Validation of an algorithm for semiautomated surveillance to detect deep surgical site infections after primary total hip or knee arthroplasty—A multicenter study
Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical si...
        Saved in:
      
    
          | Published in | Infection control and hospital epidemiology Vol. 42; no. 1; pp. 69 - 74 | 
|---|---|
| Main Authors | , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Cambridge University Press
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0899-823X 1559-6834 1559-6834  | 
| DOI | 10.1017/ice.2020.377 | 
Cover
| Abstract | Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance.
Multicenter retrospective cohort study.
Hospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance.
Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.
This algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA. | 
    
|---|---|
| AbstractList | Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance.
Multicenter retrospective cohort study.
Hospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance.
Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.
This algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA. Objective:Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance.Design:Multicenter retrospective cohort study.Methods:Hospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance.Results:Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.Conclusions:This algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA. Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance.OBJECTIVESurveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance.Multicenter retrospective cohort study.DESIGNMulticenter retrospective cohort study.Hospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance.METHODSHospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance.Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.RESULTSOf 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.This algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA.CONCLUSIONSThis algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA.  | 
    
| Author | Koek, Mayke B. G. Streefkerk, Roel H. R. A. Bonten, Marc J. M. Verberk, Janneke D. M. Hetem, David J. de Greeff, Sabine C. Smilde, Annelies E. Bril, Wendy S. van Rooden, Stephanie M. Hopmans, Titia E. M. van Mourik, Maaike S. M.  | 
    
| Author_xml | – sequence: 1 givenname: Janneke D. M. orcidid: 0000-0003-2148-5935 surname: Verberk fullname: Verberk, Janneke D. M. – sequence: 2 givenname: Stephanie M. surname: van Rooden fullname: van Rooden, Stephanie M. – sequence: 3 givenname: Mayke B. G. surname: Koek fullname: Koek, Mayke B. G. – sequence: 4 givenname: David J. surname: Hetem fullname: Hetem, David J. – sequence: 5 givenname: Annelies E. surname: Smilde fullname: Smilde, Annelies E. – sequence: 6 givenname: Wendy S. surname: Bril fullname: Bril, Wendy S. – sequence: 7 givenname: Roel H. R. A. surname: Streefkerk fullname: Streefkerk, Roel H. R. A. – sequence: 8 givenname: Titia E. M. surname: Hopmans fullname: Hopmans, Titia E. M. – sequence: 9 givenname: Marc J. M. surname: Bonten fullname: Bonten, Marc J. M. – sequence: 10 givenname: Sabine C. surname: de Greeff fullname: de Greeff, Sabine C. – sequence: 11 givenname: Maaike S. M. surname: van Mourik fullname: van Mourik, Maaike S. M.  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32856575$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kc9u1DAQxi1URLeFG2dkiQsHsvjPJo6PVcU_qRIXQNyi2XjSdXHsYDtFe-MheASejCfBYRcOleA0luY34-_75oyc-OCRkMecrTnj6oXtcS2YYGup1D2y4nWtq6aVmxOyYq3WVSvkp1NyltINY0xpzR-QUynauqlVvSI_PoKzBrINnoaBgqfgrkO0eTfSIUSacLQw5zBCRkPTHG_ROge-R5oDNZixz6XgtPSubQ-OJpuRWj-UTtmaKAwZI52iHSHuy1QuzM5OtGz_7BEpxLyLYXKQ8v7nt-8XdJxdLq78MpbybPYPyf0BXMJHx3pOPrx6-f7yTXX17vXby4urqpe1ylWvDEPgbNCi1b1gW9E0ZkCAxjSgeF38m1pulVZgShRtw-tGb82mvEE2DOU5qQ57Zz_B_is41x1ld5x1S9pd0dUtaXcl7cI_O_BTDF9mTLkbbepxyQfDnDqxkW3TboRiBX16B70Jc_TFTSeUZC3XqpaFenKk5u2I5u_vf-5VAHEA-hhSijh0vc2_r5cjWPcvmc_vDP3X1S-Xirty | 
    
| CitedBy_id | crossref_primary_10_1186_s13756_022_01050_w crossref_primary_10_1016_j_jhin_2021_12_021 crossref_primary_10_1186_s13756_024_01505_2 crossref_primary_10_1016_j_cmi_2021_02_030 crossref_primary_10_1016_j_mcpdig_2023_04_001 crossref_primary_10_1016_j_jiph_2024_102627 crossref_primary_10_1186_s13756_023_01253_9 crossref_primary_10_1017_ice_2022_147 crossref_primary_10_1186_s13756_024_01445_x crossref_primary_10_1186_s13756_024_01418_0 crossref_primary_10_1016_j_cmi_2021_02_028 crossref_primary_10_1016_j_jhin_2024_04_001  | 
    
| Cites_doi | 10.1086/658942 10.1093/biomet/26.4.404 10.1016/j.ajic.2010.04.211 10.1017/ice.2017.195 10.1016/j.jhin.2019.07.010 10.1053/jhin.2002.1256 10.1097/QCO.0000000000000282 10.2147/IDR.S177247 10.1086/675289 10.1056/NEJMoa1306801 10.1093/oxfordjournals.aje.a113990 10.1371/journal.pone.0068618 10.1017/ice.2018.184 10.1017/ice.2016.86 10.1093/cid/cix835 10.1017/ice.2015.21 10.1017/ice.2018.116 10.1093/cid/cit737 10.2106/00004623-200704000-00012 10.1136/bmjopen-2015-008424 10.1086/597584 10.1177/003335490712200205 10.2106/JBJS.19.00661 10.1302/2046-3758.58.BJR-2016-0036.R1 10.1371/journal.pone.0035131 10.1017/ice.2019.321 10.1017/ice.2017.37 10.1016/j.jhin.2004.03.020  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 by The Society for Healthcare Epidemiology of America. All rights reserved. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2020 by The Society for Healthcare Epidemiology of America. All rights reserved. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88C 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BENPR CCPQU FYUFA GHDGH K9- K9. KB0 M0R M0S M0T M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI S0X 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1017/ice.2020.377 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials - QC ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) Consumer Health Database (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Consumer Health Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition SIRS Editorial MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed ProQuest One Academic Middle East (New) MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Public Health | 
    
| EISSN | 1559-6834 | 
    
| EndPage | 74 | 
    
| ExternalDocumentID | 10.1017/ice.2020.377 32856575 10_1017_ice_2020_377  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Netherlands | 
    
| GeographicLocations_xml | – name: Netherlands | 
    
| GroupedDBID | --- ..I .55 .GJ .XZ 0-6 09C 09E 0R~ 1Z5 2KS 354 4.4 53G 5GY 5RE 6PF 7RV 7X7 88E 8AO 8C1 8F7 8FI 8FJ AAAZR AABES AABWE AACGO AACJH AAGFV AAIKC AAKTX AAMNW AARAB AASVR AAUKB AAWTL AAXMD AAYXX ABBXD ABGDZ ABJNI ABLJU ABOCM ABPLY ABQTM ABROB ABUWG ABVKB ABVZP ABWCF ABXAU ABXHF ABZCX ACBMC ACCJX ACDLN ACETC ACGFO ACGFS ACUIJ ACYZP ACZBM ACZUX ADAZD ADDNB ADFEC ADIMB ADKIL ADOVH ADOVT ADVJH AEBAK AEHGV AENCP AENEX AENGE AEUYN AEXZC AEYHU AFFNX AFFUJ AFKQG AFKRA AFLOS AFLVW AFZFC AGABE AGJUD AGLWM AHMBA AHQXX AHRGI AIAGR AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ANPSP AQJOH ARZZG AS~ ATUCA AUXHV AYIQA AZGZS AZQEC BBLKV BCGOX BEEDS BENPR BESQT BJBOZ BLZWO BMAJL BRIRG C45 CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CITATION CJCSC CS3 DCCCD DOHLZ E3Z EBS EGQIC EJD EX3 F5P FYUFA HMCUK HQ3 HTVGU HZ~ H~W IH2 IH6 IOEEP IOO IS6 J5H JHPGK JLS JQKCU JVRFK K9- KAFGG KCGVB KFECR KOO LHUNA LW7 M0R M0T M1P N9A NAPCQ NIKVX NZEOI OMK ONOOK OVD P2P PHGZM PHGZT PJZUB PPXIY PQQKQ PSQYO PUEGO RCA ROL RWL S6U SAAAG SJN SY4 T9M TAE TEORI UCV UKHRP USG UT1 VVN WFFJZ WOW X7M ZDLDU ZE2 ZGI ZJOSE ZMEZD ZYDXJ ~A~ AHJTV ALIPV NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI S0X 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c357t-c7d0ea10f9289c20b266dfeaa6d6a715000d53b797ad007861569bd4007a360e3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0899-823X 1559-6834  | 
    
| IngestDate | Tue Aug 19 22:32:14 EDT 2025 Fri Sep 05 13:54:04 EDT 2025 Mon Oct 06 17:56:00 EDT 2025 Thu Apr 03 06:54:18 EDT 2025 Thu Apr 24 23:04:22 EDT 2025 Wed Oct 01 04:31:13 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c357t-c7d0ea10f9289c20b266dfeaa6d6a715000d53b797ad007861569bd4007a360e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-2148-5935 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0B6DA06C054592D65A0E6650218A0F38/S0899823X20003773a.pdf/div-class-title-validation-of-an-algorithm-for-semiautomated-surveillance-to-detect-deep-surgical-site-infections-after-primary-total-hip-or-knee-arthroplasty-a-multicenter-study-div.pdf | 
    
| PMID | 32856575 | 
    
| PQID | 2730819753 | 
    
| PQPubID | 36628 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | unpaywall_primary_10_1017_ice_2020_377 proquest_miscellaneous_2438684270 proquest_journals_2730819753 pubmed_primary_32856575 crossref_citationtrail_10_1017_ice_2020_377 crossref_primary_10_1017_ice_2020_377  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-00 2021-Jan 20210101  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Cambridge  | 
    
| PublicationTitle | Infection control and hospital epidemiology | 
    
| PublicationTitleAlternate | Infect Control Hosp Epidemiol | 
    
| PublicationYear | 2021 | 
    
| Publisher | Cambridge University Press | 
    
| Publisher_xml | – name: Cambridge University Press | 
    
| References | S0899823X20003773_ref30 S0899823X20003773_ref10 S0899823X20003773_ref32 S0899823X20003773_ref31 S0899823X20003773_ref12 S0899823X20003773_ref34 S0899823X20003773_ref11 S0899823X20003773_ref33 S0899823X20003773_ref14 S0899823X20003773_ref13 S0899823X20003773_ref16 S0899823X20003773_ref15 S0899823X20003773_ref18 S0899823X20003773_ref17 S0899823X20003773_ref2 S0899823X20003773_ref19 S0899823X20003773_ref3 Collins (S0899823X20003773_ref1) 2016 S0899823X20003773_ref6 S0899823X20003773_ref7 S0899823X20003773_ref4 S0899823X20003773_ref5 S0899823X20003773_ref8 S0899823X20003773_ref9 S0899823X20003773_ref21 S0899823X20003773_ref20 S0899823X20003773_ref23 S0899823X20003773_ref22 S0899823X20003773_ref25 S0899823X20003773_ref24 S0899823X20003773_ref27 Skube (S0899823X20003773_ref26) 2017; 245 S0899823X20003773_ref29 S0899823X20003773_ref28  | 
    
| References_xml | – ident: S0899823X20003773_ref29 doi: 10.1086/658942 – ident: S0899823X20003773_ref11 – ident: S0899823X20003773_ref23 doi: 10.1093/biomet/26.4.404 – ident: S0899823X20003773_ref19 doi: 10.1016/j.ajic.2010.04.211 – ident: S0899823X20003773_ref22 doi: 10.1017/ice.2017.195 – ident: S0899823X20003773_ref8 doi: 10.1016/j.jhin.2019.07.010 – ident: S0899823X20003773_ref12 doi: 10.1053/jhin.2002.1256 – ident: S0899823X20003773_ref25 doi: 10.1097/QCO.0000000000000282 – ident: S0899823X20003773_ref3 doi: 10.2147/IDR.S177247 – ident: S0899823X20003773_ref6 doi: 10.1086/675289 – ident: S0899823X20003773_ref2 doi: 10.1056/NEJMoa1306801 – ident: S0899823X20003773_ref13 doi: 10.1093/oxfordjournals.aje.a113990 – ident: S0899823X20003773_ref15 doi: 10.1371/journal.pone.0068618 – ident: S0899823X20003773_ref10 doi: 10.1017/ice.2018.184 – ident: S0899823X20003773_ref28 doi: 10.1017/ice.2016.86 – ident: S0899823X20003773_ref4 – ident: S0899823X20003773_ref21 – ident: S0899823X20003773_ref14 doi: 10.1093/cid/cix835 – ident: S0899823X20003773_ref18 doi: 10.1017/ice.2015.21 – ident: S0899823X20003773_ref34 doi: 10.1017/ice.2018.116 – volume: 245 start-page: 955 year: 2017 ident: S0899823X20003773_ref26 article-title: Characterizing surgical site infection signals in clinical notes publication-title: Stud Health Technol Informat – ident: S0899823X20003773_ref33 doi: 10.1093/cid/cit737 – ident: S0899823X20003773_ref7 doi: 10.2106/00004623-200704000-00012 – ident: S0899823X20003773_ref32 doi: 10.1136/bmjopen-2015-008424 – ident: S0899823X20003773_ref30 doi: 10.1086/597584 – ident: S0899823X20003773_ref9 doi: 10.1177/003335490712200205 – ident: S0899823X20003773_ref27 doi: 10.2106/JBJS.19.00661 – ident: S0899823X20003773_ref17 doi: 10.1302/2046-3758.58.BJR-2016-0036.R1 – ident: S0899823X20003773_ref16 doi: 10.1371/journal.pone.0035131 – ident: S0899823X20003773_ref24 doi: 10.1017/ice.2019.321 – ident: S0899823X20003773_ref20 doi: 10.1017/ice.2017.37 – ident: S0899823X20003773_ref5 – volume-title: Patient Safety and Quality: An Evidence-Based Handbook for Nurses year: 2016 ident: S0899823X20003773_ref1 – ident: S0899823X20003773_ref31 doi: 10.1016/j.jhin.2004.03.020  | 
    
| SSID | ssj0007991 | 
    
| Score | 2.396924 | 
    
| Snippet | Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and... Objective:Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce...  | 
    
| SourceID | unpaywall proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 69 | 
    
| SubjectTerms | Algorithms Antibiotics Automation Data interpretation Electronic health records Health care Hospitals Joint surgery Microbiology Orthopedics Patients Surgical site infections Surveillance Workloads  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw7V1Lb9NAEN6W9IAQ4v0IKmiRgAuaxPVj1-Zm2kYVEhUSBBVxsNbeNY2a2lbjFJUTP4KfwC_jlzCzfpCCQIgzpxx27cyn8cx-4xnPMPYIjShVocoAqXIKvskFKEcqaluZBXmUi9Rm8F_ui72p_-IgOFhfe9Z9C0NllX2PA5vJt_PRFq3hjFVZQb8Odo1qutFBj-lV-th5LnZiR2wjEwkid0cEsbMrkIXgSRY7Ey8cv6Y8V-h6B67tvSI9Nap0PtazU8iIr4JVEqCaZ81QIyhzUAWo-YcSw_XDY0AyCQtzPFPLukRWaTQslienhoYEoZ6gLkEbSgDgj6lozbowoGQwdBVWxQLsDHComp4SeBVybTicVYB3PyqMocI4GpSAMtVnoMDWF1LBJl5kO88CikyiX2AbIsA4ZMA2pvuv4neWNkcREEbbLDaIQISe31b9U79s6lbkIk8cIf7z5_EvJPsSu7gsKnX2Uc3nKwfv5Ora-05lTb3N0WhZp6Ps00_dLP_r9F90eo1daeMRHjcO5DpbN8UNdrl5mcubb9Rusq9ve0y8zLkqeI-JIyZ-DhNfxcTrkjeYOGHiHSZOmPgPTNxi4i0mbjFxxMTx7oSJr2L69vlLzFdQcYvqFptOdt9s70E73gMyL5A1ZFI7Rm05eYRBf-Y6KXJFnRulhBZKbtGkDo2eREZSaWKyyL1FlGo8dKTyhGO822xQlIW5y7gWNJ1Zu4FrQt_PZaTDMPONNqmPjDrLhuxp95AnWdv7nkawzJOmyFEmKHBCJpHg4zNkj_vdLe7f7Nvs7CVpPf8iwXCAWLYMvCF72C-jz6ZEnCpMucQ9vhdS_ls6Q3ansbP-jzw3pEqEYMie9Ib3Rynu_e3GTTaoT5bmPpLoOn3QeovvQu_Zfw priority: 102 providerName: Unpaywall  | 
    
| Title | Validation of an algorithm for semiautomated surveillance to detect deep surgical site infections after primary total hip or knee arthroplasty—A multicenter study | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32856575 https://www.proquest.com/docview/2730819753 https://www.proquest.com/docview/2438684270 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0B6DA06C054592D65A0E6650218A0F38/S0899823X20003773a.pdf/div-class-title-validation-of-an-algorithm-for-semiautomated-surveillance-to-detect-deep-surgical-site-infections-after-primary-total-hip-or-knee-arthroplasty-a-multicenter-study-div.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 42 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1559-6834 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007991 issn: 0899-823X databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1559-6834 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007991 issn: 0899-823X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1559-6834 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007991 issn: 0899-823X databaseCode: 8C1 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB612wMghChQCJRqkIALSpvNn5MDqrZVq6oSqwqxaDlFju3Qim0SugmoNx6CR-DJeBJm8tciRC_JIU5iZ8Yznz2T-QBe0iRKZSSVTVA5tX2ThbZ0hOSylSrI4ixMmwj-u2l4NPOP58F8Bab9vzCcVtnbxMZQ60LxHvkOuVn2XoSud8uvNrNGcXS1p9CQHbWCftuUGFuFNZcrY41gbe9gevJ-sM0ibjn0aJVhR64371LhuYg0l_BxCTxte0L87aT-QZ534Fadl_Lyu1wsrnmjw_twr4OROGnlvg4rJn8Ad9s9OGx_LXoIvz4SyG45k7DIUOYoF59pTNXpORJWxaU5P5N1VRBoNRqX9cU3wxxEpAZYFagNxxfoZEq-1lhI5K-BfQJXvsSGYhzLtmQF3UVQHk_PSqSnf8mNQVJM5mEgiF5d_v7xc4JNAiNnhNJtTWnbRzA7PPiwf2R3rAy28gJR2Upox8ixk8W0VlOuk5KL15mRMtShFGMmWNCkACIWUjMAIcgUxqlm_nXphY7xNmCUF7l5AqhDJtXVbuCayPczEesoUr7RJvUJCCllwZteDInqSpYzc8YiaXPTREIdTlhoCQnNgldD627c_2m32Us06SbsMrlSLwteDJdpqnH8ROamqKmN70UcthSOBY9bTRhe5LkRB5ADC14PqnFjL57e3ItncNvl7Jlms2cTRtVFbZ4T_KnSLVgVc0HHaH-81ek3nWfTk8mnP04oC4A | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtRADLZKOZQKIf4JFDAS5YIC6SSbSQ4IVYVqS39OLdpbmMxMaNVtEpqEam88BI_AmYfiSbDzswUheusph0ySSeyxP48dfwDPaRGlKlLaJaicuoHNQld5UnHbSj3K4ixM2wz-7l44Pgg-TEaTBfg5_AvDZZWDTWwNtSk075G_JjfL3ovQ9dvyi8usUZxdHSg0OrXYtrMzCtmqN1vvSL6rQmy-398Yuz2rgKv9kaxdLY1n1ZqXxRRraOGl5KJMZpUKTajkGhMEGHoBGUtl2IGSyw_j1DB_uPJDz_p03ytwNfCFZEMQbZyXlMi4Y-ijGMaNhD_pC-25RTU3CBIEzV75Uv7tAv_Btcuw1OSlmp2p6fQPX7d5E270IBXXO626BQs2vw3Xux0-7H5cugM_PhKE7xiZsMhQ5aimn-mL1YcnSEgYK3typJq6IEhsDVbN6VfLDEekZFgXaCxnL-hgSz7X2l_kb41DeVheYUtgjmXXEIOuokABD49KpLsf59YiqT2zPFAAUM9-ffu-jm15JNeb0mVt49y7cHAp0rkHi3mR2weAJmTKXiNGwkZBkMnYRJEOrLFpQDBLawdeDmJIdN8QnXk5pklX-SYTmnDCQktIaA6szkf37_2fcSuDRJPeHFTJufI68Gx-mhYyZ2dUbouGxgR-xElR6Tlwv9OE-YN8EXF6euTAi7lqXDiLhxfP4iksjfd3d5Kdrb3tR3BNcJ1Ou620Aov1aWMfE9Cq0yetdiN8uuzl9Bu1UD0f | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtVADLVKkXgIIR4FUgoYibJBadO8JlkgVFGuWgoVC4ruLkxmJrTiNglN0uru-Ag-ga_gc_gS7LwAIbrrKotMkklsj4_Hjg_AEzKiVEZS2QSVU9s3WWhLR0huW6mCLM7CtM3gv90Lt_f919NgugA_hn9huKxyWBPbhVoXivfI18nNsvcidL2e9WUR77YmL8ovNjNIcaZ1oNPoVGTXzE8pfKue72yRrFddd_Lq_cttu2cYsJUXiNpWQjtGbjhZTHGHcp2U3JXOjJShDqXYYLIATS8jYiE1O1Ny_2GcauYSl17oGI_uewEuCs-LuZxQTMdgzxFxx9ZH8Ywdud60L7rndtXcLMglmLbmCfG3O_wH416Fy01eyvmpnM3-8HuTG3C9B6y42WnYTVgw-S241u32YfcT0234_oHgfMfOhEWGMkc5-0RfrD44QkLFWJmjQ9nUBcFjo7Fqjk8Msx2RwmFdoDacyaCDKflcuxYjf2scSsXyClsycyy75hh0FQUNeHBYIt39c24Mkgkw4wMFA_X859dvm9iWSnLtKV3WNtFdgv1zkc4dWMyL3NwD1CHT92o3cE3k-5mIdRQp32iT-gS5lLLg2SCGRPXN0ZmjY5Z0VXAioQknLLSEhGbB6ji6f-__jFsZJJr0S0OV_FZkCx6Pp8moOVMjc1M0NMb3Ik6QCseCu50mjA_y3IhT1YEFT0fVOHMWy2fP4hFcIkNK3uzs7d6HKy6X7LQ7TCuwWB835gFhrjp92Co3wsfztqZft8VBjg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw7V1Lb9NAEN6W9IAQ4v0IKmiRgAuaxPVj1-Zm2kYVEhUSBBVxsNbeNY2a2lbjFJUTP4KfwC_jlzCzfpCCQIgzpxx27cyn8cx-4xnPMPYIjShVocoAqXIKvskFKEcqaluZBXmUi9Rm8F_ui72p_-IgOFhfe9Z9C0NllX2PA5vJt_PRFq3hjFVZQb8Odo1qutFBj-lV-th5LnZiR2wjEwkid0cEsbMrkIXgSRY7Ey8cv6Y8V-h6B67tvSI9Nap0PtazU8iIr4JVEqCaZ81QIyhzUAWo-YcSw_XDY0AyCQtzPFPLukRWaTQslienhoYEoZ6gLkEbSgDgj6lozbowoGQwdBVWxQLsDHComp4SeBVybTicVYB3PyqMocI4GpSAMtVnoMDWF1LBJl5kO88CikyiX2AbIsA4ZMA2pvuv4neWNkcREEbbLDaIQISe31b9U79s6lbkIk8cIf7z5_EvJPsSu7gsKnX2Uc3nKwfv5Ora-05lTb3N0WhZp6Ps00_dLP_r9F90eo1daeMRHjcO5DpbN8UNdrl5mcubb9Rusq9ve0y8zLkqeI-JIyZ-DhNfxcTrkjeYOGHiHSZOmPgPTNxi4i0mbjFxxMTx7oSJr2L69vlLzFdQcYvqFptOdt9s70E73gMyL5A1ZFI7Rm05eYRBf-Y6KXJFnRulhBZKbtGkDo2eREZSaWKyyL1FlGo8dKTyhGO822xQlIW5y7gWNJ1Zu4FrQt_PZaTDMPONNqmPjDrLhuxp95AnWdv7nkawzJOmyFEmKHBCJpHg4zNkj_vdLe7f7Nvs7CVpPf8iwXCAWLYMvCF72C-jz6ZEnCpMucQ9vhdS_ls6Q3ansbP-jzw3pEqEYMie9Ib3Rynu_e3GTTaoT5bmPpLoOn3QeovvQu_Zfw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+an+algorithm+for+semiautomated+surveillance+to+detect+deep+surgical+site+infections+after+primary+total+hip+or+knee+arthroplasty%E2%80%94A+multicenter+study&rft.jtitle=Infection+control+and+hospital+epidemiology&rft.au=Verberk%2C+Janneke+D+M&rft.au=van+Rooden%2C+Stephanie+M&rft.au=Mayke+B+G+Koek&rft.au=Hetem%2C+David+J&rft.date=2021-01-01&rft.pub=Cambridge+University+Press&rft.issn=0899-823X&rft.eissn=1559-6834&rft.volume=42&rft.issue=1&rft.spage=69&rft.epage=74&rft_id=info:doi/10.1017%2Fice.2020.377&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-823X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-823X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-823X&client=summon |