SVR optimization with soft computing algorithms for incipient SGTR diagnosis

•Proposed a hybrid of N-16 method and optimized SVR for incipient fault diagnosis.•Details soft computing optimization techniques for SVR model.•Optimized SVR model performance evaluated on CNP300 ruptured steam generator tubes.•The proposed method diagnoses SGTR faster than conventional methods. Fa...

Full description

Saved in:
Bibliographic Details
Published inAnnals of nuclear energy Vol. 121; pp. 89 - 100
Main Authors Ayodeji, Abiodun, Liu, Yong-kuo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2018
Subjects
Online AccessGet full text
ISSN0306-4549
1873-2100
DOI10.1016/j.anucene.2018.07.011

Cover

Abstract •Proposed a hybrid of N-16 method and optimized SVR for incipient fault diagnosis.•Details soft computing optimization techniques for SVR model.•Optimized SVR model performance evaluated on CNP300 ruptured steam generator tubes.•The proposed method diagnoses SGTR faster than conventional methods. Fault severity awareness and fault identification are some of the key steps to a successful diagnosis in nuclear power plants. Currently, faults such as leak detection are being done using the N-16 method. However, traditional leak monitors are not sensitive to small leak rate changes, hence cannot be used for low-level leak rate detection under incipient fault conditions and are limited to post-accident analysis of significant releases. In this work, we present a diverse and implementable data-driven Support Vector Regression (SVR) model whose capability compensates for the weaknesses in the already established N-16 methods in the nuclear plant. The method can be integrated with the conventional N-16 method to form a robust hybrid diagnostic system, effective for detecting both incipient and large leakage in the steam generator. The purpose of the SVR model is to estimate uncertain parameters that are sensitive to certain faults, and the parameter estimation efficiency is evaluated using the mean squared error values (MSE). To obtain efficient predictive model capable of supporting decision-making process and to further optimize the model, minimize false alarm rate and reduce computation cost, we also utilized Particle Swarm Optimization algorithm, Sequential Feature Selection algorithm, and Genetic Algorithm for feature selection purposes. To demonstrate the method and evaluate the predictive model, we simulated steam generator tube rupture (SGTR) faults with varying severity in the reactor coolant system of CNP300 NPP, with RELAP5/SCDAP Mod4.0 code. The SVR’s relative error (MSE) with and without feature selection algorithms were compared using different solver algorithms. The feature selection performance of the algorithms and the resulting SVR model fault diagnosis performance evaluation are discussed in this paper.
AbstractList •Proposed a hybrid of N-16 method and optimized SVR for incipient fault diagnosis.•Details soft computing optimization techniques for SVR model.•Optimized SVR model performance evaluated on CNP300 ruptured steam generator tubes.•The proposed method diagnoses SGTR faster than conventional methods. Fault severity awareness and fault identification are some of the key steps to a successful diagnosis in nuclear power plants. Currently, faults such as leak detection are being done using the N-16 method. However, traditional leak monitors are not sensitive to small leak rate changes, hence cannot be used for low-level leak rate detection under incipient fault conditions and are limited to post-accident analysis of significant releases. In this work, we present a diverse and implementable data-driven Support Vector Regression (SVR) model whose capability compensates for the weaknesses in the already established N-16 methods in the nuclear plant. The method can be integrated with the conventional N-16 method to form a robust hybrid diagnostic system, effective for detecting both incipient and large leakage in the steam generator. The purpose of the SVR model is to estimate uncertain parameters that are sensitive to certain faults, and the parameter estimation efficiency is evaluated using the mean squared error values (MSE). To obtain efficient predictive model capable of supporting decision-making process and to further optimize the model, minimize false alarm rate and reduce computation cost, we also utilized Particle Swarm Optimization algorithm, Sequential Feature Selection algorithm, and Genetic Algorithm for feature selection purposes. To demonstrate the method and evaluate the predictive model, we simulated steam generator tube rupture (SGTR) faults with varying severity in the reactor coolant system of CNP300 NPP, with RELAP5/SCDAP Mod4.0 code. The SVR’s relative error (MSE) with and without feature selection algorithms were compared using different solver algorithms. The feature selection performance of the algorithms and the resulting SVR model fault diagnosis performance evaluation are discussed in this paper.
Author Ayodeji, Abiodun
Liu, Yong-kuo
Author_xml – sequence: 1
  givenname: Abiodun
  surname: Ayodeji
  fullname: Ayodeji, Abiodun
  organization: Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin, Heilongjiang 150001, China
– sequence: 2
  givenname: Yong-kuo
  surname: Liu
  fullname: Liu, Yong-kuo
  email: liuyongkuo@hrbeu.edu.cn
  organization: Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin, Heilongjiang 150001, China
BookMark eNqFkNFKwzAUhoNMcE4fQcgLtCZp06Z4ITJ0CgNhm96GNE3nGWtSkkzRp7dzu_JmVwcOfD___12ikXXWIHRDSUoJLW43qbI7baxJGaEiJWVKKD1DYyrKLGGUkBEak4wUSc7z6gJdhrAhhDKR52M0X74vsOsjdPCjIjiLvyB-4ODaiLXr-l0Eu8Zqu3Z--HcBt85jsBp6MDbi5Wy1wA2otXUBwhU6b9U2mOvjnaC3p8fV9DmZv85epg_zRGe8jIlhNW2G5g0XnBZ11ei6LdqGt0yUVFeE50yVJqvrmpWKVUIYKmrOVK64bk3Oswnih1ztXQjetLL30Cn_LSmReyVyI49K5F6JJKUclAzc3T9OQ_xbHb2C7Un6_kCbYdonGC-DHiRo04A3OsrGwYmEXz6JhBo
CitedBy_id crossref_primary_10_1016_j_isatra_2021_05_026
crossref_primary_10_1021_jacs_2c08993
crossref_primary_10_1016_j_net_2020_07_001
crossref_primary_10_1080_00207543_2020_1837407
crossref_primary_10_1016_j_anucene_2020_107945
crossref_primary_10_1080_00223131_2021_1953630
crossref_primary_10_1016_j_anucene_2019_07_036
crossref_primary_10_1016_j_anucene_2020_108015
crossref_primary_10_1016_j_atech_2025_100879
crossref_primary_10_1155_2021_5511735
crossref_primary_10_1109_ACCESS_2022_3161506
crossref_primary_10_1007_s12652_021_03051_w
crossref_primary_10_1111_jfpp_14198
crossref_primary_10_1080_00295450_2023_2169042
crossref_primary_10_1016_j_anucene_2023_110038
crossref_primary_10_1016_j_pnucene_2023_105021
crossref_primary_10_1038_s41598_023_28205_y
crossref_primary_10_3390_w16192771
crossref_primary_10_3389_fenrg_2021_663296
crossref_primary_10_1016_j_net_2018_07_013
crossref_primary_10_1016_j_heliyon_2023_e13883
crossref_primary_10_1016_j_anucene_2022_109519
crossref_primary_10_1016_j_nucengdes_2021_111100
crossref_primary_10_1007_s41365_019_0708_x
crossref_primary_10_1016_j_anucene_2021_108262
crossref_primary_10_1016_j_geothermics_2024_102924
crossref_primary_10_1016_j_pnucene_2018_12_017
crossref_primary_10_1002_for_2655
crossref_primary_10_1016_j_pnucene_2022_104263
crossref_primary_10_1016_j_net_2020_05_012
crossref_primary_10_3389_fenrg_2021_685634
Cites_doi 10.1016/j.pnucene.2017.12.013
10.2172/236258
10.1016/j.isatra.2017.03.018
10.1016/j.nima.2012.02.039
10.1016/j.anucene.2015.09.017
10.1109/TEVC.2015.2504420
10.1016/j.neucom.2015.02.043
10.1016/j.net.2017.11.014
10.1016/S0098-1354(00)00374-4
10.1016/j.asoc.2013.09.018
10.1016/j.sigpro.2008.07.001
10.1371/journal.pone.0122827
10.1016/j.asoc.2017.04.042
10.1016/j.dss.2017.12.001
10.1109/TMC.2007.42
10.1016/j.epsr.2012.12.013
10.1016/j.asoc.2016.01.044
10.1016/S0029-5493(03)00132-8
10.1016/j.ijepes.2013.09.027
10.1016/j.anucene.2013.02.023
10.1016/j.asoc.2016.03.014
10.1016/j.eswa.2007.08.088
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.anucene.2018.07.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2100
EndPage 100
ExternalDocumentID 10_1016_j_anucene_2018_07_011
S0306454918303608
GroupedDBID --K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JM
9JN
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSJ
SSR
SSZ
T5K
UHS
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c357t-e2b1d101d58516b9dcbf6fd5f2871c90542a7e3bbb27a2988e18b52a4a5cfe453
IEDL.DBID .~1
ISSN 0306-4549
IngestDate Thu Oct 09 00:24:22 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
Fri Feb 23 02:47:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Support vector regression
Feature selection algorithms
Steam generator tube rupture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-e2b1d101d58516b9dcbf6fd5f2871c90542a7e3bbb27a2988e18b52a4a5cfe453
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_anucene_2018_07_011
crossref_citationtrail_10_1016_j_anucene_2018_07_011
elsevier_sciencedirect_doi_10_1016_j_anucene_2018_07_011
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Annals of nuclear energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xue, Zhang, Browne, Yao (b0170) 2016; 20
Lin, Ying, Chen, Lee (b0080) 2008; 35
Ma, Xia (b0100) 2017; 58
Ayodeji, Liu, Xia (b0015) 2018; 105
Scott, P.M., Olson, R.J., Wilkowski, G.M., 2002. Development of technical sasis for leak-before-break evaluation procedures. USNRC, NUREG/CR-6765.
Sohn, W., Chi, J., Kang, D., Tae, J., 2006. Techniques for Primary-to-Secondary Leak Monitoring in PWR Plants 2–3 Available: https://www.kns.org/kns_files/kns/file/71%BC%D5%BF%ED.pdf 2006 Accessed 21 December, 21017. (Transactions of the Korean Nuclear Society Spring Meeting Chuncheon, Korea, May 25-26 2006.
Ververidis, Kotropoulos (b0150) 2008; 88
Peng, Wang, Chen (b0130) 2018; 50
Xue, Zhang, Browne (b0165) 2014
Keskes, Braham, Lachiri (b0065) 2013; 97
Manthiri, A.S., 2017. PSO Feature Selection and optimization (source code). Available at https://www.mathworks.com/matlabcentral/fileexchange/62214-pso-feature-selection-and-optimization.
Ma (b0095) 2015
Moradi, Gholampour (b0125) 2016; 43
Liu, Ayodeji, Wen (b0085) 2017
MathWorks (b0115) 2016
Lee, Park, Kim, Kim, Jeong (b0075) 2016; 87
Ludwig, O., 2012. Feature selector based on genetic algorithms and information theory (source code) Available at
Bhattacharjya, R.K., 2012. Introduction to Genetic Algorithms IIT Guwahati. Available: http://www.iitg.ernet.in/rkbc/CE602/CE602/Genetic%20Algorithms.pdf. Accessed 14 December, 2017
Gu, Fan, Du, Ren (b0045) 2015; 161
Dash, S., Venkatasubramanian, V., 2000. Challenges in the industrial applications of fault diagnostic systems Computers and Chemical Engrn 24, 785791 www.elsevier.com/locate/compehemen. University of Western Ontario Electronic Thesis and Dissertation Repository.
Ansari, Patil, Ghosh (b0005) 2000
Jothi, Inbarani (b0060) 2016; 46
.
Ye, You, Yin, Wang, Wu (b0180) 2014; 55
Ding, Fang (b0035) 2017; 68
Costache, M.C., Minzul, V., 2012. Abstract Multi-Agents Used In Industrial Fault Diagnosis. The annals of “dunărea de jos” university of galati fascicle iii, 2012, VOL. 35, NO. 2.
Van, Hove, Van, Bartsoen (b0145) 1997; 177
Wu, Li, Leung (b0160) 2007; 6
Yan, Ma, Dai (b0175) 2017
MacDonald, P.E., Shah, V.N., Ward, L.W., Ellison, P.G., 1996. Steam Generator Tube Failures. NUREG/CR-6365.
MathWorks, 2017. Global Optimization Toolbox™: User's Guide (R2017a). https://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
Wahab, Nefti-Meziani, Atyabi (b0155) 2015; 10
Ephzibah (b0040) 2011; 2
Lee, Park, Kim, Ko, Jeong (b0070) 2012; 678
Ayodeji, A., Liu, Y.K., 2018. Support vector ensemble for reactor coolant system incipient fault diagnosis. Manuscript submitted for publication.
Jimenez, Queral, Rebollo-Mena, J. (b0055) 2013; 58
Zhang, L., Mistry, K., Lim, C.P., Neoh, S.C., 2017. Feature selection using firefly optimization for classification and regression models. Support Syst. Decis. (In press). Doi: 10.1016/j.dss.2017.12.001
Jeong, Choi (b0050) 2003; 224
Jimenez (10.1016/j.anucene.2018.07.011_b0055) 2013; 58
Liu (10.1016/j.anucene.2018.07.011_b0085) 2017
Lee (10.1016/j.anucene.2018.07.011_b0070) 2012; 678
Wu (10.1016/j.anucene.2018.07.011_b0160) 2007; 6
Lee (10.1016/j.anucene.2018.07.011_b0075) 2016; 87
10.1016/j.anucene.2018.07.011_b0090
Jeong (10.1016/j.anucene.2018.07.011_b0050) 2003; 224
Keskes (10.1016/j.anucene.2018.07.011_b0065) 2013; 97
Van (10.1016/j.anucene.2018.07.011_b0145) 1997; 177
Jothi (10.1016/j.anucene.2018.07.011_b0060) 2016; 46
10.1016/j.anucene.2018.07.011_b0025
Ding (10.1016/j.anucene.2018.07.011_b0035) 2017; 68
MathWorks (10.1016/j.anucene.2018.07.011_b0115)
10.1016/j.anucene.2018.07.011_b0105
Ayodeji (10.1016/j.anucene.2018.07.011_b0015) 2018; 105
10.1016/j.anucene.2018.07.011_b0020
10.1016/j.anucene.2018.07.011_b0185
10.1016/j.anucene.2018.07.011_b0120
Moradi (10.1016/j.anucene.2018.07.011_b0125) 2016; 43
Wahab (10.1016/j.anucene.2018.07.011_b0155) 2015; 10
Ephzibah (10.1016/j.anucene.2018.07.011_b0040) 2011; 2
10.1016/j.anucene.2018.07.011_b0140
Peng (10.1016/j.anucene.2018.07.011_b0130) 2018; 50
Xue (10.1016/j.anucene.2018.07.011_b0170) 2016; 20
Yan (10.1016/j.anucene.2018.07.011_b0175) 2017
Ververidis (10.1016/j.anucene.2018.07.011_b0150) 2008; 88
Ye (10.1016/j.anucene.2018.07.011_b0180) 2014; 55
10.1016/j.anucene.2018.07.011_b0135
10.1016/j.anucene.2018.07.011_b0110
Xue (10.1016/j.anucene.2018.07.011_b0165) 2014
Ansari (10.1016/j.anucene.2018.07.011_b0005) 2000
Ma (10.1016/j.anucene.2018.07.011_b0100) 2017; 58
Lin (10.1016/j.anucene.2018.07.011_b0080) 2008; 35
Ma (10.1016/j.anucene.2018.07.011_b0095) 2015
10.1016/j.anucene.2018.07.011_b0010
10.1016/j.anucene.2018.07.011_b0030
Gu (10.1016/j.anucene.2018.07.011_b0045) 2015; 161
References_xml – volume: 68
  start-page: 327
  year: 2017
  end-page: 334
  ident: b0035
  article-title: Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression
  publication-title: ISA Trans.
– volume: 10
  start-page: e0122827
  year: 2015
  ident: b0155
  article-title: comprehensive review of swarm optimization algorithms
  publication-title: PLoS ONE
– volume: 6
  start-page: 311
  year: 2007
  end-page: 321
  ident: b0160
  article-title: Location estimation via support vector regression
  publication-title: IEEE Trans. Mobile Comput.
– year: 2014
  ident: b0165
  article-title: Particle swarm optimisation for feature selec-tion in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft. Comput.
– volume: 678
  start-page: 8
  year: 2012
  end-page: 12
  ident: b0070
  article-title: A new sensor for detection of coolant leakage in nuclear power plants using off-axis integrated cavity output spectroscopy
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip.
– reference: Ludwig, O., 2012. Feature selector based on genetic algorithms and information theory (source code) Available at
– volume: 97
  start-page: 151
  year: 2013
  end-page: 157
  ident: b0065
  article-title: Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet svm
  publication-title: Electr. PowerSyst.Res.
– reference: Dash, S., Venkatasubramanian, V., 2000. Challenges in the industrial applications of fault diagnostic systems Computers and Chemical Engrn 24, 785791 www.elsevier.com/locate/compehemen. University of Western Ontario Electronic Thesis and Dissertation Repository.
– volume: 161
  start-page: 199
  year: 2015
  end-page: 209
  ident: b0045
  article-title: Efficient sequential feature selection based on adaptive eigen-space model
  publication-title: Neurocomputing
– volume: 35
  start-page: 1817
  year: 2008
  end-page: 1824
  ident: b0080
  article-title: Particle swarm optimization forparameter determination and feature selection of support vector machines
  publication-title: Expert Syst. Appl.
– reference: MathWorks, 2017. Global Optimization Toolbox™: User's Guide (R2017a). https://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
– reference: Zhang, L., Mistry, K., Lim, C.P., Neoh, S.C., 2017. Feature selection using firefly optimization for classification and regression models. Support Syst. Decis. (In press). Doi: 10.1016/j.dss.2017.12.001
– reference: MacDonald, P.E., Shah, V.N., Ward, L.W., Ellison, P.G., 1996. Steam Generator Tube Failures. NUREG/CR-6365.
– year: 2000
  ident: b0005
  article-title: Evaluation of crack opening area and leak rate in various PHT pipings for LBB analysis of Indian PHWRS. Bhabha Atomic
– reference: Bhattacharjya, R.K., 2012. Introduction to Genetic Algorithms IIT Guwahati. Available: http://www.iitg.ernet.in/rkbc/CE602/CE602/Genetic%20Algorithms.pdf. Accessed 14 December, 2017
– reference: Ayodeji, A., Liu, Y.K., 2018. Support vector ensemble for reactor coolant system incipient fault diagnosis. Manuscript submitted for publication.
– reference: Costache, M.C., Minzul, V., 2012. Abstract Multi-Agents Used In Industrial Fault Diagnosis. The annals of “dunărea de jos” university of galati fascicle iii, 2012, VOL. 35, NO. 2.
– reference: Sohn, W., Chi, J., Kang, D., Tae, J., 2006. Techniques for Primary-to-Secondary Leak Monitoring in PWR Plants 2–3 Available: https://www.kns.org/kns_files/kns/file/71%BC%D5%BF%ED.pdf 2006 Accessed 21 December, 21017. (Transactions of the Korean Nuclear Society Spring Meeting Chuncheon, Korea, May 25-26 2006.
– volume: 55
  start-page: 467
  year: 2014
  end-page: 472
  ident: b0180
  article-title: An improved fault-location method for distribution system using wavelets and support vector regression
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 46
  start-page: 639
  year: 2016
  end-page: 651
  ident: b0060
  article-title: Hybrid tolerance rough set–firefly based supervised feature selection for MRI brain tumor image classification
  publication-title: Appl. Soft Comput.
– year: 2015
  ident: b0095
  publication-title: Methods and Systems for Fault Diagnosis in Nuclear Power Plants
– volume: 224
  start-page: 313
  year: 2003
  end-page: 336
  ident: b0050
  article-title: Effects of tube rupture modeling and the parameters on the analysis of multiple steam generator tube rupture event progression in APR1400
  publication-title: Nucl. Eng. Des.
– reference: Manthiri, A.S., 2017. PSO Feature Selection and optimization (source code). Available at https://www.mathworks.com/matlabcentral/fileexchange/62214-pso-feature-selection-and-optimization.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 10
  ident: b0040
  article-title: Cost effective approach on feature selection using genetic logrithms and fuzzy logic for diabetes diagnosis
  publication-title: Int. J. Soft Comput. Eng.
– volume: 20
  start-page: 606
  year: 2016
  end-page: 626
  ident: b0170
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
– volume: 58
  start-page: 161
  year: 2013
  end-page: 177
  ident: b0055
  article-title: Analysis of the operator action and the single failure criteria in a SGTR sequence using best estimate assumptions with trace 5.0
  publication-title: Ann. Nucl. Eng.
– volume: 58
  start-page: 328
  year: 2017
  end-page: 338
  ident: b0100
  article-title: A tribe competition-based genetic algorithm for feature selection in pattern classification
  publication-title: Appl. Soft Comput. J.
– reference: .
– year: 2016
  ident: b0115
  article-title: Statistics and Machine Learning Toolbox™: User's Guide (R2016a)
– reference: Scott, P.M., Olson, R.J., Wilkowski, G.M., 2002. Development of technical sasis for leak-before-break evaluation procedures. USNRC, NUREG/CR-6765.
– volume: 88
  start-page: 2956
  year: 2008
  end-page: 2970
  ident: b0150
  article-title: Fast and accurate feature subset selection applied into speech emotion recognition
  publication-title: Els. Signal Process.
– year: 2017
  ident: b0175
  article-title: Cost-sensitive and Sequential Feature Selection for Chiller Fault Detection and Diagnosis
  publication-title: Int. J. Refrigeration
– volume: 105
  start-page: 42
  year: 2018
  end-page: 50
  ident: b0015
  article-title: Knowledge base operator support system for nuclear power plant fault diagnosis
  publication-title: Prog. Nucl. Energy
– volume: 177
  start-page: 351
  year: 1997
  end-page: 368
  ident: b0145
  article-title: Coupled calculation of the radiological release and the thermal-hydraulic behaviour of a 3-loop PWR after a SGTR by means of the code relap5
  publication-title: Nucl. Eng. Des.
– volume: 87
  start-page: 350
  year: 2016
  end-page: 355
  ident: b0075
  article-title: Development of a portable heavy-water leak sensor based on laser absorption spectroscopy
  publication-title: Ann. Nucl. Energy
– volume: 43
  start-page: 117
  year: 2016
  end-page: 130
  ident: b0125
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Appl. Soft Comput. J.
– year: 2017
  ident: b0085
  article-title: A cascade intelligent fault diagnostic technique for nuclear power plants
  publication-title: J. Nucl. Sci. Technol.
– volume: 50
  start-page: 396
  year: 2018
  end-page: 410
  ident: b0130
  article-title: An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant
  publication-title: Nucl. Eng. $ Tech.
– volume: 105
  start-page: 42
  year: 2018
  ident: 10.1016/j.anucene.2018.07.011_b0015
  article-title: Knowledge base operator support system for nuclear power plant fault diagnosis
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2017.12.013
– ident: 10.1016/j.anucene.2018.07.011_b0105
  doi: 10.2172/236258
– volume: 68
  start-page: 327
  year: 2017
  ident: 10.1016/j.anucene.2018.07.011_b0035
  article-title: Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.03.018
– volume: 678
  start-page: 8
  year: 2012
  ident: 10.1016/j.anucene.2018.07.011_b0070
  article-title: A new sensor for detection of coolant leakage in nuclear power plants using off-axis integrated cavity output spectroscopy
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip.
  doi: 10.1016/j.nima.2012.02.039
– year: 2017
  ident: 10.1016/j.anucene.2018.07.011_b0175
  article-title: Cost-sensitive and Sequential Feature Selection for Chiller Fault Detection and Diagnosis
  publication-title: Int. J. Refrigeration
– volume: 87
  start-page: 350
  year: 2016
  ident: 10.1016/j.anucene.2018.07.011_b0075
  article-title: Development of a portable heavy-water leak sensor based on laser absorption spectroscopy
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2015.09.017
– ident: 10.1016/j.anucene.2018.07.011_b0010
– volume: 20
  start-page: 606
  issue: 4
  year: 2016
  ident: 10.1016/j.anucene.2018.07.011_b0170
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504420
– volume: 161
  start-page: 199
  year: 2015
  ident: 10.1016/j.anucene.2018.07.011_b0045
  article-title: Efficient sequential feature selection based on adaptive eigen-space model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.043
– ident: 10.1016/j.anucene.2018.07.011_b0110
– volume: 50
  start-page: 396
  issue: 3
  year: 2018
  ident: 10.1016/j.anucene.2018.07.011_b0130
  article-title: An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant
  publication-title: Nucl. Eng. $ Tech.
  doi: 10.1016/j.net.2017.11.014
– ident: 10.1016/j.anucene.2018.07.011_b0115
– ident: 10.1016/j.anucene.2018.07.011_b0020
– ident: 10.1016/j.anucene.2018.07.011_b0135
– ident: 10.1016/j.anucene.2018.07.011_b0140
– ident: 10.1016/j.anucene.2018.07.011_b0030
  doi: 10.1016/S0098-1354(00)00374-4
– ident: 10.1016/j.anucene.2018.07.011_b0120
– year: 2014
  ident: 10.1016/j.anucene.2018.07.011_b0165
  article-title: Particle swarm optimisation for feature selec-tion in classification: novel initialisation and updating mechanisms
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2013.09.018
– volume: 177
  start-page: 351
  issue: 1
  year: 1997
  ident: 10.1016/j.anucene.2018.07.011_b0145
  article-title: Coupled calculation of the radiological release and the thermal-hydraulic behaviour of a 3-loop PWR after a SGTR by means of the code relap5
  publication-title: Nucl. Eng. Des.
– volume: 88
  start-page: 2956
  issue: 12
  year: 2008
  ident: 10.1016/j.anucene.2018.07.011_b0150
  article-title: Fast and accurate feature subset selection applied into speech emotion recognition
  publication-title: Els. Signal Process.
  doi: 10.1016/j.sigpro.2008.07.001
– year: 2015
  ident: 10.1016/j.anucene.2018.07.011_b0095
  publication-title: Methods and Systems for Fault Diagnosis in Nuclear Power Plants
– volume: 10
  start-page: e0122827
  issue: 5
  year: 2015
  ident: 10.1016/j.anucene.2018.07.011_b0155
  article-title: comprehensive review of swarm optimization algorithms
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0122827
– year: 2000
  ident: 10.1016/j.anucene.2018.07.011_b0005
– volume: 58
  start-page: 328
  year: 2017
  ident: 10.1016/j.anucene.2018.07.011_b0100
  article-title: A tribe competition-based genetic algorithm for feature selection in pattern classification
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2017.04.042
– ident: 10.1016/j.anucene.2018.07.011_b0185
  doi: 10.1016/j.dss.2017.12.001
– ident: 10.1016/j.anucene.2018.07.011_b0090
– volume: 6
  start-page: 311
  issue: 3
  year: 2007
  ident: 10.1016/j.anucene.2018.07.011_b0160
  article-title: Location estimation via support vector regression
  publication-title: IEEE Trans. Mobile Comput.
  doi: 10.1109/TMC.2007.42
– volume: 97
  start-page: 151
  year: 2013
  ident: 10.1016/j.anucene.2018.07.011_b0065
  article-title: Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet svm
  publication-title: Electr. PowerSyst.Res.
  doi: 10.1016/j.epsr.2012.12.013
– volume: 43
  start-page: 117
  year: 2016
  ident: 10.1016/j.anucene.2018.07.011_b0125
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2016.01.044
– ident: 10.1016/j.anucene.2018.07.011_b0025
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.anucene.2018.07.011_b0040
  article-title: Cost effective approach on feature selection using genetic logrithms and fuzzy logic for diabetes diagnosis
  publication-title: Int. J. Soft Comput. Eng.
– volume: 224
  start-page: 313
  issue: 3
  year: 2003
  ident: 10.1016/j.anucene.2018.07.011_b0050
  article-title: Effects of tube rupture modeling and the parameters on the analysis of multiple steam generator tube rupture event progression in APR1400
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(03)00132-8
– year: 2017
  ident: 10.1016/j.anucene.2018.07.011_b0085
  article-title: A cascade intelligent fault diagnostic technique for nuclear power plants
  publication-title: J. Nucl. Sci. Technol.
– volume: 55
  start-page: 467
  year: 2014
  ident: 10.1016/j.anucene.2018.07.011_b0180
  article-title: An improved fault-location method for distribution system using wavelets and support vector regression
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.09.027
– volume: 58
  start-page: 161
  issue: 4
  year: 2013
  ident: 10.1016/j.anucene.2018.07.011_b0055
  article-title: Analysis of the operator action and the single failure criteria in a SGTR sequence using best estimate assumptions with trace 5.0
  publication-title: Ann. Nucl. Eng.
  doi: 10.1016/j.anucene.2013.02.023
– volume: 46
  start-page: 639
  year: 2016
  ident: 10.1016/j.anucene.2018.07.011_b0060
  article-title: Hybrid tolerance rough set–firefly based supervised feature selection for MRI brain tumor image classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.03.014
– volume: 35
  start-page: 1817
  year: 2008
  ident: 10.1016/j.anucene.2018.07.011_b0080
  article-title: Particle swarm optimization forparameter determination and feature selection of support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.088
SSID ssj0012844
Score 2.342397
Snippet •Proposed a hybrid of N-16 method and optimized SVR for incipient fault diagnosis.•Details soft computing optimization techniques for SVR model.•Optimized SVR...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Fault diagnosis
Feature selection algorithms
Steam generator tube rupture
Support vector regression
Title SVR optimization with soft computing algorithms for incipient SGTR diagnosis
URI https://dx.doi.org/10.1016/j.anucene.2018.07.011
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KRdCDaFWsj7IHr2ke3U3SYynW-uqhD-lt2d1spKUvmnr1tzubR60gCh6zZEIyGb79JplvBuBWU0crJj0LgY9alCptYZQwC3cu7QoZIiMxAueXnt8d0ccxG5egXWhhTFlljv0Zpqdona_YuTft1WRiDwzbpZjeYFAiDKeCX0oDM8Wg_rEt8zDwm7WQwszZnP2l4rGnRt2rEFJMhVeY9vB03Z_3p509p3MMRzlZJK3sfk6gpBcVONxpIViB_bSEUyWn8Dx47ZMlIsA8l1YS842VJIizRKWzG9CAiNnbco3r84QgXSXpl3YjiSSD-2GfRFnh3SQ5g1HnbtjuWvmsBEs1WLCxtCfdCJ8qMr_5fNmMlIz9OGKxyYhUE4mZJwLdkFJ6gfCaYajdUDJPUMFUrClrnEN5sVzoCyBSURZofFVRJKgTa4FJjUbiFfh48dihVaCFh7jKG4mbeRYzXlSMTXnuWG4cy52Ao2OrUN-arbJOGn8ZhIX7-beQ4Ij2v5te_t_0Cg7MUSY3vIbyZv2ub5B3bGQtDawa7LUenrq9TwNk2F4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QjFEPRlEjPvfgtZSW3bYcDRFRgQMPw22zu90aCK9QvPrbne0DMTGaeN12mnY6-fab3flmAe40rWrFpGsh8FGLUqUtjBJm4cylHSEDZCRG4Nzpeq0hfR6xUQEauRbGlFVm2J9ieoLW2YidedNejsd237BdiukNBiXCsBH87lDm-iYDq3xs6jwM_qY9pDB1Nrd_yXjsiZH3KsQUU-IVJE08HefnCWpr0mkewWHGFsl9-kLHUNDzEhxs9RAswW5Sw6niE2j3X3tkgRAwy7SVxCyykhiBlqjk8AY0IGL6tljh-CwmyFdJstRuNJGk_zjokTCtvBvHpzBsPgwaLSs7LMFSNeavLe1KJ8SvCs0-nyfroZKRF4UsMimRqiMzc4Wva1JK1xduPQi0E0jmCiqYijRltTMozhdzfQ5EKsp8jf8qDAWtRlpgVqORefkePjyq0jLQ3ENcZZ3EzYEWU56XjE145lhuHMurPkfHlqGyMVumrTT-Mghy9_NvMcER7n83vfi_6S3stQadNm8_dV8uYd9cSbWHV1Bcr971NZKQtbxJguwTKDjZ8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVR+optimization+with+soft+computing+algorithms+for+incipient+SGTR+diagnosis&rft.jtitle=Annals+of+nuclear+energy&rft.au=Ayodeji%2C+Abiodun&rft.au=Liu%2C+Yong-kuo&rft.date=2018-11-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4549&rft.eissn=1873-2100&rft.volume=121&rft.spage=89&rft.epage=100&rft_id=info:doi/10.1016%2Fj.anucene.2018.07.011&rft.externalDocID=S0306454918303608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon