Validation of an algorithm for semiautomated surveillance to detect deep surgical site infections after primary total hip or knee arthroplasty—A multicenter study

Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical si...

Full description

Saved in:
Bibliographic Details
Published inInfection control and hospital epidemiology Vol. 42; no. 1; pp. 69 - 74
Main Authors Verberk, Janneke D. M., van Rooden, Stephanie M., Koek, Mayke B. G., Hetem, David J., Smilde, Annelies E., Bril, Wendy S., Streefkerk, Roel H. R. A., Hopmans, Titia E. M., Bonten, Marc J. M., de Greeff, Sabine C., van Mourik, Maaike S. M.
Format Journal Article
LanguageEnglish
Published United States Cambridge University Press 01.01.2021
Subjects
Online AccessGet full text
ISSN0899-823X
1559-6834
1559-6834
DOI10.1017/ice.2020.377

Cover

Abstract Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance. Multicenter retrospective cohort study. Hospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance. Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection. This algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA.
AbstractList Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance. Multicenter retrospective cohort study. Hospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance. Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection. This algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA.
Objective:Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance.Design:Multicenter retrospective cohort study.Methods:Hospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance.Results:Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.Conclusions:This algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA.
Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance.OBJECTIVESurveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In addition, we explored the ability of a hospital to automatically select the patients under surveillance.Multicenter retrospective cohort study.DESIGNMulticenter retrospective cohort study.Hospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance.METHODSHospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA were extracted from electronic health records. Patient selection was compared with conventional surveillance and patients were retrospectively classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload reduction were calculated and compared to conventional surveillance.Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.RESULTSOf 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by ≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.This algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA.CONCLUSIONSThis algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after THA or TKA.
Author Koek, Mayke B. G.
Streefkerk, Roel H. R. A.
Bonten, Marc J. M.
Verberk, Janneke D. M.
Hetem, David J.
de Greeff, Sabine C.
Smilde, Annelies E.
Bril, Wendy S.
van Rooden, Stephanie M.
Hopmans, Titia E. M.
van Mourik, Maaike S. M.
Author_xml – sequence: 1
  givenname: Janneke D. M.
  orcidid: 0000-0003-2148-5935
  surname: Verberk
  fullname: Verberk, Janneke D. M.
– sequence: 2
  givenname: Stephanie M.
  surname: van Rooden
  fullname: van Rooden, Stephanie M.
– sequence: 3
  givenname: Mayke B. G.
  surname: Koek
  fullname: Koek, Mayke B. G.
– sequence: 4
  givenname: David J.
  surname: Hetem
  fullname: Hetem, David J.
– sequence: 5
  givenname: Annelies E.
  surname: Smilde
  fullname: Smilde, Annelies E.
– sequence: 6
  givenname: Wendy S.
  surname: Bril
  fullname: Bril, Wendy S.
– sequence: 7
  givenname: Roel H. R. A.
  surname: Streefkerk
  fullname: Streefkerk, Roel H. R. A.
– sequence: 8
  givenname: Titia E. M.
  surname: Hopmans
  fullname: Hopmans, Titia E. M.
– sequence: 9
  givenname: Marc J. M.
  surname: Bonten
  fullname: Bonten, Marc J. M.
– sequence: 10
  givenname: Sabine C.
  surname: de Greeff
  fullname: de Greeff, Sabine C.
– sequence: 11
  givenname: Maaike S. M.
  surname: van Mourik
  fullname: van Mourik, Maaike S. M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32856575$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxi1URLeFG2dkiQsHsvjPJo6PVcU_qRIXQNyi2XjSdXHsYDtFe-MheASejCfBYRcOleA0luY34-_75oyc-OCRkMecrTnj6oXtcS2YYGup1D2y4nWtq6aVmxOyYq3WVSvkp1NyltINY0xpzR-QUynauqlVvSI_PoKzBrINnoaBgqfgrkO0eTfSIUSacLQw5zBCRkPTHG_ROge-R5oDNZixz6XgtPSubQ-OJpuRWj-UTtmaKAwZI52iHSHuy1QuzM5OtGz_7BEpxLyLYXKQ8v7nt-8XdJxdLq78MpbybPYPyf0BXMJHx3pOPrx6-f7yTXX17vXby4urqpe1ylWvDEPgbNCi1b1gW9E0ZkCAxjSgeF38m1pulVZgShRtw-tGb82mvEE2DOU5qQ57Zz_B_is41x1ld5x1S9pd0dUtaXcl7cI_O_BTDF9mTLkbbepxyQfDnDqxkW3TboRiBX16B70Jc_TFTSeUZC3XqpaFenKk5u2I5u_vf-5VAHEA-hhSijh0vc2_r5cjWPcvmc_vDP3X1S-Xirty
CitedBy_id crossref_primary_10_1186_s13756_022_01050_w
crossref_primary_10_1016_j_jhin_2021_12_021
crossref_primary_10_1186_s13756_024_01505_2
crossref_primary_10_1016_j_cmi_2021_02_030
crossref_primary_10_1016_j_mcpdig_2023_04_001
crossref_primary_10_1016_j_jiph_2024_102627
crossref_primary_10_1186_s13756_023_01253_9
crossref_primary_10_1017_ice_2022_147
crossref_primary_10_1186_s13756_024_01445_x
crossref_primary_10_1186_s13756_024_01418_0
crossref_primary_10_1016_j_cmi_2021_02_028
crossref_primary_10_1016_j_jhin_2024_04_001
Cites_doi 10.1086/658942
10.1093/biomet/26.4.404
10.1016/j.ajic.2010.04.211
10.1017/ice.2017.195
10.1016/j.jhin.2019.07.010
10.1053/jhin.2002.1256
10.1097/QCO.0000000000000282
10.2147/IDR.S177247
10.1086/675289
10.1056/NEJMoa1306801
10.1093/oxfordjournals.aje.a113990
10.1371/journal.pone.0068618
10.1017/ice.2018.184
10.1017/ice.2016.86
10.1093/cid/cix835
10.1017/ice.2015.21
10.1017/ice.2018.116
10.1093/cid/cit737
10.2106/00004623-200704000-00012
10.1136/bmjopen-2015-008424
10.1086/597584
10.1177/003335490712200205
10.2106/JBJS.19.00661
10.1302/2046-3758.58.BJR-2016-0036.R1
10.1371/journal.pone.0035131
10.1017/ice.2019.321
10.1017/ice.2017.37
10.1016/j.jhin.2004.03.020
ContentType Journal Article
Copyright 2020 by The Society for Healthcare Epidemiology of America. All rights reserved. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by The Society for Healthcare Epidemiology of America. All rights reserved. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88C
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
FYUFA
GHDGH
K9-
K9.
KB0
M0R
M0S
M0T
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
S0X
7X8
ADTOC
UNPAY
DOI 10.1017/ice.2020.377
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
Health Research Premium Collection
Health Research Premium Collection (Alumni)
Consumer Health Database (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Consumer Health Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
SIRS Editorial
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest One Academic Middle East (New)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1559-6834
EndPage 74
ExternalDocumentID 10.1017/ice.2020.377
32856575
10_1017_ice_2020_377
Genre Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
..I
.55
.GJ
.XZ
0-6
09C
09E
0R~
1Z5
2KS
354
4.4
53G
5GY
5RE
6PF
7RV
7X7
88E
8AO
8C1
8F7
8FI
8FJ
AAAZR
AABES
AABWE
AACGO
AACJH
AAGFV
AAIKC
AAKTX
AAMNW
AARAB
AASVR
AAUKB
AAWTL
AAXMD
AAYXX
ABBXD
ABGDZ
ABJNI
ABLJU
ABOCM
ABPLY
ABQTM
ABROB
ABUWG
ABVKB
ABVZP
ABWCF
ABXAU
ABXHF
ABZCX
ACBMC
ACCJX
ACDLN
ACETC
ACGFO
ACGFS
ACUIJ
ACYZP
ACZBM
ACZUX
ADAZD
ADDNB
ADFEC
ADIMB
ADKIL
ADOVH
ADOVT
ADVJH
AEBAK
AEHGV
AENCP
AENEX
AENGE
AEUYN
AEXZC
AEYHU
AFFNX
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFZFC
AGABE
AGJUD
AGLWM
AHMBA
AHQXX
AHRGI
AIAGR
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ANPSP
AQJOH
ARZZG
AS~
ATUCA
AUXHV
AYIQA
AZGZS
AZQEC
BBLKV
BCGOX
BEEDS
BENPR
BESQT
BJBOZ
BLZWO
BMAJL
BRIRG
C45
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
CS3
DCCCD
DOHLZ
E3Z
EBS
EGQIC
EJD
EX3
F5P
FYUFA
HMCUK
HQ3
HTVGU
HZ~
H~W
IH2
IH6
IOEEP
IOO
IS6
J5H
JHPGK
JLS
JQKCU
JVRFK
K9-
KAFGG
KCGVB
KFECR
KOO
LHUNA
LW7
M0R
M0T
M1P
N9A
NAPCQ
NIKVX
NZEOI
OMK
ONOOK
OVD
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PSQYO
PUEGO
RCA
ROL
RWL
S6U
SAAAG
SJN
SY4
T9M
TAE
TEORI
UCV
UKHRP
USG
UT1
VVN
WFFJZ
WOW
X7M
ZDLDU
ZE2
ZGI
ZJOSE
ZMEZD
ZYDXJ
~A~
AHJTV
ALIPV
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
S0X
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c357t-c7d0ea10f9289c20b266dfeaa6d6a715000d53b797ad007861569bd4007a360e3
IEDL.DBID BENPR
ISSN 0899-823X
1559-6834
IngestDate Tue Aug 19 22:32:14 EDT 2025
Fri Sep 05 13:54:04 EDT 2025
Mon Oct 06 17:56:00 EDT 2025
Thu Apr 03 06:54:18 EDT 2025
Thu Apr 24 23:04:22 EDT 2025
Wed Oct 01 04:31:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-c7d0ea10f9289c20b266dfeaa6d6a715000d53b797ad007861569bd4007a360e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2148-5935
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0B6DA06C054592D65A0E6650218A0F38/S0899823X20003773a.pdf/div-class-title-validation-of-an-algorithm-for-semiautomated-surveillance-to-detect-deep-surgical-site-infections-after-primary-total-hip-or-knee-arthroplasty-a-multicenter-study-div.pdf
PMID 32856575
PQID 2730819753
PQPubID 36628
PageCount 6
ParticipantIDs unpaywall_primary_10_1017_ice_2020_377
proquest_miscellaneous_2438684270
proquest_journals_2730819753
pubmed_primary_32856575
crossref_citationtrail_10_1017_ice_2020_377
crossref_primary_10_1017_ice_2020_377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Infection control and hospital epidemiology
PublicationTitleAlternate Infect Control Hosp Epidemiol
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0899823X20003773_ref30
S0899823X20003773_ref10
S0899823X20003773_ref32
S0899823X20003773_ref31
S0899823X20003773_ref12
S0899823X20003773_ref34
S0899823X20003773_ref11
S0899823X20003773_ref33
S0899823X20003773_ref14
S0899823X20003773_ref13
S0899823X20003773_ref16
S0899823X20003773_ref15
S0899823X20003773_ref18
S0899823X20003773_ref17
S0899823X20003773_ref2
S0899823X20003773_ref19
S0899823X20003773_ref3
Collins (S0899823X20003773_ref1) 2016
S0899823X20003773_ref6
S0899823X20003773_ref7
S0899823X20003773_ref4
S0899823X20003773_ref5
S0899823X20003773_ref8
S0899823X20003773_ref9
S0899823X20003773_ref21
S0899823X20003773_ref20
S0899823X20003773_ref23
S0899823X20003773_ref22
S0899823X20003773_ref25
S0899823X20003773_ref24
S0899823X20003773_ref27
Skube (S0899823X20003773_ref26) 2017; 245
S0899823X20003773_ref29
S0899823X20003773_ref28
References_xml – ident: S0899823X20003773_ref29
  doi: 10.1086/658942
– ident: S0899823X20003773_ref11
– ident: S0899823X20003773_ref23
  doi: 10.1093/biomet/26.4.404
– ident: S0899823X20003773_ref19
  doi: 10.1016/j.ajic.2010.04.211
– ident: S0899823X20003773_ref22
  doi: 10.1017/ice.2017.195
– ident: S0899823X20003773_ref8
  doi: 10.1016/j.jhin.2019.07.010
– ident: S0899823X20003773_ref12
  doi: 10.1053/jhin.2002.1256
– ident: S0899823X20003773_ref25
  doi: 10.1097/QCO.0000000000000282
– ident: S0899823X20003773_ref3
  doi: 10.2147/IDR.S177247
– ident: S0899823X20003773_ref6
  doi: 10.1086/675289
– ident: S0899823X20003773_ref2
  doi: 10.1056/NEJMoa1306801
– ident: S0899823X20003773_ref13
  doi: 10.1093/oxfordjournals.aje.a113990
– ident: S0899823X20003773_ref15
  doi: 10.1371/journal.pone.0068618
– ident: S0899823X20003773_ref10
  doi: 10.1017/ice.2018.184
– ident: S0899823X20003773_ref28
  doi: 10.1017/ice.2016.86
– ident: S0899823X20003773_ref4
– ident: S0899823X20003773_ref21
– ident: S0899823X20003773_ref14
  doi: 10.1093/cid/cix835
– ident: S0899823X20003773_ref18
  doi: 10.1017/ice.2015.21
– ident: S0899823X20003773_ref34
  doi: 10.1017/ice.2018.116
– volume: 245
  start-page: 955
  year: 2017
  ident: S0899823X20003773_ref26
  article-title: Characterizing surgical site infection signals in clinical notes
  publication-title: Stud Health Technol Informat
– ident: S0899823X20003773_ref33
  doi: 10.1093/cid/cit737
– ident: S0899823X20003773_ref7
  doi: 10.2106/00004623-200704000-00012
– ident: S0899823X20003773_ref32
  doi: 10.1136/bmjopen-2015-008424
– ident: S0899823X20003773_ref30
  doi: 10.1086/597584
– ident: S0899823X20003773_ref9
  doi: 10.1177/003335490712200205
– ident: S0899823X20003773_ref27
  doi: 10.2106/JBJS.19.00661
– ident: S0899823X20003773_ref17
  doi: 10.1302/2046-3758.58.BJR-2016-0036.R1
– ident: S0899823X20003773_ref16
  doi: 10.1371/journal.pone.0035131
– ident: S0899823X20003773_ref24
  doi: 10.1017/ice.2019.321
– ident: S0899823X20003773_ref20
  doi: 10.1017/ice.2017.37
– ident: S0899823X20003773_ref5
– volume-title: Patient Safety and Quality: An Evidence-Based Handbook for Nurses
  year: 2016
  ident: S0899823X20003773_ref1
– ident: S0899823X20003773_ref31
  doi: 10.1016/j.jhin.2004.03.020
SSID ssj0007991
Score 2.396924
Snippet Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce workload and...
Objective:Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may substantially reduce...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 69
SubjectTerms Algorithms
Antibiotics
Automation
Data interpretation
Electronic health records
Health care
Hospitals
Joint surgery
Microbiology
Orthopedics
Patients
Surgical site infections
Surveillance
Workloads
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw7V1Lb9NAEN6W9IAQ4v0IKmiRgAuaxPVj1-Zm2kYVEhUSBBVxsNbeNY2a2lbjFJUTP4KfwC_jlzCzfpCCQIgzpxx27cyn8cx-4xnPMPYIjShVocoAqXIKvskFKEcqaluZBXmUi9Rm8F_ui72p_-IgOFhfe9Z9C0NllX2PA5vJt_PRFq3hjFVZQb8Odo1qutFBj-lV-th5LnZiR2wjEwkid0cEsbMrkIXgSRY7Ey8cv6Y8V-h6B67tvSI9Nap0PtazU8iIr4JVEqCaZ81QIyhzUAWo-YcSw_XDY0AyCQtzPFPLukRWaTQslienhoYEoZ6gLkEbSgDgj6lozbowoGQwdBVWxQLsDHComp4SeBVybTicVYB3PyqMocI4GpSAMtVnoMDWF1LBJl5kO88CikyiX2AbIsA4ZMA2pvuv4neWNkcREEbbLDaIQISe31b9U79s6lbkIk8cIf7z5_EvJPsSu7gsKnX2Uc3nKwfv5Ora-05lTb3N0WhZp6Ps00_dLP_r9F90eo1daeMRHjcO5DpbN8UNdrl5mcubb9Rusq9ve0y8zLkqeI-JIyZ-DhNfxcTrkjeYOGHiHSZOmPgPTNxi4i0mbjFxxMTx7oSJr2L69vlLzFdQcYvqFptOdt9s70E73gMyL5A1ZFI7Rm05eYRBf-Y6KXJFnRulhBZKbtGkDo2eREZSaWKyyL1FlGo8dKTyhGO822xQlIW5y7gWNJ1Zu4FrQt_PZaTDMPONNqmPjDrLhuxp95AnWdv7nkawzJOmyFEmKHBCJpHg4zNkj_vdLe7f7Nvs7CVpPf8iwXCAWLYMvCF72C-jz6ZEnCpMucQ9vhdS_ls6Q3ansbP-jzw3pEqEYMie9Ib3Rynu_e3GTTaoT5bmPpLoOn3QeovvQu_Zfw
  priority: 102
  providerName: Unpaywall
Title Validation of an algorithm for semiautomated surveillance to detect deep surgical site infections after primary total hip or knee arthroplasty—A multicenter study
URI https://www.ncbi.nlm.nih.gov/pubmed/32856575
https://www.proquest.com/docview/2730819753
https://www.proquest.com/docview/2438684270
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0B6DA06C054592D65A0E6650218A0F38/S0899823X20003773a.pdf/div-class-title-validation-of-an-algorithm-for-semiautomated-surveillance-to-detect-deep-surgical-site-infections-after-primary-total-hip-or-knee-arthroplasty-a-multicenter-study-div.pdf
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1559-6834
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007991
  issn: 0899-823X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1559-6834
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007991
  issn: 0899-823X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1559-6834
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007991
  issn: 0899-823X
  databaseCode: 8C1
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB612wMghChQCJRqkIALSpvNn5MDqrZVq6oSqwqxaDlFju3Qim0SugmoNx6CR-DJeBJm8tciRC_JIU5iZ8Yznz2T-QBe0iRKZSSVTVA5tX2ThbZ0hOSylSrI4ixMmwj-u2l4NPOP58F8Bab9vzCcVtnbxMZQ60LxHvkOuVn2XoSud8uvNrNGcXS1p9CQHbWCftuUGFuFNZcrY41gbe9gevJ-sM0ibjn0aJVhR64371LhuYg0l_BxCTxte0L87aT-QZ534Fadl_Lyu1wsrnmjw_twr4OROGnlvg4rJn8Ad9s9OGx_LXoIvz4SyG45k7DIUOYoF59pTNXpORJWxaU5P5N1VRBoNRqX9cU3wxxEpAZYFagNxxfoZEq-1lhI5K-BfQJXvsSGYhzLtmQF3UVQHk_PSqSnf8mNQVJM5mEgiF5d_v7xc4JNAiNnhNJtTWnbRzA7PPiwf2R3rAy28gJR2Upox8ixk8W0VlOuk5KL15mRMtShFGMmWNCkACIWUjMAIcgUxqlm_nXphY7xNmCUF7l5AqhDJtXVbuCayPczEesoUr7RJvUJCCllwZteDInqSpYzc8YiaXPTREIdTlhoCQnNgldD627c_2m32Us06SbsMrlSLwteDJdpqnH8ROamqKmN70UcthSOBY9bTRhe5LkRB5ADC14PqnFjL57e3ItncNvl7Jlms2cTRtVFbZ4T_KnSLVgVc0HHaH-81ek3nWfTk8mnP04oC4A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtRADLZKOZQKIf4JFDAS5YIC6SSbSQ4IVYVqS39OLdpbmMxMaNVtEpqEam88BI_AmYfiSbDzswUheusph0ySSeyxP48dfwDPaRGlKlLaJaicuoHNQld5UnHbSj3K4ixM2wz-7l44Pgg-TEaTBfg5_AvDZZWDTWwNtSk075G_JjfL3ovQ9dvyi8usUZxdHSg0OrXYtrMzCtmqN1vvSL6rQmy-398Yuz2rgKv9kaxdLY1n1ZqXxRRraOGl5KJMZpUKTajkGhMEGHoBGUtl2IGSyw_j1DB_uPJDz_p03ytwNfCFZEMQbZyXlMi4Y-ijGMaNhD_pC-25RTU3CBIEzV75Uv7tAv_Btcuw1OSlmp2p6fQPX7d5E270IBXXO626BQs2vw3Xux0-7H5cugM_PhKE7xiZsMhQ5aimn-mL1YcnSEgYK3typJq6IEhsDVbN6VfLDEekZFgXaCxnL-hgSz7X2l_kb41DeVheYUtgjmXXEIOuokABD49KpLsf59YiqT2zPFAAUM9-ffu-jm15JNeb0mVt49y7cHAp0rkHi3mR2weAJmTKXiNGwkZBkMnYRJEOrLFpQDBLawdeDmJIdN8QnXk5pklX-SYTmnDCQktIaA6szkf37_2fcSuDRJPeHFTJufI68Gx-mhYyZ2dUbouGxgR-xElR6Tlwv9OE-YN8EXF6euTAi7lqXDiLhxfP4iksjfd3d5Kdrb3tR3BNcJ1Ou620Aov1aWMfE9Cq0yetdiN8uuzl9Bu1UD0f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtVADLVKkXgIIR4FUgoYibJBadO8JlkgVFGuWgoVC4ruLkxmJrTiNglN0uru-Ag-ga_gc_gS7LwAIbrrKotMkklsj4_Hjg_AEzKiVEZS2QSVU9s3WWhLR0huW6mCLM7CtM3gv90Lt_f919NgugA_hn9huKxyWBPbhVoXivfI18nNsvcidL2e9WUR77YmL8ovNjNIcaZ1oNPoVGTXzE8pfKue72yRrFddd_Lq_cttu2cYsJUXiNpWQjtGbjhZTHGHcp2U3JXOjJShDqXYYLIATS8jYiE1O1Ny_2GcauYSl17oGI_uewEuCs-LuZxQTMdgzxFxx9ZH8Ywdud60L7rndtXcLMglmLbmCfG3O_wH416Fy01eyvmpnM3-8HuTG3C9B6y42WnYTVgw-S241u32YfcT0234_oHgfMfOhEWGMkc5-0RfrD44QkLFWJmjQ9nUBcFjo7Fqjk8Msx2RwmFdoDacyaCDKflcuxYjf2scSsXyClsycyy75hh0FQUNeHBYIt39c24Mkgkw4wMFA_X859dvm9iWSnLtKV3WNtFdgv1zkc4dWMyL3NwD1CHT92o3cE3k-5mIdRQp32iT-gS5lLLg2SCGRPXN0ZmjY5Z0VXAioQknLLSEhGbB6ji6f-__jFsZJJr0S0OV_FZkCx6Pp8moOVMjc1M0NMb3Ik6QCseCu50mjA_y3IhT1YEFT0fVOHMWy2fP4hFcIkNK3uzs7d6HKy6X7LQ7TCuwWB835gFhrjp92Co3wsfztqZft8VBjg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw7V1Lb9NAEN6W9IAQ4v0IKmiRgAuaxPVj1-Zm2kYVEhUSBBVxsNbeNY2a2lbjFJUTP4KfwC_jlzCzfpCCQIgzpxx27cyn8cx-4xnPMPYIjShVocoAqXIKvskFKEcqaluZBXmUi9Rm8F_ui72p_-IgOFhfe9Z9C0NllX2PA5vJt_PRFq3hjFVZQb8Odo1qutFBj-lV-th5LnZiR2wjEwkid0cEsbMrkIXgSRY7Ey8cv6Y8V-h6B67tvSI9Nap0PtazU8iIr4JVEqCaZ81QIyhzUAWo-YcSw_XDY0AyCQtzPFPLukRWaTQslienhoYEoZ6gLkEbSgDgj6lozbowoGQwdBVWxQLsDHComp4SeBVybTicVYB3PyqMocI4GpSAMtVnoMDWF1LBJl5kO88CikyiX2AbIsA4ZMA2pvuv4neWNkcREEbbLDaIQISe31b9U79s6lbkIk8cIf7z5_EvJPsSu7gsKnX2Uc3nKwfv5Ora-05lTb3N0WhZp6Ps00_dLP_r9F90eo1daeMRHjcO5DpbN8UNdrl5mcubb9Rusq9ve0y8zLkqeI-JIyZ-DhNfxcTrkjeYOGHiHSZOmPgPTNxi4i0mbjFxxMTx7oSJr2L69vlLzFdQcYvqFptOdt9s70E73gMyL5A1ZFI7Rm05eYRBf-Y6KXJFnRulhBZKbtGkDo2eREZSaWKyyL1FlGo8dKTyhGO822xQlIW5y7gWNJ1Zu4FrQt_PZaTDMPONNqmPjDrLhuxp95AnWdv7nkawzJOmyFEmKHBCJpHg4zNkj_vdLe7f7Nvs7CVpPf8iwXCAWLYMvCF72C-jz6ZEnCpMucQ9vhdS_ls6Q3ansbP-jzw3pEqEYMie9Ib3Rynu_e3GTTaoT5bmPpLoOn3QeovvQu_Zfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+an+algorithm+for+semiautomated+surveillance+to+detect+deep+surgical+site+infections+after+primary+total+hip+or+knee+arthroplasty%E2%80%94A+multicenter+study&rft.jtitle=Infection+control+and+hospital+epidemiology&rft.au=Verberk%2C+Janneke+D+M&rft.au=van+Rooden%2C+Stephanie+M&rft.au=Mayke+B+G+Koek&rft.au=Hetem%2C+David+J&rft.date=2021-01-01&rft.pub=Cambridge+University+Press&rft.issn=0899-823X&rft.eissn=1559-6834&rft.volume=42&rft.issue=1&rft.spage=69&rft.epage=74&rft_id=info:doi/10.1017%2Fice.2020.377&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-823X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-823X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-823X&client=summon