RCLM-net: A rich-club properties based lightweight deep neural network for multimodal sequence spine MR images segmentation

The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large numbe...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 123; p. 110505
Main Authors He, Siyuan, Zhang, Mengchao, Yan, Xia, Wang, Kun, Chang, Xinyi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.11.2025
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2025.110505

Cover

Abstract The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the “Rich-Club” properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios. •RCLM-Net model based on Rich-Club properties with much smaller number of parameters has encouraging segmentation accuracy.•RCLM-Net is suitable for spine multimodal sequence MR images segmentation, which is meaningful for aid diagnosis algorithms.•This model is suitable for deployment on low-computing power devices and is easier to implement in remote areas.
AbstractList The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the “Rich-Club” properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios. •RCLM-Net model based on Rich-Club properties with much smaller number of parameters has encouraging segmentation accuracy.•RCLM-Net is suitable for spine multimodal sequence MR images segmentation, which is meaningful for aid diagnosis algorithms.•This model is suitable for deployment on low-computing power devices and is easier to implement in remote areas.
The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the "Rich-Club" properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios.
The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the "Rich-Club" properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios.The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis, it is important to design an efficient MR image segmentation model. However, previous models for multimodal images tend to have a large number of parameters, which is not suitable for low-computing-power application scenarios, especially for primary medical sites. To address the above problem, this study constructs a lightweight neural network model for multimodal sequence spine MR images segmentation, named RCLW-Net (Rich-Club Lightweight Net), which is inspired by the "Rich-Club" properties of brain functional networks. Specifically, our network effectively reduced the number of model parameters by constructing a compact network structure that satisfies the Rich-Club properties and combining the Recurrent residual Convolution as the base convolution module. Verified by the five-fold cross validation of the three-modal sequence MR spine images containing 200 patients' data, proposed RCLW-Net has only 11 % of the parameter scale of the classical Unet++, but the segmentation performance is better. Moreover, proposed RCLW-Net can be successfully deployed on a lightweight embedded device Jetson Nano B01. The low number of parameters and the high performance of the RCLW-Net show the potential of the application in low-computing power scenarios.
ArticleNumber 110505
Author Yan, Xia
Zhang, Mengchao
He, Siyuan
Wang, Kun
Chang, Xinyi
Author_xml – sequence: 1
  givenname: Siyuan
  surname: He
  fullname: He, Siyuan
  email: hesiyuan@cqut.edu.cn
  organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China
– sequence: 2
  givenname: Mengchao
  surname: Zhang
  fullname: Zhang, Mengchao
  email: zhangmengchao@jlu.edu.cn
  organization: Division of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
– sequence: 3
  givenname: Xia
  surname: Yan
  fullname: Yan, Xia
  organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China
– sequence: 4
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China
– sequence: 5
  givenname: Xinyi
  surname: Chang
  fullname: Chang, Xinyi
  organization: College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40818570$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi3Uim4LP4AL8pFLFn-sEwdO1QpapK0qVSBxsxx7svXWcYLttKr483i1hQOH9jIjjZ53vt5TdBTGAAi9o2RJCa0_7pZDdEtGmFhSSgQRr9CCyoZXQrarI7QgDSdVw8TPE3Sa0o4QIhgXr9HJikgqRUMW6PfNenNVBcif8DmOztxWxs8dnuI4QcwOEu50Aou9297mB9hHbAEmHGCO2peUH8Z4h_sx4mH22Q2jLeUEv2YIBnCaXAB8dYPdoLelW4LtACHr7MbwBh332id4-5TP0I-vX76vL6vN9cW39fmmMlw0uWpZ2-paWNMKIWlD7Ir3Hde0Z7QlPZOssUZaKTi3NRd1W0MNHTOdZlKCpT0_Qx8OfctVZa2U1eCSAe91gHFOirMVYWUK4wV9_4TO3QBWTbHsHR_V34cVgB4AE8eUIvT_EErU3hS1U8UUtTdFHUwpms8HDZQj7x1ElYzbf8e6CCYrO7pn1e1_auNdcEb7O3h8QfsHAGannw
Cites_doi 10.1007/s11831-023-10032-z
10.1109/TNNLS.2020.3027308
10.1117/1.JMI.6.1.014006
10.1016/j.cmpb.2021.106074
10.1109/TMI.2019.2959609
10.1109/ACCESS.2020.3021739
10.1007/s00521-021-05856-4
10.31887/DCNS.2018.20.2/agriffa
10.1007/s00247-021-05042-7
10.1007/s11517-023-02965-1
10.1016/j.media.2022.102528
10.1109/TMI.2020.3036584
10.1016/j.acra.2019.07.006
10.3390/bioengineering11050427
10.1016/j.bbrc.2020.04.134
10.1016/j.inffus.2022.10.022
10.1007/s11604-017-0621-3
10.1093/cercor/bhu252
10.1007/s11263-019-01283-0
10.1007/s00330-022-08965-3
10.1016/j.cviu.2021.103248
10.1016/j.neucom.2022.07.070
10.1109/TPAMI.2024.3435571
10.1016/j.compmedimag.2019.04.005
10.1016/j.csbj.2020.06.039
10.1007/s11517-023-02963-3
10.1016/j.compbiomed.2021.105105
10.1002/jmri.28735
10.1007/s11263-021-01453-z
10.1109/TMI.2020.3025087
10.1038/nphys209
10.1016/j.media.2021.102035
10.1109/RBME.2022.3185292
10.21037/qims-21-939
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright © 2025. Published by Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
– notice: Copyright © 2025 Elsevier Inc. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mri.2025.110505
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
ExternalDocumentID 40818570
10_1016_j_mri_2025_110505
S0730725X25001894
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AAYXX
CITATION
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c357t-9299a65dc9558170d43fb3a1f2190f2827dc8d8533d635696e6eb2cba288ed1f3
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Thu Oct 02 21:54:42 EDT 2025
Wed Sep 10 03:23:21 EDT 2025
Wed Oct 01 05:27:01 EDT 2025
Sat Oct 04 17:00:21 EDT 2025
Sat Oct 11 07:35:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Rich-Club properties
Lightweight deep neural network
Multimodal image segmentation
MR image
Language English
License Copyright © 2025 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-9299a65dc9558170d43fb3a1f2190f2827dc8d8533d635696e6eb2cba288ed1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40818570
PQID 3240292923
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3240292923
pubmed_primary_40818570
crossref_primary_10_1016_j_mri_2025_110505
elsevier_sciencedirect_doi_10_1016_j_mri_2025_110505
elsevier_clinicalkey_doi_10_1016_j_mri_2025_110505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ma, Chen, Ng (bb0190) 2021; 71
Li, Matsunaga, Matsui, Aosaki, Deguchi (bb0065) 2020; 530
Zhou, Siddiquee, Tajbakhsh, Liang (bb0170) 2019; 39
Guo, Zeng, Yu, Xiao (bb0180) 2021
Taghanaki, Zheng, Zhou (bb0195) 2019; 75
Hwang, Kim, Jung (bb0030) 2022; 140
Das, Pal, Acharyya, Chakrabarti, Basu (bb0120) 2021; 205
Paszke, Chaurasia, Kim, Culurciello (bb0210) 2016
Chen, Li, Han, Ren, Yang (bb0060) 2024; 31
El Jurdi, Petitjean, Honeine, Cheplygina, Abdallah (bb0100) 2021; 210
He, Li, Li, Zhang (bb0035) 2024; 62
Chollet (bb0145) 2017
Shimono, Beggs (bb0155) 2015; 25
Zhuang, Xu, Luo, Chen, Ouyang, Rueckert (bb0115) 2022; 81
Serai (bb0005) 2022; 52
Alom, Yakopcic, Hasan, Taha, Asari (bb0175) 2019; 6
Li, Li, Wang, Monan (bb0110) 2024; 62
Salehi, Erdogmus, Gholipour (bb0185) 2017
Fernandes, Yen (bb0130) 2020; 32
Gou, Yu, Maybank, Tao (bb0135) 2021; 129
Gholami, Kim, Dong, Yao, Mahoney, Keutzer (bb0140) 2022
Zhu, He, Qi, Li, Cong, Liu (bb0045) 2023; 91
Peng, Xue, Shao, Chen, Xiong, Xie (bb0200) 2020; 8
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand (bb0205) 2017
Park, Do Huh (bb0015) 2022; 32
Qu, Cao, Qian, Wu, Lin, Wang (bb0025) 2022; 12
Yu, Wang, Shelhamer, Darrell (bb0085) 2018
Colizza, Flammini, Serrano, Vespignani (bb0160) 2006; 2
Lenchik, Heacock, Weaver, Boutin, Cook, Itri (bb0090) 2019; 26
D.-J. Kim, B.-K. Min (bb0075) 2020; 18
Sun, Wang, Miao, Zhao (bb0055) 2024
Griffa, Van Den Heuvel (bb0080) 2018; 20
Pang, Pang, Zhao (bb0215) 2020; 40
Tanitame, Tanitame, Awai (bb0010) 2017; 35
Park, Woo, Lee, Kweon (bb0150) 2020; 128
He, Peng, Yu, Liu, Liu, Cheng (bb0040) 2024; 11
Li, Luo, Huan, Shi, Yan, Wang (bb0125) 2021; 33
He, Li, Li, Zhang (bb0070) 2023; 58
Azad, Aghdam, Rauland, Jia, Avval, Bozorgpour (bb0105) 2024
Ronneberger, Fischer, Brox (bb0165) 2015
Aljabri, AlGhamdi (bb0020) 2022; 506
Soomro, Zheng, Afifi, Ali, Soomro, Yin (bb0095) 2022; 16
Chartsias, Papanastasiou, Wang, Semple, Newby, Dharmakumar (bb0050) 2020; 40
Lenchik (10.1016/j.mri.2025.110505_bb0090) 2019; 26
El Jurdi (10.1016/j.mri.2025.110505_bb0100) 2021; 210
Qu (10.1016/j.mri.2025.110505_bb0025) 2022; 12
Hwang (10.1016/j.mri.2025.110505_bb0030) 2022; 140
Das (10.1016/j.mri.2025.110505_bb0120) 2021; 205
Zhu (10.1016/j.mri.2025.110505_bb0045) 2023; 91
He (10.1016/j.mri.2025.110505_bb0040) 2024; 11
Aljabri (10.1016/j.mri.2025.110505_bb0020) 2022; 506
D.-J. Kim (10.1016/j.mri.2025.110505_bb0075) 2020; 18
Peng (10.1016/j.mri.2025.110505_bb0200) 2020; 8
Shimono (10.1016/j.mri.2025.110505_bb0155) 2015; 25
He (10.1016/j.mri.2025.110505_bb0035) 2024; 62
Yu (10.1016/j.mri.2025.110505_bb0085) 2018
Colizza (10.1016/j.mri.2025.110505_bb0160) 2006; 2
Li (10.1016/j.mri.2025.110505_bb0125) 2021; 33
Chollet (10.1016/j.mri.2025.110505_bb0145) 2017
Guo (10.1016/j.mri.2025.110505_bb0180) 2021
Ma (10.1016/j.mri.2025.110505_bb0190) 2021; 71
Li (10.1016/j.mri.2025.110505_bb0110) 2024; 62
Chen (10.1016/j.mri.2025.110505_bb0060) 2024; 31
Ronneberger (10.1016/j.mri.2025.110505_bb0165) 2015
Park (10.1016/j.mri.2025.110505_bb0015) 2022; 32
Howard (10.1016/j.mri.2025.110505_bb0205) 2017
Chartsias (10.1016/j.mri.2025.110505_bb0050) 2020; 40
Sun (10.1016/j.mri.2025.110505_bb0055) 2024
Serai (10.1016/j.mri.2025.110505_bb0005) 2022; 52
Gholami (10.1016/j.mri.2025.110505_bb0140) 2022
Gou (10.1016/j.mri.2025.110505_bb0135) 2021; 129
Tanitame (10.1016/j.mri.2025.110505_bb0010) 2017; 35
He (10.1016/j.mri.2025.110505_bb0070) 2023; 58
Fernandes (10.1016/j.mri.2025.110505_bb0130) 2020; 32
Taghanaki (10.1016/j.mri.2025.110505_bb0195) 2019; 75
Soomro (10.1016/j.mri.2025.110505_bb0095) 2022; 16
Griffa (10.1016/j.mri.2025.110505_bb0080) 2018; 20
Park (10.1016/j.mri.2025.110505_bb0150) 2020; 128
Alom (10.1016/j.mri.2025.110505_bb0175) 2019; 6
Pang (10.1016/j.mri.2025.110505_bb0215) 2020; 40
Li (10.1016/j.mri.2025.110505_bb0065) 2020; 530
Zhou (10.1016/j.mri.2025.110505_bb0170) 2019; 39
Salehi (10.1016/j.mri.2025.110505_bb0185) 2017
Paszke (10.1016/j.mri.2025.110505_bb0210) 2016
Azad (10.1016/j.mri.2025.110505_bb0105) 2024
Zhuang (10.1016/j.mri.2025.110505_bb0115) 2022; 81
References_xml – volume: 62
  start-page: 1247
  year: 2024
  end-page: 1264
  ident: bb0035
  article-title: SALW-net: a lightweight convolutional neural network based on self-adjusting loss function for spine MR image segmentation
  publication-title: Med Biol Eng Comput
– volume: 33
  start-page: 11589
  year: 2021
  end-page: 11602
  ident: bb0125
  article-title: Automatic lumbar spinal MRI image segmentation with a multi-scale attention network
  publication-title: Neural Comput & Applic
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: bb0145
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 20
  start-page: 121
  year: 2018
  end-page: 132
  ident: bb0080
  article-title: Rich-club neurocircuitry: function, evolution, and vulnerability
  publication-title: Dialogues Clin Neurosci
– volume: 32
  start-page: 5664
  year: 2020
  end-page: 5674
  ident: bb0130
  article-title: Automatic searching and pruning of deep neural networks for medical imaging diagnostic
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 31
  start-page: 1915
  year: 2024
  end-page: 1937
  ident: bb0060
  article-title: Review of lightweight deep convolutional neural networks
  publication-title: Arch Comput Methods Eng
– volume: 35
  start-page: 135
  year: 2017
  end-page: 144
  ident: bb0010
  article-title: Clinical utility of optimized three-dimensional T1-, T2-, and T2*-weighted sequences in spinal magnetic resonance imaging
  publication-title: Jpn J Radiol
– volume: 12
  start-page: 3454
  year: 2022
  ident: bb0025
  article-title: Current development and prospects of deep learning in spine image analysis: a literature review
  publication-title: Quant Imaging Med Surg
– volume: 530
  start-page: 527
  year: 2020
  end-page: 532
  ident: bb0065
  article-title: Image based cellular contractile force evaluation with small-world network inspired CNN: SW-UNet
  publication-title: Biochem Biophys Res Commun
– year: 2017
  ident: bb0205
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv
– volume: 62
  start-page: 641
  year: 2024
  end-page: 651
  ident: bb0110
  article-title: MresU-net: multi-scale residual U-net-based brain tumor segmentation from multimodal MRI
  publication-title: Med Biol Eng Comput
– volume: 8
  start-page: 164546
  year: 2020
  end-page: 164555
  ident: bb0200
  article-title: Semantic segmentation of litchi branches using deeplabv3+ model
  publication-title: IEEE Access
– volume: 2
  start-page: 110
  year: 2006
  end-page: 115
  ident: bb0160
  article-title: Detecting rich-club ordering in complex networks
  publication-title: Nat Phys
– volume: 210
  year: 2021
  ident: bb0100
  article-title: High-level prior-based loss functions for medical image segmentation: a survey
  publication-title: Comput Vis Image Underst
– volume: 128
  start-page: 783
  year: 2020
  end-page: 798
  ident: bb0150
  article-title: A simple and light-weight attention module for convolutional neural networks
  publication-title: Intern J Comp Vision
– volume: 91
  start-page: 376
  year: 2023
  end-page: 387
  ident: bb0045
  article-title: Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI
  publication-title: Inform Fusion
– volume: 81
  year: 2022
  ident: bb0115
  article-title: Cardiac segmentation on late gadolinium enhancement MRI: a benchmark study from multi-sequence cardiac MR segmentation challenge
  publication-title: Med Image Anal
– volume: 39
  start-page: 1856
  year: 2019
  end-page: 1867
  ident: bb0170
  article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 506
  start-page: 311
  year: 2022
  end-page: 335
  ident: bb0020
  article-title: A review on the use of deep learning for medical images segmentation
  publication-title: Neurocomputing
– volume: 11
  start-page: 427
  year: 2024
  ident: bb0040
  article-title: A novel Mis-Seg-focus loss function based on a two-stage nnU-net framework for accurate brain tissue segmentation
  publication-title: Bioengineering
– start-page: 379
  year: 2017
  end-page: 387
  ident: bb0185
  article-title: Tversky loss function for image segmentation using 3D fully convolutional deep networks
  publication-title: International workshop on machine learning in medical imaging
– volume: 40
  start-page: 262
  year: 2020
  end-page: 273
  ident: bb0215
  article-title: Spineparsenet: spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation
  publication-title: IEEE Trans Med Imaging
– volume: 71
  year: 2021
  ident: bb0190
  article-title: Loss odyssey in medical image segmentation
  publication-title: Med Image Anal
– volume: 205
  year: 2021
  ident: bb0120
  article-title: Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images
  publication-title: Comput Methods Prog Biomed
– volume: 26
  start-page: 1695
  year: 2019
  end-page: 1706
  ident: bb0090
  article-title: Automated segmentation of tissues using CT and MRI: a systematic review
  publication-title: Acad Radiol
– volume: 16
  start-page: 70
  year: 2022
  end-page: 90
  ident: bb0095
  article-title: Image segmentation for MR brain tumor detection using machine learning: a review
  publication-title: IEEE Rev Biomed Eng
– volume: 58
  start-page: 1762
  year: 2023
  end-page: 1776
  ident: bb0070
  article-title: LSW-net: lightweight deep neural network based on small-world properties for spine MR image segmentation
  publication-title: J Magn Reson Imaging
– year: 2024
  ident: bb0055
  article-title: A review of AI edge devices and lightweight CNN deployment
  publication-title: Neurocomputing
– volume: 6
  year: 2019
  ident: bb0175
  article-title: Recurrent residual U-net for medical image segmentation
  publication-title: J Med Imag
– volume: 40
  start-page: 781
  year: 2020
  end-page: 792
  ident: bb0050
  article-title: Disentangle, align and fuse for multimodal and semi-supervised image segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 18
  start-page: 1761
  year: 2020
  end-page: 1773
  ident: bb0075
  article-title: Rich-club in the brain's macrostructure: insights from graph theoretical analysis
  publication-title: Comput Struct Biotechnol J
– start-page: 2403
  year: 2018
  end-page: 2412
  ident: bb0085
  article-title: Deep layer aggregation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 32
  start-page: 6730
  year: 2022
  end-page: 6738
  ident: bb0015
  article-title: Differentiation of bone metastases from benign red marrow depositions of the spine: the role of fat-suppressed T2-weighted imaging compared to fat fraction map
  publication-title: Eur Radiol
– start-page: 234
  year: 2015
  end-page: 241
  ident: bb0165
  article-title: U-net: Convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18
– year: 2016
  ident: bb0210
  article-title: Enet: a deep neural network architecture for real-time semantic segmentation
  publication-title: arXiv
– start-page: 353
  year: 2021
  end-page: 356
  ident: bb0180
  article-title: RAU-Net: U-Net model based on residual and attention for kidney and kidney tumor segmentation
  publication-title: 2021 IEEE international conference on consumer electronics and computer engineering (ICCECE)
– volume: 140
  year: 2022
  ident: bb0030
  article-title: Fully automated segmentation of lumbar bone marrow in sagittal, high-resolution T1-weighted magnetic resonance images using 2D U-NET
  publication-title: Comput Biol Med
– volume: 75
  start-page: 24
  year: 2019
  end-page: 33
  ident: bb0195
  article-title: Combo loss: handling input and output imbalance in multi-organ segmentation
  publication-title: Comput Med Imaging Graph
– volume: 25
  start-page: 3743
  year: 2015
  end-page: 3757
  ident: bb0155
  article-title: Functional clusters, hubs, and communities in the cortical microconnectome
  publication-title: Cereb Cortex
– volume: 129
  start-page: 1789
  year: 2021
  end-page: 1819
  ident: bb0135
  article-title: Knowledge distillation: a survey
  publication-title: Int J Comput Vis
– start-page: 291
  year: 2022
  end-page: 326
  ident: bb0140
  article-title: A survey of quantization methods for efficient neural network inference, Low-power computer vision
– volume: 52
  start-page: 217
  year: 2022
  end-page: 227
  ident: bb0005
  article-title: Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging
  publication-title: Pediatr Radiol
– year: 2024
  ident: bb0105
  article-title: Medical image segmentation review: the success of u-net
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 31
  start-page: 1915
  issue: 4
  year: 2024
  ident: 10.1016/j.mri.2025.110505_bb0060
  article-title: Review of lightweight deep convolutional neural networks
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-023-10032-z
– volume: 32
  start-page: 5664
  issue: 12
  year: 2020
  ident: 10.1016/j.mri.2025.110505_bb0130
  article-title: Automatic searching and pruning of deep neural networks for medical imaging diagnostic
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3027308
– volume: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.mri.2025.110505_bb0175
  article-title: Recurrent residual U-net for medical image segmentation
  publication-title: J Med Imag
  doi: 10.1117/1.JMI.6.1.014006
– volume: 205
  year: 2021
  ident: 10.1016/j.mri.2025.110505_bb0120
  article-title: Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2021.106074
– year: 2017
  ident: 10.1016/j.mri.2025.110505_bb0205
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  ident: 10.1016/j.mri.2025.110505_bb0170
  article-title: Unet++: redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2959609
– volume: 8
  start-page: 164546
  year: 2020
  ident: 10.1016/j.mri.2025.110505_bb0200
  article-title: Semantic segmentation of litchi branches using deeplabv3+ model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021739
– volume: 33
  start-page: 11589
  year: 2021
  ident: 10.1016/j.mri.2025.110505_bb0125
  article-title: Automatic lumbar spinal MRI image segmentation with a multi-scale attention network
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-021-05856-4
– volume: 20
  start-page: 121
  issue: 2
  year: 2018
  ident: 10.1016/j.mri.2025.110505_bb0080
  article-title: Rich-club neurocircuitry: function, evolution, and vulnerability
  publication-title: Dialogues Clin Neurosci
  doi: 10.31887/DCNS.2018.20.2/agriffa
– volume: 52
  start-page: 217
  issue: 2
  year: 2022
  ident: 10.1016/j.mri.2025.110505_bb0005
  article-title: Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging
  publication-title: Pediatr Radiol
  doi: 10.1007/s00247-021-05042-7
– volume: 62
  start-page: 641
  issue: 3
  year: 2024
  ident: 10.1016/j.mri.2025.110505_bb0110
  article-title: MresU-net: multi-scale residual U-net-based brain tumor segmentation from multimodal MRI
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-023-02965-1
– volume: 81
  year: 2022
  ident: 10.1016/j.mri.2025.110505_bb0115
  article-title: Cardiac segmentation on late gadolinium enhancement MRI: a benchmark study from multi-sequence cardiac MR segmentation challenge
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102528
– volume: 40
  start-page: 781
  issue: 3
  year: 2020
  ident: 10.1016/j.mri.2025.110505_bb0050
  article-title: Disentangle, align and fuse for multimodal and semi-supervised image segmentation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3036584
– volume: 26
  start-page: 1695
  issue: 12
  year: 2019
  ident: 10.1016/j.mri.2025.110505_bb0090
  article-title: Automated segmentation of tissues using CT and MRI: a systematic review
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2019.07.006
– volume: 11
  start-page: 427
  issue: 5
  year: 2024
  ident: 10.1016/j.mri.2025.110505_bb0040
  article-title: A novel Mis-Seg-focus loss function based on a two-stage nnU-net framework for accurate brain tissue segmentation
  publication-title: Bioengineering
  doi: 10.3390/bioengineering11050427
– volume: 530
  start-page: 527
  issue: 3
  year: 2020
  ident: 10.1016/j.mri.2025.110505_bb0065
  article-title: Image based cellular contractile force evaluation with small-world network inspired CNN: SW-UNet
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2020.04.134
– volume: 91
  start-page: 376
  year: 2023
  ident: 10.1016/j.mri.2025.110505_bb0045
  article-title: Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2022.10.022
– volume: 35
  start-page: 135
  issue: 4
  year: 2017
  ident: 10.1016/j.mri.2025.110505_bb0010
  article-title: Clinical utility of optimized three-dimensional T1-, T2-, and T2*-weighted sequences in spinal magnetic resonance imaging
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-017-0621-3
– volume: 25
  start-page: 3743
  issue: 10
  year: 2015
  ident: 10.1016/j.mri.2025.110505_bb0155
  article-title: Functional clusters, hubs, and communities in the cortical microconnectome
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhu252
– start-page: 353
  year: 2021
  ident: 10.1016/j.mri.2025.110505_bb0180
  article-title: RAU-Net: U-Net model based on residual and attention for kidney and kidney tumor segmentation
– year: 2016
  ident: 10.1016/j.mri.2025.110505_bb0210
  article-title: Enet: a deep neural network architecture for real-time semantic segmentation
  publication-title: arXiv
– volume: 128
  start-page: 783
  issue: 4
  year: 2020
  ident: 10.1016/j.mri.2025.110505_bb0150
  article-title: A simple and light-weight attention module for convolutional neural networks
  publication-title: Intern J Comp Vision
  doi: 10.1007/s11263-019-01283-0
– volume: 32
  start-page: 6730
  issue: 10
  year: 2022
  ident: 10.1016/j.mri.2025.110505_bb0015
  article-title: Differentiation of bone metastases from benign red marrow depositions of the spine: the role of fat-suppressed T2-weighted imaging compared to fat fraction map
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-08965-3
– volume: 210
  year: 2021
  ident: 10.1016/j.mri.2025.110505_bb0100
  article-title: High-level prior-based loss functions for medical image segmentation: a survey
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2021.103248
– volume: 506
  start-page: 311
  year: 2022
  ident: 10.1016/j.mri.2025.110505_bb0020
  article-title: A review on the use of deep learning for medical images segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.070
– start-page: 1251
  year: 2017
  ident: 10.1016/j.mri.2025.110505_bb0145
  article-title: Xception: Deep learning with depthwise separable convolutions
– start-page: 234
  year: 2015
  ident: 10.1016/j.mri.2025.110505_bb0165
– start-page: 291
  year: 2022
  ident: 10.1016/j.mri.2025.110505_bb0140
– start-page: 379
  year: 2017
  ident: 10.1016/j.mri.2025.110505_bb0185
  article-title: Tversky loss function for image segmentation using 3D fully convolutional deep networks
– year: 2024
  ident: 10.1016/j.mri.2025.110505_bb0105
  article-title: Medical image segmentation review: the success of u-net
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2024.3435571
– volume: 75
  start-page: 24
  year: 2019
  ident: 10.1016/j.mri.2025.110505_bb0195
  article-title: Combo loss: handling input and output imbalance in multi-organ segmentation
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2019.04.005
– volume: 18
  start-page: 1761
  year: 2020
  ident: 10.1016/j.mri.2025.110505_bb0075
  article-title: Rich-club in the brain's macrostructure: insights from graph theoretical analysis
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.06.039
– volume: 62
  start-page: 1247
  issue: 4
  year: 2024
  ident: 10.1016/j.mri.2025.110505_bb0035
  article-title: SALW-net: a lightweight convolutional neural network based on self-adjusting loss function for spine MR image segmentation
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-023-02963-3
– volume: 140
  year: 2022
  ident: 10.1016/j.mri.2025.110505_bb0030
  article-title: Fully automated segmentation of lumbar bone marrow in sagittal, high-resolution T1-weighted magnetic resonance images using 2D U-NET
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105105
– volume: 58
  start-page: 1762
  issue: 6
  year: 2023
  ident: 10.1016/j.mri.2025.110505_bb0070
  article-title: LSW-net: lightweight deep neural network based on small-world properties for spine MR image segmentation
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28735
– volume: 129
  start-page: 1789
  issue: 6
  year: 2021
  ident: 10.1016/j.mri.2025.110505_bb0135
  article-title: Knowledge distillation: a survey
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-021-01453-z
– volume: 40
  start-page: 262
  issue: 1
  year: 2020
  ident: 10.1016/j.mri.2025.110505_bb0215
  article-title: Spineparsenet: spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3025087
– start-page: 2403
  year: 2018
  ident: 10.1016/j.mri.2025.110505_bb0085
  article-title: Deep layer aggregation
– volume: 2
  start-page: 110
  issue: 2
  year: 2006
  ident: 10.1016/j.mri.2025.110505_bb0160
  article-title: Detecting rich-club ordering in complex networks
  publication-title: Nat Phys
  doi: 10.1038/nphys209
– year: 2024
  ident: 10.1016/j.mri.2025.110505_bb0055
  article-title: A review of AI edge devices and lightweight CNN deployment
  publication-title: Neurocomputing
– volume: 71
  year: 2021
  ident: 10.1016/j.mri.2025.110505_bb0190
  article-title: Loss odyssey in medical image segmentation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102035
– volume: 16
  start-page: 70
  year: 2022
  ident: 10.1016/j.mri.2025.110505_bb0095
  article-title: Image segmentation for MR brain tumor detection using machine learning: a review
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2022.3185292
– volume: 12
  start-page: 3454
  issue: 6
  year: 2022
  ident: 10.1016/j.mri.2025.110505_bb0025
  article-title: Current development and prospects of deep learning in spine image analysis: a literature review
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims-21-939
SSID ssj0005235
Score 2.4575386
Snippet The diagnosis of spinal diseases relies on the comprehensive assessment of multimodal sequence MR images. As a prior foundation for intelligent aid diagnosis,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 110505
SubjectTerms Algorithms
Deep Learning
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Lightweight deep neural network
Magnetic Resonance Imaging - methods
MR image
Multimodal image segmentation
Multimodal Imaging - methods
Neural Networks, Computer
Rich-Club properties
Spinal Diseases - diagnostic imaging
Spine - diagnostic imaging
Title RCLM-net: A rich-club properties based lightweight deep neural network for multimodal sequence spine MR images segmentation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X25001894
https://dx.doi.org/10.1016/j.mri.2025.110505
https://www.ncbi.nlm.nih.gov/pubmed/40818570
https://www.proquest.com/docview/3240292923
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iIL6It-tFBJ-Eut0maRrflkVZj_XBA3wLaZPqitste-CD4G93pocoeICPTZMmzKSTmczMN4Qc8NiIWIKR4xvJPO4i5ilMzgmNYkkUmRYz6NHtXYXdO35-L-5nSKfOhcGwykr2lzK9kNZVS7OiZjPv95s3uDllAMaWwMpyCjFBOZdYxeDo7XOYR1lkEzp72Lv2bBYxXoNRH0zEQGAwvMAKdt-fTT_pnsUZdLpEFivlkbbL9S2TGZetkPle5R5fJa_Xncuel7nJMW1TEHCPXvI8jWmOF-4jRE6leGhZ-owW-UtxKUqtczlFVEv4cFbGhFNQZGkRaTgYWmiuw63pOIdpaO-a9gcghsbw4mFQ5S5la-Tu9OS20_Wq6gpewoSceKAXKRMKmyghEKXPcpbGzLRSkGF-CpaYtElk4TRnFjHsVOhCsMKT2ARR5GwrZetkNhtmbpNQ5nOH0IPMJBL9gkYqwZyVKrXSKeUa5LCmq85LEA1dR5c9aWCCRibokgkNEtSU13V2KMgzDSL-t0H8Y9CX7fPXsP2atRp-K_SVmMwNp2ONOIUBkChgDbJR8vxj6dwvELT8rf9Nuk0W8KlMaNwhs5PR1O2CZjOJ94qtu0fm2mcX3at3DEn2GA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFouqPTFQktdqadK6WZjO465oVXRQjcceEjcLCd22q3YbLQPcUDqb-9MHohKBaRe_YitGWc84_lmBuCzyKzMFBo5oVU8ED7hgabgnNhqnieJHXBLHt30NB5dipMrebUGwy4WhmCVrexvZHotrduWfkvNfjWZ9M_pcKoIjS1JleW0eAYbQkaKLLCvv-_jPJoqmzg6oOGda7MGeU3nE7QRI0loeEkl7P59OT2kfNaX0NFL2Gq1R3bYbHAb1nz5Cp6nrX_8NdyeDcdpUPrlATtkKOF-Bvn1KmMVvbjPKXUqo1vLsWsyyW_qV1HmvK8YpbXED5cNKJyhJstqqOF05rC5w1uzRYXLsPSMTaYohxbY8WPaBi-Vb-Dy6NvFcBS05RWCnEu1DFAx0jaWLtdSUpo-J3iRcTsoUIiFBZpiyuWJw-ucO0pip2MfoxmeZzZKEu8GBX8L6-Ws9DvAeCg85R7kNlfkGLRKS-6d0oVTXmvfgy8dXU3VZNEwHbzsl0EmGGKCaZjQg6ijvOnCQ1GgGZTxj00Sd5P-Oj9PTfvUsdbgf0XOElv62WphKFFhhCSKeA_eNTy_27oI6xRa4e7_LfoRXowu0rEZH59-34NN6mmiG9_D-nK-8h9QzVlm-_Ux_gO93Pet
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RCLM-net%3A+A+rich-club+properties+based+lightweight+deep+neural+network+for+multimodal+sequence+spine+MR+images+segmentation&rft.jtitle=Magnetic+resonance+imaging&rft.au=He%2C+Siyuan&rft.au=Zhang%2C+Mengchao&rft.au=Yan%2C+Xia&rft.au=Wang%2C+Kun&rft.date=2025-11-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.spage=110505&rft_id=info:doi/10.1016%2Fj.mri.2025.110505&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon