A robust energy efficiency power allocation algorithm in cognitive radio networks

In order to solve the problem that traditional energy efficiency power allocation algorithms usually require the assumption of constant or perfect channel state information in cognitive radio networks (CRNs), which may lead to performance degradation in real systems with disturbances or uncertaintie...

Full description

Saved in:
Bibliographic Details
Published inChina communications Vol. 15; no. 10; pp. 150 - 158
Main Authors Zhou, Mingyue, Zhao, Xiaohui
Format Journal Article
LanguageEnglish
Published China Institute of Communications 01.10.2018
College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China%Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China
Subjects
Online AccessGet full text
ISSN1673-5447
DOI10.1109/CC.2018.8485477

Cover

Abstract In order to solve the problem that traditional energy efficiency power allocation algorithms usually require the assumption of constant or perfect channel state information in cognitive radio networks (CRNs), which may lead to performance degradation in real systems with disturbances or uncertainties, we propose a robust energy efficiency power allocation algorithm for underlay cognitive radio (CR) systems with channel uncertainty in consideration of interference power threshold constraint and minimum target SINR requirement constraint. The ellipsoid sets are used to describe the channel uncertainty, and a constrained fractional programming for the allocation is transformed to a convex optimization problem by worst-case optimization approach. A simplified version of robust energy efficiency scheme by a substitutional constraint having lower complexity is presented. Simulation results show that our proposed scheme can provide higher energy efficiency compared with capacity maximization algorithm and guarantee the signal to interference plus noise ratio (SINR) requirement of each cognitive user under channel uncertainty.
AbstractList In order to solve the problem that traditional energy efficiency power allocation algorithms usually require the assumption of constant or perfect channel state information in cognitive radio networks (CRNs), which may lead to performance degradation in real systems with disturbances or uncertainties, we propose a robust energy efficiency power allocation algorithm for underlay cognitive ra-dio (CR) systems with channel uncertainty in consideration of interference power threshold constraint and minimum target SINR require-ment constraint. The ellipsoid sets are used to describe the channel uncertainty, and a con-strained fractional programming for the allo-cation is transformed to a convex optimization problem by worst-case optimization approach. A simplified version of robust energy efficien-cy scheme by a substitutional constraint hav-ing lower complexity is presented. Simulation results show that our proposed scheme can provide higher energy efficiency compared with capacity maximization algorithm and guarantee the signal to interference plus noise ratio (SINR) requirement of each cognitive user under channel uncertainty.
In order to solve the problem that traditional energy efficiency power allocation algorithms usually require the assumption of constant or perfect channel state information in cognitive radio networks (CRNs), which may lead to performance degradation in real systems with disturbances or uncertainties, we propose a robust energy efficiency power allocation algorithm for underlay cognitive radio (CR) systems with channel uncertainty in consideration of interference power threshold constraint and minimum target SINR requirement constraint. The ellipsoid sets are used to describe the channel uncertainty, and a constrained fractional programming for the allocation is transformed to a convex optimization problem by worst-case optimization approach. A simplified version of robust energy efficiency scheme by a substitutional constraint having lower complexity is presented. Simulation results show that our proposed scheme can provide higher energy efficiency compared with capacity maximization algorithm and guarantee the signal to interference plus noise ratio (SINR) requirement of each cognitive user under channel uncertainty.
Author Zhou, Mingyue
Zhao, Xiaohui
AuthorAffiliation College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China;Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China%Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China
AuthorAffiliation_xml – name: College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China;Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China%Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China
Author_xml – sequence: 1
  givenname: Mingyue
  surname: Zhou
  fullname: Zhou, Mingyue
  email: zmyjlu@ccut.edu.cn
  organization: College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China; Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China
– sequence: 2
  givenname: Xiaohui
  surname: Zhao
  fullname: Zhao, Xiaohui
  organization: Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China
BookMark eNp9kL1PwzAQxT0UiQKdGVi8MKa14zh2xyriS6qEkGC2HPccXFK7clxK-etJaWFg4JY73b3fPemdoYEPHhC6pGRMKZlOqmqcEyrHspC8EGKAhrQULONFIU7RqOuWpC9ZlqzMh-hphmOoN13C4CE2OwzWOuPAmx1ehy1ErNs2GJ1c8P3YhOjS6wo7j01ovEvuHXDUCxewh7QN8a27QCdWtx2Mjv0cvdzePFf32fzx7qGazTPDuEiZIdZCKcWi0JqwmhV6ShZUmrqmeS1rwiiVBUhqged9Y6Jf54IRXVI-5Zyyc3R9-LvV3mrfqGXYRN87qs8mfewToIRQ1usmB52JoesiWLWObqXjTlGi9oGpqlJ7uToG1hP8D2Fc-k4gRe3af7irA-cA4Nfl5_oFWIh7Qg
CODEN CCHOBE
CitedBy_id crossref_primary_10_1587_transinf_2018EDP7050
crossref_primary_10_1049_cmu2_12178
crossref_primary_10_1016_j_asr_2022_01_026
crossref_primary_10_1109_TCOMM_2019_2921022
crossref_primary_10_1007_s13042_019_01044_y
crossref_primary_10_1080_00207217_2021_2001855
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/CC.2018.8485477
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EndPage 158
ExternalDocumentID zgtx201810013
10_1109_CC_2018_8485477
8485477
Genre orig-research
GrantInformation_xml – fundername: the Nation Nat-ural Science Foundation of China; the Education Department of Jilin Province . The au-thors would like to thank the editors and the anonymous reviewers for their detailed con-structive comments that helped to improve the presentation of this paper
  funderid: (Grant 61501059); (Grant NO. 2016343). The au-thors would like to thank the editors and the anonymous reviewers for their detailed con-structive comments that helped to improve the presentation of this paper
GroupedDBID -SI
-SJ
-S~
0R~
29B
4.4
5GY
6IK
92H
92I
97E
AAHTB
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABPEJ
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJEJ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
Q--
Q-9
RIA
RIE
RNS
TCJ
TGT
U1G
U5S
U5T
AAYXX
CITATION
2B.
4A8
93N
PSX
RIG
ID FETCH-LOGICAL-c357t-c0ffe687d4aa03b34a90d18cbb12b8b031184e81fe52e813712b2730a61595513
IEDL.DBID RIE
ISSN 1673-5447
IngestDate Thu May 29 03:54:25 EDT 2025
Wed Oct 01 03:43:53 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Wed Aug 27 02:17:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords power allocation
cognitive radio
spectrum sharing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-c0ffe687d4aa03b34a90d18cbb12b8b031184e81fe52e813712b2730a61595513
PageCount 9
ParticipantIDs crossref_primary_10_1109_CC_2018_8485477
crossref_citationtrail_10_1109_CC_2018_8485477
ieee_primary_8485477
wanfang_journals_zgtx201810013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitle_FL China Communications
PublicationYear 2018
Publisher China Institute of Communications
College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China%Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China
Publisher_xml – name: China Institute of Communications
– name: College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
– name: Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China%Key Laboratory of Information Science, College of Communication Engineering, Jilin University, Changchun 130012, China
SSID ssj0000866362
Score 2.1405315
Snippet In order to solve the problem that traditional energy efficiency power allocation algorithms usually require the assumption of constant or perfect channel...
SourceID wanfang
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 150
SubjectTerms cognitive radio
Energy efficiency
Interference
Optimization
power allocation
Resource management
Robustness
Signal to noise ratio
spectrum sharing
Uncertainty
Title A robust energy efficiency power allocation algorithm in cognitive radio networks
URI https://ieeexplore.ieee.org/document/8485477
https://d.wanfangdata.com.cn/periodical/zgtx201810013
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  issn: 1673-5447
  databaseCode: RIE
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0000866362
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_bXvTFrynOj5EHH3ywXbq2-XgcxTGECYKDvZWmSedQ29EPkP31JmlXVBR8agh3JeQu3OVyvzsAbhJKuHASbGETuomYsKgkzCKYKWMkhe8RDRSeP-LZwntY-ssOuGuxMFJKk3wmbT00b_kiiysdKhtRjype0gVdQnGN1WrjKco1x67pH-pgot_7PdJU8nEQGwWBzuKidvOHb0bIdFUxmJ00idLVF_MyPQTz3cLqrJJXuyq5HW9_1Gz878qPwEHjZ8JJrRjHoCPTE7C3gyEXffA0gXnGq6KE0sD_oDTFJDQSE2506zSon-TrgJ4arrJ8Xb68w3UK24wjmEdincG0ziQvTsFiev8czKymv4IVuz4prRglicSUCC-KkMtdJSkkHBpz7ow55eq4q-ufpE4i_bH6uERNK28HRcoLYroxzBnopVkqzwGkQmmksvQMoVhJV12rPXfMGeOcRq4zFgNg7zY8jJvi47oHxltoLiGIhUEQagmFzU4NwG3LsKnrbvxN2tcb3pK108NGomFzLItwuyo_NKsuPOVe_M53CfY1SZ2wdwV6ZV7Ja-V4lHxoNO4TEMDTMQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_mfJgvfovf5sEHH2xt17RJHkdxTN0GgoO9laZJ51Bb2TqQ_fUmaVdUFHxqCHcl5C7c5XK_O4DLlBIu3DSwAhO6iZmwqCTMIgFTxkgKHxMNFB4Mg94I34_9cQOuayyMlNIkn0lbD81bvsiThQ6V3VBMFS9Zg3UfY-yXaK06oqKc88AzHUTdgOgXf0yqWj6uw27CUOdxUbv6xzczZPqqGNROlsbZ5IuB6W7BYLW0Mq_kxV4U3E6WP6o2_nft27BZeZqoU6rGDjRktgutFRB5vgePHTTL-WJeIGkAgEiachIai4nedfM0pB_ly5CeGk7y2bR4fkPTDNU5R2gWi2mOsjKXfL4Po-7tU9izqg4LVuL5pLASJ01lQInAcex43FOycoRLE87dNqdcHXh1AZTUTaXfVh-PqGnl7zix8oOYbg1zAM0sz-QhICqUTipbzxwnUfJVF2vstTljnNPYc9viCOzVhkdJVX5cd8F4jcw1xGFRGEZaQlG1U0dwVTO8l5U3_ibd0xtek9XT55VEo-pgzqPlpPjQrLr0lHf8O98FtHpPg37Uvxs-nMCGJi_T906hWcwW8ky5IQU_N9r3CUsO1n4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+energy+efficiency+power+allocation+algorithm+in+cognitive+radio+networks&rft.jtitle=China+communications&rft.au=Zhou%2C+Mingyue&rft.au=Zhao%2C+Xiaohui&rft.date=2018-10-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=15&rft.issue=10&rft.spage=150&rft.epage=158&rft_id=info:doi/10.1109%2FCC.2018.8485477&rft.externalDocID=8485477
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg