ijepes.2013.09.027 10.1016/j.anucene.2013.02.023 10.1016/j.asoc.2016.03.014 10.1016/j.eswa.2007.08.088 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.anucene.2018.07.011 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-2100 |
| EndPage | 100 |
| ExternalDocumentID | 10_1016_j_anucene_2018_07_011 S0306454918303608 |
| GroupedDBID | --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JM 9JN A6W AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KCYFY KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SPD SSJ SSR SSZ T5K UHS WUQ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c357t-e2b1d101d58516b9dcbf6fd5f2871c90542a7e3bbb27a2988e18b52a4a5cfe453 |
| IEDL.DBID | .~1 |
| ISSN | 0306-4549 |
| IngestDate | Thu Oct 09 00:24:22 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 Fri Feb 23 02:47:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault diagnosis Support vector regression Feature selection algorithms Steam generator tube rupture |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-e2b1d101d58516b9dcbf6fd5f2871c90542a7e3bbb27a2988e18b52a4a5cfe453 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_anucene_2018_07_011 crossref_citationtrail_10_1016_j_anucene_2018_07_011 elsevier_sciencedirect_doi_10_1016_j_anucene_2018_07_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Annals of nuclear energy |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Xue, Zhang, Browne, Yao (b0170) 2016; 20 Lin, Ying, Chen, Lee (b0080) 2008; 35 Ma, Xia (b0100) 2017; 58 Ayodeji, Liu, Xia (b0015) 2018; 105 Scott, P.M., Olson, R.J., Wilkowski, G.M., 2002. Development of technical sasis for leak-before-break evaluation procedures. USNRC, NUREG/CR-6765. Sohn, W., Chi, J., Kang, D., Tae, J., 2006. Techniques for Primary-to-Secondary Leak Monitoring in PWR Plants 2–3 Available: https://www.kns.org/kns_files/kns/file/71%BC%D5%BF%ED.pdf 2006 Accessed 21 December, 21017. (Transactions of the Korean Nuclear Society Spring Meeting Chuncheon, Korea, May 25-26 2006. Ververidis, Kotropoulos (b0150) 2008; 88 Peng, Wang, Chen (b0130) 2018; 50 Xue, Zhang, Browne (b0165) 2014 Keskes, Braham, Lachiri (b0065) 2013; 97 Manthiri, A.S., 2017. PSO Feature Selection and optimization (source code). Available at https://www.mathworks.com/matlabcentral/fileexchange/62214-pso-feature-selection-and-optimization. Ma (b0095) 2015 Moradi, Gholampour (b0125) 2016; 43 Liu, Ayodeji, Wen (b0085) 2017 MathWorks (b0115) 2016 Lee, Park, Kim, Kim, Jeong (b0075) 2016; 87 Ludwig, O., 2012. Feature selector based on genetic algorithms and information theory (source code) Available at Bhattacharjya, R.K., 2012. Introduction to Genetic Algorithms IIT Guwahati. Available: http://www.iitg.ernet.in/rkbc/CE602/CE602/Genetic%20Algorithms.pdf. Accessed 14 December, 2017 Gu, Fan, Du, Ren (b0045) 2015; 161 Dash, S., Venkatasubramanian, V., 2000. Challenges in the industrial applications of fault diagnostic systems Computers and Chemical Engrn 24, 785791 www.elsevier.com/locate/compehemen. University of Western Ontario Electronic Thesis and Dissertation Repository. Ansari, Patil, Ghosh (b0005) 2000 Jothi, Inbarani (b0060) 2016; 46 . Ye, You, Yin, Wang, Wu (b0180) 2014; 55 Ding, Fang (b0035) 2017; 68 Costache, M.C., Minzul, V., 2012. Abstract Multi-Agents Used In Industrial Fault Diagnosis. The annals of “dunărea de jos” university of galati fascicle iii, 2012, VOL. 35, NO. 2. Van, Hove, Van, Bartsoen (b0145) 1997; 177 Wu, Li, Leung (b0160) 2007; 6 Yan, Ma, Dai (b0175) 2017 MacDonald, P.E., Shah, V.N., Ward, L.W., Ellison, P.G., 1996. Steam Generator Tube Failures. NUREG/CR-6365. MathWorks, 2017. Global Optimization Toolbox™: User's Guide (R2017a). https://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf Wahab, Nefti-Meziani, Atyabi (b0155) 2015; 10 Ephzibah (b0040) 2011; 2 Lee, Park, Kim, Ko, Jeong (b0070) 2012; 678 Ayodeji, A., Liu, Y.K., 2018. Support vector ensemble for reactor coolant system incipient fault diagnosis. Manuscript submitted for publication. Jimenez, Queral, Rebollo-Mena, J. (b0055) 2013; 58 Zhang, L., Mistry, K., Lim, C.P., Neoh, S.C., 2017. Feature selection using firefly optimization for classification and regression models. Support Syst. Decis. (In press). Doi: 10.1016/j.dss.2017.12.001 Jeong, Choi (b0050) 2003; 224 Jimenez (10.1016/j.anucene.2018.07.011_b0055) 2013; 58 Liu (10.1016/j.anucene.2018.07.011_b0085) 2017 Lee (10.1016/j.anucene.2018.07.011_b0070) 2012; 678 Wu (10.1016/j.anucene.2018.07.011_b0160) 2007; 6 Lee (10.1016/j.anucene.2018.07.011_b0075) 2016; 87 10.1016/j.anucene.2018.07.011_b0090 Jeong (10.1016/j.anucene.2018.07.011_b0050) 2003; 224 Keskes (10.1016/j.anucene.2018.07.011_b0065) 2013; 97 Van (10.1016/j.anucene.2018.07.011_b0145) 1997; 177 Jothi (10.1016/j.anucene.2018.07.011_b0060) 2016; 46 10.1016/j.anucene.2018.07.011_b0025 Ding (10.1016/j.anucene.2018.07.011_b0035) 2017; 68 MathWorks (10.1016/j.anucene.2018.07.011_b0115) 10.1016/j.anucene.2018.07.011_b0105 Ayodeji (10.1016/j.anucene.2018.07.011_b0015) 2018; 105 10.1016/j.anucene.2018.07.011_b0020 10.1016/j.anucene.2018.07.011_b0185 10.1016/j.anucene.2018.07.011_b0120 Moradi (10.1016/j.anucene.2018.07.011_b0125) 2016; 43 Wahab (10.1016/j.anucene.2018.07.011_b0155) 2015; 10 Ephzibah (10.1016/j.anucene.2018.07.011_b0040) 2011; 2 10.1016/j.anucene.2018.07.011_b0140 Peng (10.1016/j.anucene.2018.07.011_b0130) 2018; 50 Xue (10.1016/j.anucene.2018.07.011_b0170) 2016; 20 Yan (10.1016/j.anucene.2018.07.011_b0175) 2017 Ververidis (10.1016/j.anucene.2018.07.011_b0150) 2008; 88 Ye (10.1016/j.anucene.2018.07.011_b0180) 2014; 55 10.1016/j.anucene.2018.07.011_b0135 10.1016/j.anucene.2018.07.011_b0110 Xue (10.1016/j.anucene.2018.07.011_b0165) 2014 Ansari (10.1016/j.anucene.2018.07.011_b0005) 2000 Ma (10.1016/j.anucene.2018.07.011_b0100) 2017; 58 Lin (10.1016/j.anucene.2018.07.011_b0080) 2008; 35 Ma (10.1016/j.anucene.2018.07.011_b0095) 2015 10.1016/j.anucene.2018.07.011_b0010 10.1016/j.anucene.2018.07.011_b0030 Gu (10.1016/j.anucene.2018.07.011_b0045) 2015; 161 |
| References_xml | – volume: 68 start-page: 327 year: 2017 end-page: 334 ident: b0035 article-title: Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression publication-title: ISA Trans. – volume: 10 start-page: e0122827 year: 2015 ident: b0155 article-title: comprehensive review of swarm optimization algorithms publication-title: PLoS ONE – volume: 6 start-page: 311 year: 2007 end-page: 321 ident: b0160 article-title: Location estimation via support vector regression publication-title: IEEE Trans. Mobile Comput. – year: 2014 ident: b0165 article-title: Particle swarm optimisation for feature selec-tion in classification: novel initialisation and updating mechanisms publication-title: Appl. Soft. Comput. – volume: 678 start-page: 8 year: 2012 end-page: 12 ident: b0070 article-title: A new sensor for detection of coolant leakage in nuclear power plants using off-axis integrated cavity output spectroscopy publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. – reference: Ludwig, O., 2012. Feature selector based on genetic algorithms and information theory (source code) Available at – volume: 97 start-page: 151 year: 2013 end-page: 157 ident: b0065 article-title: Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet svm publication-title: Electr. PowerSyst.Res. – reference: Dash, S., Venkatasubramanian, V., 2000. Challenges in the industrial applications of fault diagnostic systems Computers and Chemical Engrn 24, 785791 www.elsevier.com/locate/compehemen. University of Western Ontario Electronic Thesis and Dissertation Repository. – volume: 161 start-page: 199 year: 2015 end-page: 209 ident: b0045 article-title: Efficient sequential feature selection based on adaptive eigen-space model publication-title: Neurocomputing – volume: 35 start-page: 1817 year: 2008 end-page: 1824 ident: b0080 article-title: Particle swarm optimization forparameter determination and feature selection of support vector machines publication-title: Expert Syst. Appl. – reference: MathWorks, 2017. Global Optimization Toolbox™: User's Guide (R2017a). https://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf – reference: Zhang, L., Mistry, K., Lim, C.P., Neoh, S.C., 2017. Feature selection using firefly optimization for classification and regression models. Support Syst. Decis. (In press). Doi: 10.1016/j.dss.2017.12.001 – reference: MacDonald, P.E., Shah, V.N., Ward, L.W., Ellison, P.G., 1996. Steam Generator Tube Failures. NUREG/CR-6365. – year: 2000 ident: b0005 article-title: Evaluation of crack opening area and leak rate in various PHT pipings for LBB analysis of Indian PHWRS. Bhabha Atomic – reference: Bhattacharjya, R.K., 2012. Introduction to Genetic Algorithms IIT Guwahati. Available: http://www.iitg.ernet.in/rkbc/CE602/CE602/Genetic%20Algorithms.pdf. Accessed 14 December, 2017 – reference: Ayodeji, A., Liu, Y.K., 2018. Support vector ensemble for reactor coolant system incipient fault diagnosis. Manuscript submitted for publication. – reference: Costache, M.C., Minzul, V., 2012. Abstract Multi-Agents Used In Industrial Fault Diagnosis. The annals of “dunărea de jos” university of galati fascicle iii, 2012, VOL. 35, NO. 2. – reference: Sohn, W., Chi, J., Kang, D., Tae, J., 2006. Techniques for Primary-to-Secondary Leak Monitoring in PWR Plants 2–3 Available: https://www.kns.org/kns_files/kns/file/71%BC%D5%BF%ED.pdf 2006 Accessed 21 December, 21017. (Transactions of the Korean Nuclear Society Spring Meeting Chuncheon, Korea, May 25-26 2006. – volume: 55 start-page: 467 year: 2014 end-page: 472 ident: b0180 article-title: An improved fault-location method for distribution system using wavelets and support vector regression publication-title: Int. J. Electr. Power Energy Syst. – volume: 46 start-page: 639 year: 2016 end-page: 651 ident: b0060 article-title: Hybrid tolerance rough set–firefly based supervised feature selection for MRI brain tumor image classification publication-title: Appl. Soft Comput. – year: 2015 ident: b0095 publication-title: Methods and Systems for Fault Diagnosis in Nuclear Power Plants – volume: 224 start-page: 313 year: 2003 end-page: 336 ident: b0050 article-title: Effects of tube rupture modeling and the parameters on the analysis of multiple steam generator tube rupture event progression in APR1400 publication-title: Nucl. Eng. Des. – reference: Manthiri, A.S., 2017. PSO Feature Selection and optimization (source code). Available at https://www.mathworks.com/matlabcentral/fileexchange/62214-pso-feature-selection-and-optimization. – volume: 2 start-page: 1 year: 2011 end-page: 10 ident: b0040 article-title: Cost effective approach on feature selection using genetic logrithms and fuzzy logic for diabetes diagnosis publication-title: Int. J. Soft Comput. Eng. – volume: 20 start-page: 606 year: 2016 end-page: 626 ident: b0170 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput. – volume: 58 start-page: 161 year: 2013 end-page: 177 ident: b0055 article-title: Analysis of the operator action and the single failure criteria in a SGTR sequence using best estimate assumptions with trace 5.0 publication-title: Ann. Nucl. Eng. – volume: 58 start-page: 328 year: 2017 end-page: 338 ident: b0100 article-title: A tribe competition-based genetic algorithm for feature selection in pattern classification publication-title: Appl. Soft Comput. J. – reference: . – year: 2016 ident: b0115 article-title: Statistics and Machine Learning Toolbox™: User's Guide (R2016a) – reference: Scott, P.M., Olson, R.J., Wilkowski, G.M., 2002. Development of technical sasis for leak-before-break evaluation procedures. USNRC, NUREG/CR-6765. – volume: 88 start-page: 2956 year: 2008 end-page: 2970 ident: b0150 article-title: Fast and accurate feature subset selection applied into speech emotion recognition publication-title: Els. Signal Process. – year: 2017 ident: b0175 article-title: Cost-sensitive and Sequential Feature Selection for Chiller Fault Detection and Diagnosis publication-title: Int. J. Refrigeration – volume: 105 start-page: 42 year: 2018 end-page: 50 ident: b0015 article-title: Knowledge base operator support system for nuclear power plant fault diagnosis publication-title: Prog. Nucl. Energy – volume: 177 start-page: 351 year: 1997 end-page: 368 ident: b0145 article-title: Coupled calculation of the radiological release and the thermal-hydraulic behaviour of a 3-loop PWR after a SGTR by means of the code relap5 publication-title: Nucl. Eng. Des. – volume: 87 start-page: 350 year: 2016 end-page: 355 ident: b0075 article-title: Development of a portable heavy-water leak sensor based on laser absorption spectroscopy publication-title: Ann. Nucl. Energy – volume: 43 start-page: 117 year: 2016 end-page: 130 ident: b0125 article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy publication-title: Appl. Soft Comput. J. – year: 2017 ident: b0085 article-title: A cascade intelligent fault diagnostic technique for nuclear power plants publication-title: J. Nucl. Sci. Technol. – volume: 50 start-page: 396 year: 2018 end-page: 410 ident: b0130 article-title: An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant publication-title: Nucl. Eng. $ Tech. – volume: 105 start-page: 42 year: 2018 ident: 10.1016/j.anucene.2018.07.011_b0015 article-title: Knowledge base operator support system for nuclear power plant fault diagnosis publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2017.12.013 – ident: 10.1016/j.anucene.2018.07.011_b0105 doi: 10.2172/236258 – volume: 68 start-page: 327 year: 2017 ident: 10.1016/j.anucene.2018.07.011_b0035 article-title: Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.03.018 – volume: 678 start-page: 8 year: 2012 ident: 10.1016/j.anucene.2018.07.011_b0070 article-title: A new sensor for detection of coolant leakage in nuclear power plants using off-axis integrated cavity output spectroscopy publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. doi: 10.1016/j.nima.2012.02.039 – year: 2017 ident: 10.1016/j.anucene.2018.07.011_b0175 article-title: Cost-sensitive and Sequential Feature Selection for Chiller Fault Detection and Diagnosis publication-title: Int. J. Refrigeration – volume: 87 start-page: 350 year: 2016 ident: 10.1016/j.anucene.2018.07.011_b0075 article-title: Development of a portable heavy-water leak sensor based on laser absorption spectroscopy publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2015.09.017 – ident: 10.1016/j.anucene.2018.07.011_b0010 – volume: 20 start-page: 606 issue: 4 year: 2016 ident: 10.1016/j.anucene.2018.07.011_b0170 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2504420 – volume: 161 start-page: 199 year: 2015 ident: 10.1016/j.anucene.2018.07.011_b0045 article-title: Efficient sequential feature selection based on adaptive eigen-space model publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.043 – ident: 10.1016/j.anucene.2018.07.011_b0110 – volume: 50 start-page: 396 issue: 3 year: 2018 ident: 10.1016/j.anucene.2018.07.011_b0130 article-title: An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant publication-title: Nucl. Eng. $ Tech. doi: 10.1016/j.net.2017.11.014 – ident: 10.1016/j.anucene.2018.07.011_b0115 – ident: 10.1016/j.anucene.2018.07.011_b0020 – ident: 10.1016/j.anucene.2018.07.011_b0135 – ident: 10.1016/j.anucene.2018.07.011_b0140 – ident: 10.1016/j.anucene.2018.07.011_b0030 doi: 10.1016/S0098-1354(00)00374-4 – ident: 10.1016/j.anucene.2018.07.011_b0120 – year: 2014 ident: 10.1016/j.anucene.2018.07.011_b0165 article-title: Particle swarm optimisation for feature selec-tion in classification: novel initialisation and updating mechanisms publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2013.09.018 – volume: 177 start-page: 351 issue: 1 year: 1997 ident: 10.1016/j.anucene.2018.07.011_b0145 article-title: Coupled calculation of the radiological release and the thermal-hydraulic behaviour of a 3-loop PWR after a SGTR by means of the code relap5 publication-title: Nucl. Eng. Des. – volume: 88 start-page: 2956 issue: 12 year: 2008 ident: 10.1016/j.anucene.2018.07.011_b0150 article-title: Fast and accurate feature subset selection applied into speech emotion recognition publication-title: Els. Signal Process. doi: 10.1016/j.sigpro.2008.07.001 – year: 2015 ident: 10.1016/j.anucene.2018.07.011_b0095 publication-title: Methods and Systems for Fault Diagnosis in Nuclear Power Plants – volume: 10 start-page: e0122827 issue: 5 year: 2015 ident: 10.1016/j.anucene.2018.07.011_b0155 article-title: comprehensive review of swarm optimization algorithms publication-title: PLoS ONE doi: 10.1371/journal.pone.0122827 – year: 2000 ident: 10.1016/j.anucene.2018.07.011_b0005 – volume: 58 start-page: 328 year: 2017 ident: 10.1016/j.anucene.2018.07.011_b0100 article-title: A tribe competition-based genetic algorithm for feature selection in pattern classification publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2017.04.042 – ident: 10.1016/j.anucene.2018.07.011_b0185 doi: 10.1016/j.dss.2017.12.001 – ident: 10.1016/j.anucene.2018.07.011_b0090 – volume: 6 start-page: 311 issue: 3 year: 2007 ident: 10.1016/j.anucene.2018.07.011_b0160 article-title: Location estimation via support vector regression publication-title: IEEE Trans. Mobile Comput. doi: 10.1109/TMC.2007.42 – volume: 97 start-page: 151 year: 2013 ident: 10.1016/j.anucene.2018.07.011_b0065 article-title: Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet svm publication-title: Electr. PowerSyst.Res. doi: 10.1016/j.epsr.2012.12.013 – volume: 43 start-page: 117 year: 2016 ident: 10.1016/j.anucene.2018.07.011_b0125 article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2016.01.044 – ident: 10.1016/j.anucene.2018.07.011_b0025 – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.anucene.2018.07.011_b0040 article-title: Cost effective approach on feature selection using genetic logrithms and fuzzy logic for diabetes diagnosis publication-title: Int. J. Soft Comput. Eng. – volume: 224 start-page: 313 issue: 3 year: 2003 ident: 10.1016/j.anucene.2018.07.011_b0050 article-title: Effects of tube rupture modeling and the parameters on the analysis of multiple steam generator tube rupture event progression in APR1400 publication-title: Nucl. Eng. Des. doi: 10.1016/S0029-5493(03)00132-8 – year: 2017 ident: 10.1016/j.anucene.2018.07.011_b0085 article-title: A cascade intelligent fault diagnostic technique for nuclear power plants publication-title: J. Nucl. Sci. Technol. – volume: 55 start-page: 467 year: 2014 ident: 10.1016/j.anucene.2018.07.011_b0180 article-title: An improved fault-location method for distribution system using wavelets and support vector regression publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.09.027 – volume: 58 start-page: 161 issue: 4 year: 2013 ident: 10.1016/j.anucene.2018.07.011_b0055 article-title: Analysis of the operator action and the single failure criteria in a SGTR sequence using best estimate assumptions with trace 5.0 publication-title: Ann. Nucl. Eng. doi: 10.1016/j.anucene.2013.02.023 – volume: 46 start-page: 639 year: 2016 ident: 10.1016/j.anucene.2018.07.011_b0060 article-title: Hybrid tolerance rough set–firefly based supervised feature selection for MRI brain tumor image classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.03.014 – volume: 35 start-page: 1817 year: 2008 ident: 10.1016/j.anucene.2018.07.011_b0080 article-title: Particle swarm optimization forparameter determination and feature selection of support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.08.088 |
| SSID | ssj0012844 |
| Score | 2.342397 |
| Snippet | •Proposed a hybrid of N-16 method and optimized SVR for incipient fault diagnosis.•Details soft computing optimization techniques for SVR model.•Optimized SVR... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 89 |
| SubjectTerms | Fault diagnosis Feature selection algorithms Steam generator tube rupture Support vector regression |
| Title | SVR optimization with soft computing algorithms for incipient SGTR diagnosis |
| URI | https://dx.doi.org/10.1016/j.anucene.2018.07.011 |
| Volume | 121 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KRdCDaFWsj7IHr2ke3U3SYynW-uqhD-lt2d1spKUvmnr1tzubR60gCh6zZEIyGb79JplvBuBWU0crJj0LgY9alCptYZQwC3cu7QoZIiMxAueXnt8d0ccxG5egXWhhTFlljv0Zpqdona_YuTft1WRiDwzbpZjeYFAiDKeCX0oDM8Wg_rEt8zDwm7WQwszZnP2l4rGnRt2rEFJMhVeY9vB03Z_3p509p3MMRzlZJK3sfk6gpBcVONxpIViB_bSEUyWn8Dx47ZMlIsA8l1YS842VJIizRKWzG9CAiNnbco3r84QgXSXpl3YjiSSD-2GfRFnh3SQ5g1HnbtjuWvmsBEs1WLCxtCfdCJ8qMr_5fNmMlIz9OGKxyYhUE4mZJwLdkFJ6gfCaYajdUDJPUMFUrClrnEN5sVzoCyBSURZofFVRJKgTa4FJjUbiFfh48dihVaCFh7jKG4mbeRYzXlSMTXnuWG4cy52Ao2OrUN-arbJOGn8ZhIX7-beQ4Ij2v5te_t_0Cg7MUSY3vIbyZv2ub5B3bGQtDawa7LUenrq9TwNk2F4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QjFEPRlEjPvfgtZSW3bYcDRFRgQMPw22zu90aCK9QvPrbne0DMTGaeN12mnY6-fab3flmAe40rWrFpGsh8FGLUqUtjBJm4cylHSEDZCRG4Nzpeq0hfR6xUQEauRbGlFVm2J9ieoLW2YidedNejsd237BdiukNBiXCsBH87lDm-iYDq3xs6jwM_qY9pDB1Nrd_yXjsiZH3KsQUU-IVJE08HefnCWpr0mkewWHGFsl9-kLHUNDzEhxs9RAswW5Sw6niE2j3X3tkgRAwy7SVxCyykhiBlqjk8AY0IGL6tljh-CwmyFdJstRuNJGk_zjokTCtvBvHpzBsPgwaLSs7LMFSNeavLe1KJ8SvCs0-nyfroZKRF4UsMimRqiMzc4Wva1JK1xduPQi0E0jmCiqYijRltTMozhdzfQ5EKsp8jf8qDAWtRlpgVqORefkePjyq0jLQ3ENcZZ3EzYEWU56XjE145lhuHMurPkfHlqGyMVumrTT-Mghy9_NvMcER7n83vfi_6S3stQadNm8_dV8uYd9cSbWHV1Bcr971NZKQtbxJguwTKDjZ8w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVR+optimization+with+soft+computing+algorithms+for+incipient+SGTR+diagnosis&rft.jtitle=Annals+of+nuclear+energy&rft.au=Ayodeji%2C+Abiodun&rft.au=Liu%2C+Yong-kuo&rft.date=2018-11-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4549&rft.eissn=1873-2100&rft.volume=121&rft.spage=89&rft.epage=100&rft_id=info:doi/10.1016%2Fj.anucene.2018.07.011&rft.externalDocID=S0306454918303608 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon |