Noisy data elimination using mutual k-nearest neighbor for classification mining

► A new lazy learning algorithm, named MkNNC, is designed for pattern classification. The MkNNC is an instance-based learning method. Its core idea is relatively intuitional and easy to implement. Meanwhile, it is more robust as encounter noises or inconsistent data. ► Anomalies will be firstly dete...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of systems and software Vol. 85; no. 5; pp. 1067 - 1074
Main Authors Liu, Huawen, Zhang, Shichao
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.05.2012
Elsevier Sequoia S.A
Subjects
Online AccessGet full text
ISSN0164-1212
1873-1228
DOI10.1016/j.jss.2011.12.019

Cover

Abstract ► A new lazy learning algorithm, named MkNNC, is designed for pattern classification. The MkNNC is an instance-based learning method. Its core idea is relatively intuitional and easy to implement. Meanwhile, it is more robust as encounter noises or inconsistent data. ► Anomalies will be firstly detected and removed from databases by the mutual nearest neighbors before constructing classification models. Consequently, the information of noise data will not be taken as determinant conditions during the learning process. Thus, the final prediction results are more creditable. ► The MkNNC involves classification learning and anomaly detection and elimination. Both of them are fulfilled with MNN, which carries more useful and reliable information than kNN in determining the relationship between instances. k nearest neighbor (kNN) is an effective and powerful lazy learning algorithm, notwithstanding its easy-to-implement. However, its performance heavily relies on the quality of training data. Due to many complex real-applications, noises coming from various possible sources are often prevalent in large scale databases. How to eliminate anomalies and improve the quality of data is still a challenge. To alleviate this problem, in this paper we propose a new anomaly removal and learning algorithm under the framework of kNN. The primary characteristic of our method is that the evidence of removing anomalies and predicting class labels of unseen instances is mutual nearest neighbors, rather than k nearest neighbors. The advantage is that pseudo nearest neighbors can be identified and will not be taken into account during the prediction process. Consequently, the final learning result is more creditable. An extensive comparative experimental analysis carried out on UCI datasets provided empirical evidence of the effectiveness of the proposed method for enhancing the performance of the k-NN rule.
AbstractList ► A new lazy learning algorithm, named MkNNC, is designed for pattern classification. The MkNNC is an instance-based learning method. Its core idea is relatively intuitional and easy to implement. Meanwhile, it is more robust as encounter noises or inconsistent data. ► Anomalies will be firstly detected and removed from databases by the mutual nearest neighbors before constructing classification models. Consequently, the information of noise data will not be taken as determinant conditions during the learning process. Thus, the final prediction results are more creditable. ► The MkNNC involves classification learning and anomaly detection and elimination. Both of them are fulfilled with MNN, which carries more useful and reliable information than kNN in determining the relationship between instances. k nearest neighbor (kNN) is an effective and powerful lazy learning algorithm, notwithstanding its easy-to-implement. However, its performance heavily relies on the quality of training data. Due to many complex real-applications, noises coming from various possible sources are often prevalent in large scale databases. How to eliminate anomalies and improve the quality of data is still a challenge. To alleviate this problem, in this paper we propose a new anomaly removal and learning algorithm under the framework of kNN. The primary characteristic of our method is that the evidence of removing anomalies and predicting class labels of unseen instances is mutual nearest neighbors, rather than k nearest neighbors. The advantage is that pseudo nearest neighbors can be identified and will not be taken into account during the prediction process. Consequently, the final learning result is more creditable. An extensive comparative experimental analysis carried out on UCI datasets provided empirical evidence of the effectiveness of the proposed method for enhancing the performance of the k-NN rule.
k nearest neighbor (kNN) is an effective and powerful lazy learning algorithm, notwithstanding its easy-to-implement. However, its performance heavily relies on the quality of training data. Due to many complex real-applications, noises coming from various possible sources are often prevalent in large scale databases. How to eliminate anomalies and improve the quality of data is still a challenge. To alleviate this problem, in this paper we propose a new anomaly removal and learning algorithm under the framework of kNN. The primary characteristic of our method is that the evidence of removing anomalies and predicting class labels of unseen instances is mutual nearest neighbors, rather than k nearest neighbors. The advantage is that pseudo nearest neighbors can be identified and will not be taken into account during the prediction process. Consequently, the final learning result is more creditable. An extensive comparative experimental analysis carried out on UCI datasets provided empirical evidence of the effectiveness of the proposed method for enhancing the performance of the k-NN rule.
k nearest neighbor (kNN) is an effective and powerful lazy learning algorithm, notwithstanding its easy-to-implement. However, its performance heavily relies on the quality of training data. Due to many complex real-applications, noises coming from various possible sources are often prevalent in large scale databases. How to eliminate anomalies and improve the quality of data is still a challenge. To alleviate this problem, in this paper we propose a new anomaly removal and learning algorithm under the framework of kNN. The primary characteristic of our method is that the evidence of removing anomalies and predicting class labels of unseen instances is mutual nearest neighbors, rather than k nearest neighbors. The advantage is that pseudo nearest neighbors can be identified and will not be taken into account during the prediction process. Consequently, the final learning result is more creditable. An extensive comparative experimental analysis carried out on UCI datasets provided empirical evidence of the effectiveness of the proposed method for enhancing the performance of the k-NN rule. [PUBLICATION ABSTRACT]
Author Liu, Huawen
Zhang, Shichao
Author_xml – sequence: 1
  givenname: Huawen
  surname: Liu
  fullname: Liu, Huawen
  email: hwliu@zjnu.edu.cn
  organization: Department of Computer Science, Zhejiang Normal University, China
– sequence: 2
  givenname: Shichao
  surname: Zhang
  fullname: Zhang, Shichao
  email: zhangsc@it.uts.edu.au
  organization: College of Computer Science and Information Technology, Guangxi Normal University, China
BookMark eNp9kL1OwzAURi1UJNrCA7BFTCwJthM3jphQxZ9UAQPMlms7xSGxi50g9e25JUwdOljXwzlX9_tmaOK8MwhdEpwRTBY3TdbEmFFMSEZohkl1gqaEl3lKKOUTNAWmgD-hZ2gWY4MxLimmU_T24m3cJVr2MjGt7ayTvfUuGaJ1m6Qb-kG2yVfqjAwm9okzdvO59iGp4alWxmhrq0YFXHDO0Wkt22gu_uccfTzcvy-f0tXr4_PybpWqnJV9uuaUK8oKzBnGFeG45IrzkkpaGE251kzXlaaM4HVutKI5Y1rmGi-4Kouc83yOrse92-C_B7hNdDYq07bSGT9EQTAE55CYAXp1gDZ-CA6uExVl5aICEqByhFTwMQZTC2X7v2B9kLaFfWJftGgEFC32RQtCBRQNJjkwt8F2MuyOOrejY6CiH2uCiMoap4y2waheaG-P2L8s5Jdr
CODEN JSSODM
CitedBy_id crossref_primary_10_1016_j_procs_2019_11_146
crossref_primary_10_1109_TCYB_2016_2519683
crossref_primary_10_1007_s11119_024_10112_5
crossref_primary_10_1109_TIM_2016_2526758
crossref_primary_10_1080_0305215X_2024_2315501
crossref_primary_10_1177_1550147719889899
crossref_primary_10_1016_j_jtcvs_2019_02_095
crossref_primary_10_1016_j_knosys_2021_107604
crossref_primary_10_1007_s42452_019_1356_9
crossref_primary_10_1109_ACCESS_2022_3210540
crossref_primary_10_3390_rs10050773
crossref_primary_10_1016_j_asoc_2017_02_020
crossref_primary_10_1016_j_eswa_2016_09_031
crossref_primary_10_3389_fneur_2019_00996
crossref_primary_10_1080_09540091_2022_2088695
crossref_primary_10_3390_s23031485
crossref_primary_10_31590_ejosat_905259
crossref_primary_10_18287_2412_6179_CO_667
crossref_primary_10_1080_08839514_2018_1430469
crossref_primary_10_1016_j_knosys_2020_106185
crossref_primary_10_1007_s00521_018_3836_z
crossref_primary_10_1007_s11042_022_12873_5
crossref_primary_10_33203_mfy_1034155
crossref_primary_10_33793_acperpro_02_03_47
crossref_primary_10_1007_s00500_020_05311_x
crossref_primary_10_1016_j_envsoft_2014_09_026
crossref_primary_10_1109_ACCESS_2024_3491073
crossref_primary_10_1016_j_ins_2015_07_016
crossref_primary_10_1016_j_knosys_2020_105803
crossref_primary_10_1016_j_artmed_2020_101985
crossref_primary_10_37989_gumussagbil_1321713
crossref_primary_10_1109_ACCESS_2021_3074249
crossref_primary_10_1016_j_knosys_2017_01_021
crossref_primary_10_3390_pr10030497
crossref_primary_10_1080_10406638_2015_1129976
crossref_primary_10_1002_cpe_6077
crossref_primary_10_1016_j_patrec_2016_01_021
crossref_primary_10_1109_TVT_2022_3181825
crossref_primary_10_31590_ejosat_1173627
crossref_primary_10_1016_j_ocemod_2024_102324
crossref_primary_10_1016_j_still_2025_106503
crossref_primary_10_1007_s10489_020_01926_7
crossref_primary_10_29137_umagd_510777
crossref_primary_10_1016_j_eswa_2022_117159
crossref_primary_10_1109_OJCOMS_2020_3024724
crossref_primary_10_1016_j_jss_2012_05_073
crossref_primary_10_18185_erzifbed_954466
crossref_primary_10_1016_j_jnca_2020_102783
crossref_primary_10_1016_j_neucom_2018_11_101
crossref_primary_10_1016_j_inffus_2025_102928
crossref_primary_10_1016_j_patcog_2023_110072
crossref_primary_10_1177_0020294019858088
crossref_primary_10_1016_j_ijleo_2020_164515
crossref_primary_10_3745_JIPS_2013_9_4_633
crossref_primary_10_1109_TKDE_2015_2411276
crossref_primary_10_1016_j_neucom_2014_06_009
crossref_primary_10_1186_s12888_024_05987_7
crossref_primary_10_1007_s11269_019_02273_0
crossref_primary_10_1109_ACCESS_2024_3518497
crossref_primary_10_3390_math10152743
crossref_primary_10_1109_TNNLS_2017_2711028
crossref_primary_10_1109_ACCESS_2021_3063028
crossref_primary_10_1109_TNNLS_2017_2673241
crossref_primary_10_3390_buildings13061552
crossref_primary_10_1016_j_aej_2021_04_100
crossref_primary_10_1016_j_knosys_2025_113343
crossref_primary_10_1016_j_neucom_2014_12_073
crossref_primary_10_1016_j_bspc_2023_105448
crossref_primary_10_32604_cmc_2023_040874
crossref_primary_10_1155_2022_9891971
crossref_primary_10_1007_s11629_023_8029_2
Cites_doi 10.1613/jair.346
10.1023/B:MACH.0000011805.60520.fe
10.1109/TPAMI.2009.164
10.1007/s10115-007-0114-2
10.1142/S0219622006002258
10.1016/j.patcog.2009.09.026
10.1016/j.ins.2009.04.012
10.1007/s00357-010-9044-x
10.1016/j.patcog.2008.10.028
10.1016/j.patcog.2005.08.016
10.1109/TIT.1967.1053964
10.1016/j.ins.2010.02.010
10.1109/TIT.1979.1056066
10.1109/TIT.2009.2037034
10.1109/TPAMI.2002.1033219
10.1016/j.ejor.2008.07.019
10.1007/s10618-010-0168-8
10.1016/j.ins.2009.11.045
10.1007/s10462-010-9165-y
10.1007/s10489-009-0207-6
10.1007/s00521-009-0295-6
10.1016/j.patcog.2010.02.008
10.1023/A:1014043630878
10.1109/TNN.2009.2018547
10.1016/j.datak.2009.08.005
10.1145/1541880.1541882
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright Elsevier Sequoia S.A. May 2012
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright Elsevier Sequoia S.A. May 2012
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jss.2011.12.019
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-1228
EndPage 1074
ExternalDocumentID 2600142091
10_1016_j_jss_2011_12_019
S0164121211003049
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9M8
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABEFU
ABFNM
ABFRF
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
UHS
UNMZH
VH1
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c357t-b828c25408500918078c8872a24ed28dd5df9d2510b3edc2355da3d068c743883
IEDL.DBID .~1
ISSN 0164-1212
IngestDate Thu Oct 02 04:12:56 EDT 2025
Fri Jul 25 07:22:29 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Thu Oct 02 04:26:54 EDT 2025
Fri Feb 23 02:32:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords kNN
Data mining
Mutual nearest neighbor
Pattern classification
Data reduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-b828c25408500918078c8872a24ed28dd5df9d2510b3edc2355da3d068c743883
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 925769228
PQPubID 45802
PageCount 8
ParticipantIDs proquest_miscellaneous_1022881215
proquest_journals_925769228
crossref_citationtrail_10_1016_j_jss_2011_12_019
crossref_primary_10_1016_j_jss_2011_12_019
elsevier_sciencedirect_doi_10_1016_j_jss_2011_12_019
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of systems and software
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier Inc
– name: Elsevier Sequoia S.A
References Latourrette (bib0100) 2000
Toyama, Kudo, Imai (bib0145) 2010; 43
Cohen (bib0035) 1995
Lee, Taddy, Gray (bib0105) 2010; 27
Domeniconi, Peng, Gunopulos (bib0055) 2002; 24
Ding, He (bib0050) 2004
Liu, Sun, Liu, Zhang (bib0120) 2009; 42
Wilson, Martinez (bib0150) 1997; 6
Zhang (bib0180) 2011; 35
Asuncion, Newman (bib0005) 2007
Chandola, Banerjee, Kumar (bib0020) 2009; 41
Chen, Hung, Yen, Fuh (bib0030) 2007; 40
Pyle (bib0135) 1999
Song, Huang, Zhou, Zha, Giles (bib0140) 2007
Hulse, Khoshgoftaar (bib0085) 2009; 68
Olvera-Lopez, Carrasco-Ochoa, Martinez-Trinidad, Kittler (bib0130) 2010; 34
Fayed, Atiya (bib0065) 2009; 20
Brighton, Mellish (bib0015) 2002; 6
Zollanvari, Braga-Neto, Dougherty (bib0185) 2010; 56
Bhatia, Vandana (bib0010) 2010; 8
Yang, Wu (bib0165) 2006; 5
Witten, Frank (bib0155) 2005
Yu (bib0170) 2011; 22
Jahromi, Parvinnia, John (bib0090) 2009; 179
Chapman, A.D., (2005). Principles and Methods of Data Cleaning-Primary Species and Species-Occurrence Data, version 1.0. Report for the Global Biodiversity Information Facility, Copenhagen.
Davidson, Tayi (bib0045) 2009; 197
Lindenbaum, Markovitch, Rusakov (bib0110) 2004; 54
Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLach-lan, Ng, Liu, Yu, Zhou, Steinbach, Hand, Stein-berg (bib0160) 2008; 14
Liu, Liu, Zhang (bib0115) 2010; 43
Marchiori (bib0125) 2010; 32
Cover, Hart (bib0040) 1967; 13
Duda, Hart, Stork (bib0060) 2001
Zhang, Wu (bib0175) 2010; 180
Garcia-Laencina, Sancho-Gomez, Figueiras-Vidal (bib0075) 2010; 19
Gowda, Krishna (bib0080) 1979; 25
Jin, Tung, Han, Wang (bib0095) 2006
Gao, Zheng, Chen, Li, Chen, Chen (bib0070) 2010; 180
Davidson (10.1016/j.jss.2011.12.019_bib0045) 2009; 197
Domeniconi (10.1016/j.jss.2011.12.019_bib0055) 2002; 24
Gao (10.1016/j.jss.2011.12.019_bib0070) 2010; 180
10.1016/j.jss.2011.12.019_bib0025
Garcia-Laencina (10.1016/j.jss.2011.12.019_bib0075) 2010; 19
Wu (10.1016/j.jss.2011.12.019_bib0160) 2008; 14
Jin (10.1016/j.jss.2011.12.019_bib0095) 2006
Chen (10.1016/j.jss.2011.12.019_bib0030) 2007; 40
Zhang (10.1016/j.jss.2011.12.019_bib0175) 2010; 180
Zollanvari (10.1016/j.jss.2011.12.019_bib0185) 2010; 56
Lee (10.1016/j.jss.2011.12.019_bib0105) 2010; 27
Yang (10.1016/j.jss.2011.12.019_bib0165) 2006; 5
Bhatia (10.1016/j.jss.2011.12.019_bib0010) 2010; 8
Marchiori (10.1016/j.jss.2011.12.019_bib0125) 2010; 32
Yu (10.1016/j.jss.2011.12.019_bib0170) 2011; 22
Gowda (10.1016/j.jss.2011.12.019_bib0080) 1979; 25
Jahromi (10.1016/j.jss.2011.12.019_bib0090) 2009; 179
Toyama (10.1016/j.jss.2011.12.019_bib0145) 2010; 43
Song (10.1016/j.jss.2011.12.019_bib0140) 2007
Latourrette (10.1016/j.jss.2011.12.019_bib0100) 2000
Witten (10.1016/j.jss.2011.12.019_bib0155) 2005
Ding (10.1016/j.jss.2011.12.019_bib0050) 2004
Zhang (10.1016/j.jss.2011.12.019_bib0180) 2011; 35
Asuncion (10.1016/j.jss.2011.12.019_bib0005) 2007
Olvera-Lopez (10.1016/j.jss.2011.12.019_bib0130) 2010; 34
Cover (10.1016/j.jss.2011.12.019_bib0040) 1967; 13
Wilson (10.1016/j.jss.2011.12.019_bib0150) 1997; 6
Liu (10.1016/j.jss.2011.12.019_bib0115) 2010; 43
Duda (10.1016/j.jss.2011.12.019_bib0060) 2001
Liu (10.1016/j.jss.2011.12.019_bib0120) 2009; 42
Pyle (10.1016/j.jss.2011.12.019_bib0135) 1999
Cohen (10.1016/j.jss.2011.12.019_bib0035) 1995
Lindenbaum (10.1016/j.jss.2011.12.019_bib0110) 2004; 54
Brighton (10.1016/j.jss.2011.12.019_bib0015) 2002; 6
Chandola (10.1016/j.jss.2011.12.019_bib0020) 2009; 41
Fayed (10.1016/j.jss.2011.12.019_bib0065) 2009; 20
Hulse (10.1016/j.jss.2011.12.019_bib0085) 2009; 68
References_xml – year: 2001
  ident: bib0060
  article-title: Pattern Classification
– volume: 27
  start-page: 41
  year: 2010
  end-page: 53
  ident: bib0105
  article-title: Selection of a representative sample
  publication-title: Journal of Classification
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib0040
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Transactions on Information Theory
– year: 1999
  ident: bib0135
  article-title: Data Preparation for Data Mining
– volume: 6
  start-page: 153
  year: 2002
  end-page: 172
  ident: bib0015
  article-title: Advances in instance selection for instance-based learning algorithms
  publication-title: Data Mining and Knowledge Discovery
– year: 2007
  ident: bib0005
  article-title: UCI Repository of Ma-chine Learning Databases, Department of Information and Computer Science
– volume: 43
  start-page: 2763
  year: 2010
  end-page: 2772
  ident: bib0115
  article-title: Ensemble gene selection for cancer classification
  publication-title: Pattern Recognition
– volume: 180
  start-page: 2170
  year: 2010
  end-page: 2195
  ident: bib0070
  article-title: Efficient mutual nearest neighbor query processing for moving object trajectories
  publication-title: Information Sciences
– volume: 180
  start-page: 2663
  year: 2010
  end-page: 2673
  ident: bib0175
  article-title: Integrating induction and deduction for noisy data mining
  publication-title: Information Sciences
– volume: 8
  start-page: 302
  year: 2010
  end-page: 305
  ident: bib0010
  article-title: Survey of nearest neighbor techniques
  publication-title: International Journal of Computer Science and Information Security
– volume: 24
  start-page: 1281
  year: 2002
  end-page: 1285
  ident: bib0055
  article-title: Locally adaptive metric nearest-neighbor classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 20
  start-page: 890
  year: 2009
  end-page: 896
  ident: bib0065
  article-title: A novel template reduction approach for the k-nearest neighbor method
  publication-title: IEEE Transactions on Neural Networks
– volume: 22
  start-page: 1
  year: 2011
  end-page: 30
  ident: bib0170
  article-title: Selective sampling techniques for feedback-based data retrieval
  publication-title: Data Mining and Knowledge Discovery
– start-page: 115
  year: 1995
  end-page: 123
  ident: bib0035
  article-title: Fast effective rule induction
  publication-title: Proceedings of the 12th International Conference on Machine Learning
– volume: 43
  start-page: 1361
  year: 2010
  end-page: 1372
  ident: bib0145
  article-title: Probably correct k-nearest neighbor search in high dimensions
  publication-title: Pattern Recognition
– reference: Chapman, A.D., (2005). Principles and Methods of Data Cleaning-Primary Species and Species-Occurrence Data, version 1.0. Report for the Global Biodiversity Information Facility, Copenhagen.
– volume: 197
  start-page: 764
  year: 2009
  end-page: 772
  ident: bib0045
  article-title: Data preparation using data quality matrices for classification mining
  publication-title: European Journal of Operational Research
– start-page: 238
  year: 2000
  end-page: 245
  ident: bib0100
  article-title: Toward an explanatory similarity measure for nearest-neighbor classification
  publication-title: Proc. of the 11th European Conference on Machine Learning
– volume: 68
  start-page: 1513
  year: 2009
  end-page: 1542
  ident: bib0085
  article-title: Knowledge discovery from imbalanced and noisy data
  publication-title: Data and Knowledge Engineering
– volume: 19
  start-page: 263
  year: 2010
  end-page: 282
  ident: bib0075
  article-title: Pattern classification with missing data: a review
  publication-title: Neural Computing & Applications
– start-page: 248
  year: 2007
  end-page: 264
  ident: bib0140
  article-title: IKNN: informative k-nearest neighbor pattern classification
  publication-title: PKDD 2007, LNAI 4702
– volume: 42
  start-page: 1330
  year: 2009
  end-page: 1339
  ident: bib0120
  article-title: Feature selection with dynamic mutual information
  publication-title: Pattern Recognition
– start-page: 577
  year: 2006
  end-page: 593
  ident: bib0095
  article-title: Ranking outliers using symmetric neighborhood relationship
  publication-title: Proceedings of the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
– volume: 40
  start-page: 360
  year: 2007
  end-page: 375
  ident: bib0030
  article-title: Fast and versatile algorithm for nearest neighbor search based on a lower bound tree
  publication-title: Pattern Recognition
– volume: 41
  start-page: 1
  year: 2009
  end-page: 58
  ident: bib0020
  article-title: Anomaly detection: a survey
  publication-title: ACM Computing Surveys
– volume: 32
  start-page: 364
  year: 2010
  end-page: 370
  ident: bib0125
  article-title: Class conditional nearest neighbor for large margin instance selection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 14
  start-page: 1
  year: 2008
  end-page: 37
  ident: bib0160
  article-title: Top 10 algorithms in data mining
  publication-title: Knowledge and Information Systems
– volume: 25
  start-page: 488
  year: 1979
  end-page: 490
  ident: bib0080
  article-title: The condensed nearest neighbor rule using the concept of mutual nearest neighborhood
  publication-title: IEEE Transactions on Information Theory
– volume: 56
  start-page: 784
  year: 2010
  end-page: 804
  ident: bib0185
  article-title: Joint sampling distribution between actual and estimated classification errors for linear discriminant analysis
  publication-title: IEEE Transactions on Information Theory
– volume: 54
  start-page: 125
  year: 2004
  end-page: 152
  ident: bib0110
  article-title: Selective sampling for nearest neighbor classifiers
  publication-title: Machine Learning
– year: 2005
  ident: bib0155
  article-title: Data Mining-Practical Machine Learning Tools and Techniques with JAVA Implementations
– volume: 35
  start-page: 123
  year: 2011
  end-page: 133
  ident: bib0180
  article-title: Shell-neighbor method and its application in missing data imputation
  publication-title: Applied Intelligence
– volume: 179
  start-page: 2964
  year: 2009
  end-page: 2973
  ident: bib0090
  article-title: A method of learning weighted similarity function to improve the performance of nearest neighbor
  publication-title: Information Sciences
– volume: 6
  start-page: 1
  year: 1997
  end-page: 34
  ident: bib0150
  article-title: Improved heterogeneous distance functions
  publication-title: Journal of Artificial Intelligence Research
– volume: 5
  start-page: 597
  year: 2006
  end-page: 604
  ident: bib0165
  article-title: 10 challenging problems in data mining research
  publication-title: International Journal of Information Technology and Decision Making
– volume: 34
  start-page: 133
  year: 2010
  end-page: 143
  ident: bib0130
  article-title: A review of instance selection methods
  publication-title: Artificial Intelligence Review
– start-page: 584
  year: 2004
  end-page: 589
  ident: bib0050
  article-title: K-nearest-neighbor consistency in data clustering: incorporating local information into global optimization
  publication-title: Proceedings of ACM Symposium on Applied Computing (SAC)
– volume: 6
  start-page: 1
  year: 1997
  ident: 10.1016/j.jss.2011.12.019_bib0150
  article-title: Improved heterogeneous distance functions
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.346
– volume: 54
  start-page: 125
  year: 2004
  ident: 10.1016/j.jss.2011.12.019_bib0110
  article-title: Selective sampling for nearest neighbor classifiers
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000011805.60520.fe
– volume: 32
  start-page: 364
  issue: 2
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0125
  article-title: Class conditional nearest neighbor for large margin instance selection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.164
– volume: 14
  start-page: 1
  year: 2008
  ident: 10.1016/j.jss.2011.12.019_bib0160
  article-title: Top 10 algorithms in data mining
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-007-0114-2
– volume: 5
  start-page: 597
  issue: 4
  year: 2006
  ident: 10.1016/j.jss.2011.12.019_bib0165
  article-title: 10 challenging problems in data mining research
  publication-title: International Journal of Information Technology and Decision Making
  doi: 10.1142/S0219622006002258
– volume: 43
  start-page: 1361
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0145
  article-title: Probably correct k-nearest neighbor search in high dimensions
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.09.026
– volume: 179
  start-page: 2964
  year: 2009
  ident: 10.1016/j.jss.2011.12.019_bib0090
  article-title: A method of learning weighted similarity function to improve the performance of nearest neighbor
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.04.012
– start-page: 584
  year: 2004
  ident: 10.1016/j.jss.2011.12.019_bib0050
  article-title: K-nearest-neighbor consistency in data clustering: incorporating local information into global optimization
– volume: 27
  start-page: 41
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0105
  article-title: Selection of a representative sample
  publication-title: Journal of Classification
  doi: 10.1007/s00357-010-9044-x
– volume: 42
  start-page: 1330
  year: 2009
  ident: 10.1016/j.jss.2011.12.019_bib0120
  article-title: Feature selection with dynamic mutual information
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2008.10.028
– year: 2005
  ident: 10.1016/j.jss.2011.12.019_bib0155
– volume: 40
  start-page: 360
  year: 2007
  ident: 10.1016/j.jss.2011.12.019_bib0030
  article-title: Fast and versatile algorithm for nearest neighbor search based on a lower bound tree
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.08.016
– volume: 13
  start-page: 21
  year: 1967
  ident: 10.1016/j.jss.2011.12.019_bib0040
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 180
  start-page: 2170
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0070
  article-title: Efficient mutual nearest neighbor query processing for moving object trajectories
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.02.010
– volume: 25
  start-page: 488
  issue: 4
  year: 1979
  ident: 10.1016/j.jss.2011.12.019_bib0080
  article-title: The condensed nearest neighbor rule using the concept of mutual nearest neighborhood
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1979.1056066
– volume: 56
  start-page: 784
  issue: 2
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0185
  article-title: Joint sampling distribution between actual and estimated classification errors for linear discriminant analysis
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2009.2037034
– volume: 24
  start-page: 1281
  issue: 9
  year: 2002
  ident: 10.1016/j.jss.2011.12.019_bib0055
  article-title: Locally adaptive metric nearest-neighbor classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1033219
– volume: 197
  start-page: 764
  year: 2009
  ident: 10.1016/j.jss.2011.12.019_bib0045
  article-title: Data preparation using data quality matrices for classification mining
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.07.019
– volume: 22
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.jss.2011.12.019_bib0170
  article-title: Selective sampling techniques for feedback-based data retrieval
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-010-0168-8
– volume: 8
  start-page: 302
  issue: 2
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0010
  article-title: Survey of nearest neighbor techniques
  publication-title: International Journal of Computer Science and Information Security
– volume: 180
  start-page: 2663
  issue: 14
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0175
  article-title: Integrating induction and deduction for noisy data mining
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.11.045
– volume: 34
  start-page: 133
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0130
  article-title: A review of instance selection methods
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-010-9165-y
– volume: 35
  start-page: 123
  issue: 1
  year: 2011
  ident: 10.1016/j.jss.2011.12.019_bib0180
  article-title: Shell-neighbor method and its application in missing data imputation
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-009-0207-6
– start-page: 115
  year: 1995
  ident: 10.1016/j.jss.2011.12.019_bib0035
  article-title: Fast effective rule induction
– ident: 10.1016/j.jss.2011.12.019_bib0025
– volume: 19
  start-page: 263
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0075
  article-title: Pattern classification with missing data: a review
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-009-0295-6
– start-page: 238
  year: 2000
  ident: 10.1016/j.jss.2011.12.019_bib0100
  article-title: Toward an explanatory similarity measure for nearest-neighbor classification
– volume: 43
  start-page: 2763
  issue: 8
  year: 2010
  ident: 10.1016/j.jss.2011.12.019_bib0115
  article-title: Ensemble gene selection for cancer classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.02.008
– start-page: 248
  year: 2007
  ident: 10.1016/j.jss.2011.12.019_bib0140
  article-title: IKNN: informative k-nearest neighbor pattern classification
– year: 2007
  ident: 10.1016/j.jss.2011.12.019_bib0005
– volume: 6
  start-page: 153
  year: 2002
  ident: 10.1016/j.jss.2011.12.019_bib0015
  article-title: Advances in instance selection for instance-based learning algorithms
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1014043630878
– volume: 20
  start-page: 890
  issue: 5
  year: 2009
  ident: 10.1016/j.jss.2011.12.019_bib0065
  article-title: A novel template reduction approach for the k-nearest neighbor method
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2009.2018547
– year: 1999
  ident: 10.1016/j.jss.2011.12.019_bib0135
– start-page: 577
  year: 2006
  ident: 10.1016/j.jss.2011.12.019_bib0095
  article-title: Ranking outliers using symmetric neighborhood relationship
– volume: 68
  start-page: 1513
  year: 2009
  ident: 10.1016/j.jss.2011.12.019_bib0085
  article-title: Knowledge discovery from imbalanced and noisy data
  publication-title: Data and Knowledge Engineering
  doi: 10.1016/j.datak.2009.08.005
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  ident: 10.1016/j.jss.2011.12.019_bib0020
  article-title: Anomaly detection: a survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/1541880.1541882
– year: 2001
  ident: 10.1016/j.jss.2011.12.019_bib0060
SSID ssj0007202
Score 2.3103979
Snippet ► A new lazy learning algorithm, named MkNNC, is designed for pattern classification. The MkNNC is an instance-based learning method. Its core idea is...
k nearest neighbor (kNN) is an effective and powerful lazy learning algorithm, notwithstanding its easy-to-implement. However, its performance heavily relies...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1067
SubjectTerms Algorithms
Anomalies
Artificial intelligence
Classification
Computer programs
Data mining
Data reduction
kNN
Learning
Mutual nearest neighbor
Noise
Pattern classification
Pattern recognition
Software
Studies
Systems design
Title Noisy data elimination using mutual k-nearest neighbor for classification mining
URI https://dx.doi.org/10.1016/j.jss.2011.12.019
https://www.proquest.com/docview/925769228
https://www.proquest.com/docview/1022881215
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-1228
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007202
  issn: 0164-1212
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-1228
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007202
  issn: 0164-1212
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-1228
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007202
  issn: 0164-1212
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-1228
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007202
  issn: 0164-1212
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-1228
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007202
  issn: 0164-1212
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc7piOBJqFvTdk2OYzim4hB0sFtoPiqbWzdsd_Di3-57_VAU2cFj04SWl-Tl95Jffo-Qy4h5KlQcItXAQIACmNxR2viOG1nj6RAQf4Qb-g-j7nDs302CSY30q7swSKssfX_h03NvXZa0S2u2V9Np-wnFoVyGEmX5-R5e4vP9ELMYXH980zxClvMOsbKDtauTzZzjNUvTQsUTdwRRbOfvtemXl86XnsEe2SkxI-0Vv7VPajY5ILtVPgZaTs9D8jhaTtN3iqRPaud5ui40O0Vu-wtdrPGqCH11EpStTTOa4K4oDAEKuJVqRNFIGyqaLPK8EUdkPLh57g-dMmOCo70gzBwF8ZOGkA916AAIoJa8Bi_CIuZbw7gxgYmFAUjTUZ41mgHYMJFnOl2uAUlw7h2TerJM7AmhxhXWi0Ptqlj4gVDKj40VcWitdkNuRYN0KltJXcqJY1aLuax4YzMJ5pVoXukyCeZtkKuvJqtCS2NTZb_qAPljQEjw9ZuaNavOkuVsTKXAqEowxhvk4ustTCM8G4kSu1ynEgNfzlFq4_R_H26SbXhiBRfyjNSzt7U9B7ySqVY-IFtkq3d7Pxx9AiwE6co
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHODCjiirkTghhTZOQuwjQqCyVUi0EjcrXoJa2hSR9sCFb2cmCwiEOHCNbTka2-M39vMbgKOEBzrWAiPVyGKAgpjc08aGnp84G5gYEX9CB_p3ndN2L7x-jB5n4Lx-C0O0ysr3lz698NbVl2ZlzeZLv998IHEon5NEWXG_J2dhPox4TBHYyfsXzyPmBfGQantUvb7aLEhegzwvZTzpSJDUdn7fnH646WLvuVyBpQo0srPyv1ZhxmVrsFwnZGDV-lyH-864n78xYn0yNyzydZHdGZHbn9hoSm9F2LOXkW5tPmEZHYviHGAIXJkhGE28obLJqEgcsQG9y4vuedurUiZ4JojiiacxgDIY85EQHSIBEpM36EZ4wkNnubA2sqm0iGlaOnDWcEQbNgls61QYhBJCBJswl40ztwXM-tIFaWx8ncowklqHqXUyjZ0zfiycbECrtpUylZ44pbUYqpo4NlBoXkXmVT5XaN4GHH82eSnFNP6qHNYDoL7NCIXO_q9mO_VgqWo55kpSWCU5Fw04_CzFdUSXI0nmxtNcUeQrBGltbP-v4wNYaHfvbtXtVedmBxaxhJfEyF2Ym7xO3R6Cl4neLybnB6Nc618
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noisy+data+elimination+using+mutual+k-nearest+neighbor+for+classification+mining&rft.jtitle=The+Journal+of+systems+and+software&rft.au=Liu%2C+Huawen&rft.au=Zhang%2C+Shichao&rft.date=2012-05-01&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0164-1212&rft.eissn=1873-1228&rft.volume=85&rft.issue=5&rft.spage=1067&rft_id=info:doi/10.1016%2Fj.jss.2011.12.019&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2600142091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0164-1212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0164-1212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0164-1212&client=summon