RCLM-net: A rich-club properties based lightweight deep neural network for multimodal sequence spine MR images segmentation
The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large numbe...
        Saved in:
      
    
          | Published in | Magnetic resonance imaging Vol. 123; p. 110505 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier Inc
    
        01.11.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0730-725X 1873-5894 1873-5894  | 
| DOI | 10.1016/j.mri.2025.110505 | 
Cover
| Abstract | The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the “Rich-Club” properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios.
•RCLM-Net model based on Rich-Club properties with much smaller number of parameters has encouraging segmentation accuracy.•RCLM-Net is suitable for spine multimodal sequence MR images segmentation, which is meaningful for aid diagnosis algorithms.•This model is suitable for deployment on low-computing power devices and is easier to implement in remote areas. | 
    
|---|---|
| AbstractList | The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the “Rich-Club” properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios.
•RCLM-Net model based on Rich-Club properties with much smaller number of parameters has encouraging segmentation accuracy.•RCLM-Net is suitable for spine multimodal sequence MR images segmentation, which is meaningful for aid diagnosis algorithms.•This model is suitable for deployment on low-computing power devices and is easier to implement in remote areas. The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the "Rich-Club" properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios. The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the "Rich-Club" properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios.The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the "Rich-Club" properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios.  | 
    
| ArticleNumber | 110505 | 
    
| Author | Yan, Xia Zhang, Mengchao He, Siyuan Wang, Kun Chang, Xinyi  | 
    
| Author_xml | – sequence: 1 givenname: Siyuan surname: He fullname: He, Siyuan email: hesiyuan@cqut.edu.cn organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China – sequence: 2 givenname: Mengchao surname: Zhang fullname: Zhang, Mengchao email: zhangmengchao@jlu.edu.cn organization: Division of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China – sequence: 3 givenname: Xia surname: Yan fullname: Yan, Xia organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China – sequence: 4 givenname: Kun surname: Wang fullname: Wang, Kun organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China – sequence: 5 givenname: Xinyi surname: Chang fullname: Chang, Xinyi organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40818570$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU1v1DAQhi3Uim4LP4AL8pFLFn-sEwdO1QpapK0qVSBxsxx7svXWcYLttKr483i1hQOH9jIjjZ53vt5TdBTGAAi9o2RJCa0_7pZDdEtGmFhSSgQRr9CCyoZXQrarI7QgDSdVw8TPE3Sa0o4QIhgXr9HJikgqRUMW6PfNenNVBcif8DmOztxWxs8dnuI4QcwOEu50Aou9297mB9hHbAEmHGCO2peUH8Z4h_sx4mH22Q2jLeUEv2YIBnCaXAB8dYPdoLelW4LtACHr7MbwBh332id4-5TP0I-vX76vL6vN9cW39fmmMlw0uWpZ2-paWNMKIWlD7Ir3Hde0Z7QlPZOssUZaKTi3NRd1W0MNHTOdZlKCpT0_Qx8OfctVZa2U1eCSAe91gHFOirMVYWUK4wV9_4TO3QBWTbHsHR_V34cVgB4AE8eUIvT_EErU3hS1U8UUtTdFHUwpms8HDZQj7x1ElYzbf8e6CCYrO7pn1e1_auNdcEb7O3h8QfsHAGannw | 
    
| Cites_doi | 10.1007/s11831-023-10032-z 10.1109/TNNLS.2020.3027308 10.1117/1.JMI.6.1.014006 10.1016/j.cmpb.2021.106074 10.1109/TMI.2019.2959609 10.1109/ACCESS.2020.3021739 10.1007/s00521-021-05856-4 10.31887/DCNS.2018.20.2/agriffa 10.1007/s00247-021-05042-7 10.1007/s11517-023-02965-1 10.1016/j.media.2022.102528 10.1109/TMI.2020.3036584 10.1016/j.acra.2019.07.006 10.3390/bioengineering11050427 10.1016/j.bbrc.2020.04.134 10.1016/j.inffus.2022.10.022 10.1007/s11604-017-0621-3 10.1093/cercor/bhu252 10.1007/s11263-019-01283-0 10.1007/s00330-022-08965-3 10.1016/j.cviu.2021.103248 10.1016/j.neucom.2022.07.070 10.1109/TPAMI.2024.3435571 10.1016/j.compmedimag.2019.04.005 10.1016/j.csbj.2020.06.039 10.1007/s11517-023-02963-3 10.1016/j.compbiomed.2021.105105 10.1002/jmri.28735 10.1007/s11263-021-01453-z 10.1109/TMI.2020.3025087 10.1038/nphys209 10.1016/j.media.2021.102035 10.1109/RBME.2022.3185292 10.21037/qims-21-939  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Elsevier Inc. Copyright © 2025 Elsevier Inc. All rights reserved. Copyright © 2025. Published by Elsevier Inc.  | 
    
| Copyright_xml | – notice: 2025 Elsevier Inc. – notice: Copyright © 2025 Elsevier Inc. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Inc.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.mri.2025.110505 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1873-5894 | 
    
| ExternalDocumentID | 40818570 10_1016_j_mri_2025_110505 S0730725X25001894  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~HD ~S- AAYXX CITATION AGCQF CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c357t-9299a65dc9558170d43fb3a1f2190f2827dc8d8533d635696e6eb2cba288ed1f3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0730-725X 1873-5894  | 
    
| IngestDate | Thu Oct 02 21:54:42 EDT 2025 Wed Sep 10 03:23:21 EDT 2025 Wed Oct 01 05:27:01 EDT 2025 Sat Oct 04 17:00:21 EDT 2025 Sat Oct 11 07:35:14 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Rich-Club properties Lightweight deep neural network Multimodal image segmentation MR image  | 
    
| Language | English | 
    
| License | Copyright © 2025 Elsevier Inc. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c357t-9299a65dc9558170d43fb3a1f2190f2827dc8d8533d635696e6eb2cba288ed1f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 40818570 | 
    
| PQID | 3240292923 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_3240292923 pubmed_primary_40818570 crossref_primary_10_1016_j_mri_2025_110505 elsevier_sciencedirect_doi_10_1016_j_mri_2025_110505 elsevier_clinicalkey_doi_10_1016_j_mri_2025_110505  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-11-01 | 
    
| PublicationDateYYYYMMDD | 2025-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Magnetic resonance imaging | 
    
| PublicationTitleAlternate | Magn Reson Imaging | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Ma, Chen, Ng (bb0190) 2021; 71 Li, Matsunaga, Matsui, Aosaki, Deguchi (bb0065) 2020; 530 Zhou, Siddiquee, Tajbakhsh, Liang (bb0170) 2019; 39 Guo, Zeng, Yu, Xiao (bb0180) 2021 Taghanaki, Zheng, Zhou (bb0195) 2019; 75 Hwang, Kim, Jung (bb0030) 2022; 140 Das, Pal, Acharyya, Chakrabarti, Basu (bb0120) 2021; 205 Paszke, Chaurasia, Kim, Culurciello (bb0210) 2016 Chen, Li, Han, Ren, Yang (bb0060) 2024; 31 El Jurdi, Petitjean, Honeine, Cheplygina, Abdallah (bb0100) 2021; 210 He, Li, Li, Zhang (bb0035) 2024; 62 Chollet (bb0145) 2017 Shimono, Beggs (bb0155) 2015; 25 Zhuang, Xu, Luo, Chen, Ouyang, Rueckert (bb0115) 2022; 81 Serai (bb0005) 2022; 52 Alom, Yakopcic, Hasan, Taha, Asari (bb0175) 2019; 6 Li, Li, Wang, Monan (bb0110) 2024; 62 Salehi, Erdogmus, Gholipour (bb0185) 2017 Fernandes, Yen (bb0130) 2020; 32 Gou, Yu, Maybank, Tao (bb0135) 2021; 129 Gholami, Kim, Dong, Yao, Mahoney, Keutzer (bb0140) 2022 Zhu, He, Qi, Li, Cong, Liu (bb0045) 2023; 91 Peng, Xue, Shao, Chen, Xiong, Xie (bb0200) 2020; 8 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand (bb0205) 2017 Park, Do Huh (bb0015) 2022; 32 Qu, Cao, Qian, Wu, Lin, Wang (bb0025) 2022; 12 Yu, Wang, Shelhamer, Darrell (bb0085) 2018 Colizza, Flammini, Serrano, Vespignani (bb0160) 2006; 2 Lenchik, Heacock, Weaver, Boutin, Cook, Itri (bb0090) 2019; 26 D.-J. Kim, B.-K. Min (bb0075) 2020; 18 Sun, Wang, Miao, Zhao (bb0055) 2024 Griffa, Van Den Heuvel (bb0080) 2018; 20 Pang, Pang, Zhao (bb0215) 2020; 40 Tanitame, Tanitame, Awai (bb0010) 2017; 35 Park, Woo, Lee, Kweon (bb0150) 2020; 128 He, Peng, Yu, Liu, Liu, Cheng (bb0040) 2024; 11 Li, Luo, Huan, Shi, Yan, Wang (bb0125) 2021; 33 He, Li, Li, Zhang (bb0070) 2023; 58 Azad, Aghdam, Rauland, Jia, Avval, Bozorgpour (bb0105) 2024 Ronneberger, Fischer, Brox (bb0165) 2015 Aljabri, AlGhamdi (bb0020) 2022; 506 Soomro, Zheng, Afifi, Ali, Soomro, Yin (bb0095) 2022; 16 Chartsias, Papanastasiou, Wang, Semple, Newby, Dharmakumar (bb0050) 2020; 40 Lenchik (10.1016/j.mri.2025.110505_bb0090) 2019; 26 El Jurdi (10.1016/j.mri.2025.110505_bb0100) 2021; 210 Qu (10.1016/j.mri.2025.110505_bb0025) 2022; 12 Hwang (10.1016/j.mri.2025.110505_bb0030) 2022; 140 Das (10.1016/j.mri.2025.110505_bb0120) 2021; 205 Zhu (10.1016/j.mri.2025.110505_bb0045) 2023; 91 He (10.1016/j.mri.2025.110505_bb0040) 2024; 11 Aljabri (10.1016/j.mri.2025.110505_bb0020) 2022; 506 D.-J. Kim (10.1016/j.mri.2025.110505_bb0075) 2020; 18 Peng (10.1016/j.mri.2025.110505_bb0200) 2020; 8 Shimono (10.1016/j.mri.2025.110505_bb0155) 2015; 25 He (10.1016/j.mri.2025.110505_bb0035) 2024; 62 Yu (10.1016/j.mri.2025.110505_bb0085) 2018 Colizza (10.1016/j.mri.2025.110505_bb0160) 2006; 2 Li (10.1016/j.mri.2025.110505_bb0125) 2021; 33 Chollet (10.1016/j.mri.2025.110505_bb0145) 2017 Guo (10.1016/j.mri.2025.110505_bb0180) 2021 Ma (10.1016/j.mri.2025.110505_bb0190) 2021; 71 Li (10.1016/j.mri.2025.110505_bb0110) 2024; 62 Chen (10.1016/j.mri.2025.110505_bb0060) 2024; 31 Ronneberger (10.1016/j.mri.2025.110505_bb0165) 2015 Park (10.1016/j.mri.2025.110505_bb0015) 2022; 32 Howard (10.1016/j.mri.2025.110505_bb0205) 2017 Chartsias (10.1016/j.mri.2025.110505_bb0050) 2020; 40 Sun (10.1016/j.mri.2025.110505_bb0055) 2024 Serai (10.1016/j.mri.2025.110505_bb0005) 2022; 52 Gholami (10.1016/j.mri.2025.110505_bb0140) 2022 Gou (10.1016/j.mri.2025.110505_bb0135) 2021; 129 Tanitame (10.1016/j.mri.2025.110505_bb0010) 2017; 35 He (10.1016/j.mri.2025.110505_bb0070) 2023; 58 Fernandes (10.1016/j.mri.2025.110505_bb0130) 2020; 32 Taghanaki (10.1016/j.mri.2025.110505_bb0195) 2019; 75 Soomro (10.1016/j.mri.2025.110505_bb0095) 2022; 16 Griffa (10.1016/j.mri.2025.110505_bb0080) 2018; 20 Park (10.1016/j.mri.2025.110505_bb0150) 2020; 128 Alom (10.1016/j.mri.2025.110505_bb0175) 2019; 6 Pang (10.1016/j.mri.2025.110505_bb0215) 2020; 40 Li (10.1016/j.mri.2025.110505_bb0065) 2020; 530 Zhou (10.1016/j.mri.2025.110505_bb0170) 2019; 39 Salehi (10.1016/j.mri.2025.110505_bb0185) 2017 Paszke (10.1016/j.mri.2025.110505_bb0210) 2016 Azad (10.1016/j.mri.2025.110505_bb0105) 2024 Zhuang (10.1016/j.mri.2025.110505_bb0115) 2022; 81  | 
    
| References_xml | – volume: 62 start-page: 1247 year: 2024 end-page: 1264 ident: bb0035 article-title: SALW-net: a lightweight convolutional neural network based on self-adjusting loss function for spine MR image segmentation publication-title: Med Biol Eng Comput – volume: 33 start-page: 11589 year: 2021 end-page: 11602 ident: bb0125 article-title: Automatic lumbar spinal MRI image segmentation with a multi-scale attention network publication-title: Neural Comput & Applic – start-page: 1251 year: 2017 end-page: 1258 ident: bb0145 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 20 start-page: 121 year: 2018 end-page: 132 ident: bb0080 article-title: Rich-club neurocircuitry: function, evolution, and vulnerability publication-title: Dialogues Clin Neurosci – volume: 32 start-page: 5664 year: 2020 end-page: 5674 ident: bb0130 article-title: Automatic searching and pruning of deep neural networks for medical imaging diagnostic publication-title: IEEE Trans Neural Netw Learn Syst – volume: 31 start-page: 1915 year: 2024 end-page: 1937 ident: bb0060 article-title: Review of lightweight deep convolutional neural networks publication-title: Arch Comput Methods Eng – volume: 35 start-page: 135 year: 2017 end-page: 144 ident: bb0010 article-title: Clinical utility of optimized three-dimensional T1-, T2-, and T2*-weighted sequences in spinal magnetic resonance imaging publication-title: Jpn J Radiol – volume: 12 start-page: 3454 year: 2022 ident: bb0025 article-title: Current development and prospects of deep learning in spine image analysis: a literature review publication-title: Quant Imaging Med Surg – volume: 530 start-page: 527 year: 2020 end-page: 532 ident: bb0065 article-title: Image based cellular contractile force evaluation with small-world network inspired CNN: SW-UNet publication-title: Biochem Biophys Res Commun – year: 2017 ident: bb0205 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv – volume: 62 start-page: 641 year: 2024 end-page: 651 ident: bb0110 article-title: MresU-net: multi-scale residual U-net-based brain tumor segmentation from multimodal MRI publication-title: Med Biol Eng Comput – volume: 8 start-page: 164546 year: 2020 end-page: 164555 ident: bb0200 article-title: Semantic segmentation of litchi branches using deeplabv3+ model publication-title: IEEE Access – volume: 2 start-page: 110 year: 2006 end-page: 115 ident: bb0160 article-title: Detecting rich-club ordering in complex networks publication-title: Nat Phys – volume: 210 year: 2021 ident: bb0100 article-title: High-level prior-based loss functions for medical image segmentation: a survey publication-title: Comput Vis Image Underst – volume: 128 start-page: 783 year: 2020 end-page: 798 ident: bb0150 article-title: A simple and light-weight attention module for convolutional neural networks publication-title: Intern J Comp Vision – volume: 91 start-page: 376 year: 2023 end-page: 387 ident: bb0045 article-title: Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI publication-title: Inform Fusion – volume: 81 year: 2022 ident: bb0115 article-title: Cardiac segmentation on late gadolinium enhancement MRI: a benchmark study from multi-sequence cardiac MR segmentation challenge publication-title: Med Image Anal – volume: 39 start-page: 1856 year: 2019 end-page: 1867 ident: bb0170 article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans Med Imaging – volume: 506 start-page: 311 year: 2022 end-page: 335 ident: bb0020 article-title: A review on the use of deep learning for medical images segmentation publication-title: Neurocomputing – volume: 11 start-page: 427 year: 2024 ident: bb0040 article-title: A novel Mis-Seg-focus loss function based on a two-stage nnU-net framework for accurate brain tissue segmentation publication-title: Bioengineering – start-page: 379 year: 2017 end-page: 387 ident: bb0185 article-title: Tversky loss function for image segmentation using 3D fully convolutional deep networks publication-title: International workshop on machine learning in medical imaging – volume: 40 start-page: 262 year: 2020 end-page: 273 ident: bb0215 article-title: Spineparsenet: spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation publication-title: IEEE Trans Med Imaging – volume: 71 year: 2021 ident: bb0190 article-title: Loss odyssey in medical image segmentation publication-title: Med Image Anal – volume: 205 year: 2021 ident: bb0120 article-title: Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images publication-title: Comput Methods Prog Biomed – volume: 26 start-page: 1695 year: 2019 end-page: 1706 ident: bb0090 article-title: Automated segmentation of tissues using CT and MRI: a systematic review publication-title: Acad Radiol – volume: 16 start-page: 70 year: 2022 end-page: 90 ident: bb0095 article-title: Image segmentation for MR brain tumor detection using machine learning: a review publication-title: IEEE Rev Biomed Eng – volume: 58 start-page: 1762 year: 2023 end-page: 1776 ident: bb0070 article-title: LSW-net: lightweight deep neural network based on small-world properties for spine MR image segmentation publication-title: J Magn Reson Imaging – year: 2024 ident: bb0055 article-title: A review of AI edge devices and lightweight CNN deployment publication-title: Neurocomputing – volume: 6 year: 2019 ident: bb0175 article-title: Recurrent residual U-net for medical image segmentation publication-title: J Med Imag – volume: 40 start-page: 781 year: 2020 end-page: 792 ident: bb0050 article-title: Disentangle, align and fuse for multimodal and semi-supervised image segmentation publication-title: IEEE Trans Med Imaging – volume: 18 start-page: 1761 year: 2020 end-page: 1773 ident: bb0075 article-title: Rich-club in the brain's macrostructure: insights from graph theoretical analysis publication-title: Comput Struct Biotechnol J – start-page: 2403 year: 2018 end-page: 2412 ident: bb0085 article-title: Deep layer aggregation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 32 start-page: 6730 year: 2022 end-page: 6738 ident: bb0015 article-title: Differentiation of bone metastases from benign red marrow depositions of the spine: the role of fat-suppressed T2-weighted imaging compared to fat fraction map publication-title: Eur Radiol – start-page: 234 year: 2015 end-page: 241 ident: bb0165 article-title: U-net: Convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 – year: 2016 ident: bb0210 article-title: Enet: a deep neural network architecture for real-time semantic segmentation publication-title: arXiv – start-page: 353 year: 2021 end-page: 356 ident: bb0180 article-title: RAU-Net: U-Net model based on residual and attention for kidney and kidney tumor segmentation publication-title: 2021 IEEE international conference on consumer electronics and computer engineering (ICCECE) – volume: 140 year: 2022 ident: bb0030 article-title: Fully automated segmentation of lumbar bone marrow in sagittal, high-resolution T1-weighted magnetic resonance images using 2D U-NET publication-title: Comput Biol Med – volume: 75 start-page: 24 year: 2019 end-page: 33 ident: bb0195 article-title: Combo loss: handling input and output imbalance in multi-organ segmentation publication-title: Comput Med Imaging Graph – volume: 25 start-page: 3743 year: 2015 end-page: 3757 ident: bb0155 article-title: Functional clusters, hubs, and communities in the cortical microconnectome publication-title: Cereb Cortex – volume: 129 start-page: 1789 year: 2021 end-page: 1819 ident: bb0135 article-title: Knowledge distillation: a survey publication-title: Int J Comput Vis – start-page: 291 year: 2022 end-page: 326 ident: bb0140 article-title: A survey of quantization methods for efficient neural network inference, Low-power computer vision – volume: 52 start-page: 217 year: 2022 end-page: 227 ident: bb0005 article-title: Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging publication-title: Pediatr Radiol – year: 2024 ident: bb0105 article-title: Medical image segmentation review: the success of u-net publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 31 start-page: 1915 issue: 4 year: 2024 ident: 10.1016/j.mri.2025.110505_bb0060 article-title: Review of lightweight deep convolutional neural networks publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-10032-z – volume: 32 start-page: 5664 issue: 12 year: 2020 ident: 10.1016/j.mri.2025.110505_bb0130 article-title: Automatic searching and pruning of deep neural networks for medical imaging diagnostic publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3027308 – volume: 6 issue: 1 year: 2019 ident: 10.1016/j.mri.2025.110505_bb0175 article-title: Recurrent residual U-net for medical image segmentation publication-title: J Med Imag doi: 10.1117/1.JMI.6.1.014006 – volume: 205 year: 2021 ident: 10.1016/j.mri.2025.110505_bb0120 article-title: Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2021.106074 – year: 2017 ident: 10.1016/j.mri.2025.110505_bb0205 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv – volume: 39 start-page: 1856 issue: 6 year: 2019 ident: 10.1016/j.mri.2025.110505_bb0170 article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2959609 – volume: 8 start-page: 164546 year: 2020 ident: 10.1016/j.mri.2025.110505_bb0200 article-title: Semantic segmentation of litchi branches using deeplabv3+ model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021739 – volume: 33 start-page: 11589 year: 2021 ident: 10.1016/j.mri.2025.110505_bb0125 article-title: Automatic lumbar spinal MRI image segmentation with a multi-scale attention network publication-title: Neural Comput & Applic doi: 10.1007/s00521-021-05856-4 – volume: 20 start-page: 121 issue: 2 year: 2018 ident: 10.1016/j.mri.2025.110505_bb0080 article-title: Rich-club neurocircuitry: function, evolution, and vulnerability publication-title: Dialogues Clin Neurosci doi: 10.31887/DCNS.2018.20.2/agriffa – volume: 52 start-page: 217 issue: 2 year: 2022 ident: 10.1016/j.mri.2025.110505_bb0005 article-title: Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging publication-title: Pediatr Radiol doi: 10.1007/s00247-021-05042-7 – volume: 62 start-page: 641 issue: 3 year: 2024 ident: 10.1016/j.mri.2025.110505_bb0110 article-title: MresU-net: multi-scale residual U-net-based brain tumor segmentation from multimodal MRI publication-title: Med Biol Eng Comput doi: 10.1007/s11517-023-02965-1 – volume: 81 year: 2022 ident: 10.1016/j.mri.2025.110505_bb0115 article-title: Cardiac segmentation on late gadolinium enhancement MRI: a benchmark study from multi-sequence cardiac MR segmentation challenge publication-title: Med Image Anal doi: 10.1016/j.media.2022.102528 – volume: 40 start-page: 781 issue: 3 year: 2020 ident: 10.1016/j.mri.2025.110505_bb0050 article-title: Disentangle, align and fuse for multimodal and semi-supervised image segmentation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3036584 – volume: 26 start-page: 1695 issue: 12 year: 2019 ident: 10.1016/j.mri.2025.110505_bb0090 article-title: Automated segmentation of tissues using CT and MRI: a systematic review publication-title: Acad Radiol doi: 10.1016/j.acra.2019.07.006 – volume: 11 start-page: 427 issue: 5 year: 2024 ident: 10.1016/j.mri.2025.110505_bb0040 article-title: A novel Mis-Seg-focus loss function based on a two-stage nnU-net framework for accurate brain tissue segmentation publication-title: Bioengineering doi: 10.3390/bioengineering11050427 – volume: 530 start-page: 527 issue: 3 year: 2020 ident: 10.1016/j.mri.2025.110505_bb0065 article-title: Image based cellular contractile force evaluation with small-world network inspired CNN: SW-UNet publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2020.04.134 – volume: 91 start-page: 376 year: 2023 ident: 10.1016/j.mri.2025.110505_bb0045 article-title: Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI publication-title: Inform Fusion doi: 10.1016/j.inffus.2022.10.022 – volume: 35 start-page: 135 issue: 4 year: 2017 ident: 10.1016/j.mri.2025.110505_bb0010 article-title: Clinical utility of optimized three-dimensional T1-, T2-, and T2*-weighted sequences in spinal magnetic resonance imaging publication-title: Jpn J Radiol doi: 10.1007/s11604-017-0621-3 – volume: 25 start-page: 3743 issue: 10 year: 2015 ident: 10.1016/j.mri.2025.110505_bb0155 article-title: Functional clusters, hubs, and communities in the cortical microconnectome publication-title: Cereb Cortex doi: 10.1093/cercor/bhu252 – start-page: 353 year: 2021 ident: 10.1016/j.mri.2025.110505_bb0180 article-title: RAU-Net: U-Net model based on residual and attention for kidney and kidney tumor segmentation – year: 2016 ident: 10.1016/j.mri.2025.110505_bb0210 article-title: Enet: a deep neural network architecture for real-time semantic segmentation publication-title: arXiv – volume: 128 start-page: 783 issue: 4 year: 2020 ident: 10.1016/j.mri.2025.110505_bb0150 article-title: A simple and light-weight attention module for convolutional neural networks publication-title: Intern J Comp Vision doi: 10.1007/s11263-019-01283-0 – volume: 32 start-page: 6730 issue: 10 year: 2022 ident: 10.1016/j.mri.2025.110505_bb0015 article-title: Differentiation of bone metastases from benign red marrow depositions of the spine: the role of fat-suppressed T2-weighted imaging compared to fat fraction map publication-title: Eur Radiol doi: 10.1007/s00330-022-08965-3 – volume: 210 year: 2021 ident: 10.1016/j.mri.2025.110505_bb0100 article-title: High-level prior-based loss functions for medical image segmentation: a survey publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2021.103248 – volume: 506 start-page: 311 year: 2022 ident: 10.1016/j.mri.2025.110505_bb0020 article-title: A review on the use of deep learning for medical images segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.070 – start-page: 1251 year: 2017 ident: 10.1016/j.mri.2025.110505_bb0145 article-title: Xception: Deep learning with depthwise separable convolutions – start-page: 234 year: 2015 ident: 10.1016/j.mri.2025.110505_bb0165 – start-page: 291 year: 2022 ident: 10.1016/j.mri.2025.110505_bb0140 – start-page: 379 year: 2017 ident: 10.1016/j.mri.2025.110505_bb0185 article-title: Tversky loss function for image segmentation using 3D fully convolutional deep networks – year: 2024 ident: 10.1016/j.mri.2025.110505_bb0105 article-title: Medical image segmentation review: the success of u-net publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2024.3435571 – volume: 75 start-page: 24 year: 2019 ident: 10.1016/j.mri.2025.110505_bb0195 article-title: Combo loss: handling input and output imbalance in multi-organ segmentation publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2019.04.005 – volume: 18 start-page: 1761 year: 2020 ident: 10.1016/j.mri.2025.110505_bb0075 article-title: Rich-club in the brain's macrostructure: insights from graph theoretical analysis publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2020.06.039 – volume: 62 start-page: 1247 issue: 4 year: 2024 ident: 10.1016/j.mri.2025.110505_bb0035 article-title: SALW-net: a lightweight convolutional neural network based on self-adjusting loss function for spine MR image segmentation publication-title: Med Biol Eng Comput doi: 10.1007/s11517-023-02963-3 – volume: 140 year: 2022 ident: 10.1016/j.mri.2025.110505_bb0030 article-title: Fully automated segmentation of lumbar bone marrow in sagittal, high-resolution T1-weighted magnetic resonance images using 2D U-NET publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105105 – volume: 58 start-page: 1762 issue: 6 year: 2023 ident: 10.1016/j.mri.2025.110505_bb0070 article-title: LSW-net: lightweight deep neural network based on small-world properties for spine MR image segmentation publication-title: J Magn Reson Imaging doi: 10.1002/jmri.28735 – volume: 129 start-page: 1789 issue: 6 year: 2021 ident: 10.1016/j.mri.2025.110505_bb0135 article-title: Knowledge distillation: a survey publication-title: Int J Comput Vis doi: 10.1007/s11263-021-01453-z – volume: 40 start-page: 262 issue: 1 year: 2020 ident: 10.1016/j.mri.2025.110505_bb0215 article-title: Spineparsenet: spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3025087 – start-page: 2403 year: 2018 ident: 10.1016/j.mri.2025.110505_bb0085 article-title: Deep layer aggregation – volume: 2 start-page: 110 issue: 2 year: 2006 ident: 10.1016/j.mri.2025.110505_bb0160 article-title: Detecting rich-club ordering in complex networks publication-title: Nat Phys doi: 10.1038/nphys209 – year: 2024 ident: 10.1016/j.mri.2025.110505_bb0055 article-title: A review of AI edge devices and lightweight CNN deployment publication-title: Neurocomputing – volume: 71 year: 2021 ident: 10.1016/j.mri.2025.110505_bb0190 article-title: Loss odyssey in medical image segmentation publication-title: Med Image Anal doi: 10.1016/j.media.2021.102035 – volume: 16 start-page: 70 year: 2022 ident: 10.1016/j.mri.2025.110505_bb0095 article-title: Image segmentation for MR brain tumor detection using machine learning: a review publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2022.3185292 – volume: 12 start-page: 3454 issue: 6 year: 2022 ident: 10.1016/j.mri.2025.110505_bb0025 article-title: Current development and prospects of deep learning in spine image analysis: a literature review publication-title: Quant Imaging Med Surg doi: 10.21037/qims-21-939  | 
    
| SSID | ssj0005235 | 
    
| Score | 2.4575386 | 
    
| Snippet | The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis,... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 110505 | 
    
| SubjectTerms | Algorithms Deep Learning Humans Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Lightweight deep neural network Magnetic Resonance Imaging - methods MR image Multimodal image segmentation Multimodal Imaging - methods Neural Networks, Computer Rich-Club properties Spinal Diseases - diagnostic imaging Spine - diagnostic imaging  | 
    
| Title | RCLM-net: A rich-club properties based lightweight deep neural network for multimodal sequence spine MR images segmentation | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X25001894 https://dx.doi.org/10.1016/j.mri.2025.110505 https://www.ncbi.nlm.nih.gov/pubmed/40818570 https://www.proquest.com/docview/3240292923  | 
    
| Volume | 123 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AKRWK dateStart: 19820101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iIL6It-tFBJ-Eut0maRrflkVZj_XBA3wLaZPqitste-CD4G93pocoeICPTZMmzKSTmczMN4Qc8NiIWIKR4xvJPO4i5ilMzgmNYkkUmRYz6NHtXYXdO35-L-5nSKfOhcGwykr2lzK9kNZVS7OiZjPv95s3uDllAMaWwMpyCjFBOZdYxeDo7XOYR1lkEzp72Lv2bBYxXoNRH0zEQGAwvMAKdt-fTT_pnsUZdLpEFivlkbbL9S2TGZetkPle5R5fJa_Xncuel7nJMW1TEHCPXvI8jWmOF-4jRE6leGhZ-owW-UtxKUqtczlFVEv4cFbGhFNQZGkRaTgYWmiuw63pOIdpaO-a9gcghsbw4mFQ5S5la-Tu9OS20_Wq6gpewoSceKAXKRMKmyghEKXPcpbGzLRSkGF-CpaYtElk4TRnFjHsVOhCsMKT2ARR5GwrZetkNhtmbpNQ5nOH0IPMJBL9gkYqwZyVKrXSKeUa5LCmq85LEA1dR5c9aWCCRibokgkNEtSU13V2KMgzDSL-t0H8Y9CX7fPXsP2atRp-K_SVmMwNp2ONOIUBkChgDbJR8vxj6dwvELT8rf9Nuk0W8KlMaNwhs5PR1O2CZjOJ94qtu0fm2mcX3at3DEn2GA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFouqPTFQktdqadK6WZjO465oVXRQjcceEjcLCd22q3YbLQPcUDqb-9MHohKBaRe_YitGWc84_lmBuCzyKzMFBo5oVU8ED7hgabgnNhqnieJHXBLHt30NB5dipMrebUGwy4WhmCVrexvZHotrduWfkvNfjWZ9M_pcKoIjS1JleW0eAYbQkaKLLCvv-_jPJoqmzg6oOGda7MGeU3nE7QRI0loeEkl7P59OT2kfNaX0NFL2Gq1R3bYbHAb1nz5Cp6nrX_8NdyeDcdpUPrlATtkKOF-Bvn1KmMVvbjPKXUqo1vLsWsyyW_qV1HmvK8YpbXED5cNKJyhJstqqOF05rC5w1uzRYXLsPSMTaYohxbY8WPaBi-Vb-Dy6NvFcBS05RWCnEu1DFAx0jaWLtdSUpo-J3iRcTsoUIiFBZpiyuWJw-ucO0pip2MfoxmeZzZKEu8GBX8L6-Ws9DvAeCg85R7kNlfkGLRKS-6d0oVTXmvfgy8dXU3VZNEwHbzsl0EmGGKCaZjQg6ijvOnCQ1GgGZTxj00Sd5P-Oj9PTfvUsdbgf0XOElv62WphKFFhhCSKeA_eNTy_27oI6xRa4e7_LfoRXowu0rEZH59-34NN6mmiG9_D-nK-8h9QzVlm-_Ux_gO93Pet | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RCLM-net%3A+A+rich-club+properties+based+lightweight+deep+neural+network+for+multimodal+sequence+spine+MR+images+segmentation&rft.jtitle=Magnetic+resonance+imaging&rft.au=He%2C+Siyuan&rft.au=Zhang%2C+Mengchao&rft.au=Yan%2C+Xia&rft.au=Wang%2C+Kun&rft.date=2025-11-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.spage=110505&rft_id=info:doi/10.1016%2Fj.mri.2025.110505&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |