PSO-Aided Inverse Design of Silicon Modulator

Optimizing doping profiles has always been a key approach to enhance the performance of silicon modulators. Nevertheless, the pursuit of innovative profiles has encountered barriers in recent times. To tackle this issue, the idea of inverse design, widely adopted in passive photonic devices, can be...

Full description

Saved in:
Bibliographic Details
Published inIEEE photonics journal Vol. 16; no. 2; pp. 1 - 5
Main Authors Zhu, Zijian, Zhao, Yingxuan, Sheng, Zhen, Gan, Fuwan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1943-0655
1943-0647
1943-0647
DOI10.1109/JPHOT.2024.3370182

Cover

Abstract Optimizing doping profiles has always been a key approach to enhance the performance of silicon modulators. Nevertheless, the pursuit of innovative profiles has encountered barriers in recent times. To tackle this issue, the idea of inverse design, widely adopted in passive photonic devices, can be employed in silicon active devices. As a result, we incorporate the inverse design method with the particle swarm optimization (PSO) algorithm and achieve a G-shaped doping profile for the modulator, exhibiting superior <inline-formula><tex-math notation="LaTeX">V_{\pi } L</tex-math></inline-formula> of 0.68 V<inline-formula><tex-math notation="LaTeX">\cdot</tex-math></inline-formula>cm and low loss of 9.3 dB/cm. The small-signal frequency response suggests a reliable operation range under reverse biases of 1<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>3 V with the bandwidth over 26 GHz. The silicon modulator with a G-shaped design demonstrates remarkable efficiency in modulation and very low loss, suggesting its great potential for application in microwave front-end systems. The use of inverse design shows great potential in enhancing active silicon photonic devices, allowing for faster, higher-capacity, and more reliable data communication systems.
AbstractList Optimizing doping profiles has always been a key approach to enhance the performance of silicon modulators. Nevertheless, the pursuit of innovative profiles has encountered barriers in recent times. To tackle this issue, the idea of inverse design, widely adopted in passive photonic devices, can be employed in silicon active devices. As a result, we incorporate the inverse design method with the particle swarm optimization (PSO) algorithm and achieve a G-shaped doping profile for the modulator, exhibiting superior <inline-formula><tex-math notation="LaTeX">V_{\pi } L</tex-math></inline-formula> of 0.68 V<inline-formula><tex-math notation="LaTeX">\cdot</tex-math></inline-formula>cm and low loss of 9.3 dB/cm. The small-signal frequency response suggests a reliable operation range under reverse biases of 1<inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>3 V with the bandwidth over 26 GHz. The silicon modulator with a G-shaped design demonstrates remarkable efficiency in modulation and very low loss, suggesting its great potential for application in microwave front-end systems. The use of inverse design shows great potential in enhancing active silicon photonic devices, allowing for faster, higher-capacity, and more reliable data communication systems.
Optimizing doping profiles has always been a key approach to enhance the performance of silicon modulators. Nevertheless, the pursuit of innovative profiles has encountered barriers in recent times. To tackle this issue, the idea of inverse design, widely adopted in passive photonic devices, can be employed in silicon active devices. As a result, we incorporate the inverse design method with the particle swarm optimization (PSO) algorithm and achieve a G-shaped doping profile for the modulator, exhibiting superior [Formula Omitted] of 0.68 V[Formula Omitted]cm and low loss of 9.3 dB/cm. The small-signal frequency response suggests a reliable operation range under reverse biases of 1[Formula Omitted]3 V with the bandwidth over 26 GHz. The silicon modulator with a G-shaped design demonstrates remarkable efficiency in modulation and very low loss, suggesting its great potential for application in microwave front-end systems. The use of inverse design shows great potential in enhancing active silicon photonic devices, allowing for faster, higher-capacity, and more reliable data communication systems.
Optimizing doping profiles has always been a key approach to enhance the performance of silicon modulators. Nevertheless, the pursuit of innovative profiles has encountered barriers in recent times. To tackle this issue, the idea of inverse design, widely adopted in passive photonic devices, can be employed in silicon active devices. As a result, we incorporate the inverse design method with the particle swarm optimization (PSO) algorithm and achieve a G-shaped doping profile for the modulator, exhibiting superior <tex-math notation="LaTeX">$V_{\pi } L$</tex-math> of 0.68 V<tex-math notation="LaTeX">$\cdot$</tex-math>cm and low loss of 9.3 dB/cm. The small-signal frequency response suggests a reliable operation range under reverse biases of 1<tex-math notation="LaTeX">$\sim$</tex-math>3 V with the bandwidth over 26 GHz. The silicon modulator with a G-shaped design demonstrates remarkable efficiency in modulation and very low loss, suggesting its great potential for application in microwave front-end systems. The use of inverse design shows great potential in enhancing active silicon photonic devices, allowing for faster, higher-capacity, and more reliable data communication systems.
Author Gan, Fuwan
Zhu, Zijian
Zhao, Yingxuan
Sheng, Zhen
Author_xml – sequence: 1
  givenname: Zijian
  orcidid: 0009-0004-9310-8754
  surname: Zhu
  fullname: Zhu, Zijian
  organization: University of Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Yingxuan
  orcidid: 0000-0002-8010-2845
  surname: Zhao
  fullname: Zhao, Yingxuan
  organization: Shanghai Institute of Microsystem and Information Technology, Shanghai, China
– sequence: 3
  givenname: Zhen
  orcidid: 0000-0002-3252-7291
  surname: Sheng
  fullname: Sheng, Zhen
  organization: Shanghai Institute of Microsystem and Information Technology, Shanghai, China
– sequence: 4
  givenname: Fuwan
  orcidid: 0000-0003-2870-1426
  surname: Gan
  fullname: Gan, Fuwan
  email: fuwan@mail.sim.ac.cn
  organization: University of Chinese Academy of Sciences, Beijing, China
BookMark eNplkVtLw0AQhRdRsF7-gPgQ8Dl175fHUi-tVCpYn5dNMltTYrZuUqX_3tQUEX2aYZjzMefMCTqsQw0IXRA8JASb64enyXwxpJjyIWMKE00P0IAYzlIsuTr86YU4RidNs8JYGiLMAKVPz_N0VBZQJNP6A2IDyQ005bJOgk-ey6rMQ508hmJTuTbEM3TkXdXA-b6eope728V4ks7m99PxaJbmTKg21aYAk3lfgHecOJqRIhOikAwy7BkzTmLlAOPuAuGwYZJorD3V0nOjM-XZKZr23CK4lV3H8s3FrQ2utN-DEJfWxbbMK7BSU6GNMMpoxQUxjkJGOndSulxRIzsW61mbeu22n66qfoAE2116drV-Da3dpWf36XWqq161juF9A01rV2ET6860pUZIpjlmvNui_VYeQ9NE8P_Q34_5i77sRSUA_BJw3iWh2BcutYas
CODEN PJHOC3
Cites_doi 10.1088/2040-8986/aacd65
10.1109/JSTQE.2009.2035059
10.1364/OE.21.030350
10.1364/OE.19.011804
10.1364/OE.25.008425
10.35848/1347-4065/abeedd
10.1117/1.AP.3.2.024003
10.1038/s41566-018-0246-9
10.1364/CLEO_AT.2019.JTh2A.42
10.1109/JQE.1987.1073206
10.1109/LPT.2021.3055137
10.1364/AO.26.002788
10.1016/j.optcom.2021.127775
10.1364/OE.20.010591
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ADTOC
UNPAY
DOA
DOI 10.1109/JPHOT.2024.3370182
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore (NTUSG)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1943-0647
EndPage 5
ExternalDocumentID oai_doaj_org_article_6825895979874519a2eb106966ac7296
10.1109/jphot.2024.3370182
10_1109_JPHOT_2024_3370182
10449367
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2022YFB2803100
– fundername: Shanghai Sailing Program
  grantid: 22YF1456700
– fundername: National Major Scientific Research Instrument Development
  grantid: 22127901
– fundername: National Natural Science Foundation of China
  grantid: 62305367
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29O
4.4
5VS
6IK
97E
AAFWJ
AAJGR
ABAZT
ABVLG
ACIWK
ADBBV
AENEX
AETIX
AFPKN
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IPLJI
JAVBF
M43
M~E
O9-
OCL
OK1
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c357t-89de9bffdefa41a2b1db55d63eb0f339a607ae001595a09361808f286f498b7f3
IEDL.DBID UNPAY
ISSN 1943-0655
1943-0647
IngestDate Fri Oct 03 12:53:06 EDT 2025
Tue Aug 19 19:18:00 EDT 2025
Fri Jul 25 23:42:13 EDT 2025
Wed Oct 01 03:40:40 EDT 2025
Wed Aug 27 01:55:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-89de9bffdefa41a2b1db55d63eb0f339a607ae001595a09361808f286f498b7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-9310-8754
0000-0003-2870-1426
0000-0002-8010-2845
0000-0002-3252-7291
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4563994/4814557/10449367.pdf
PQID 2956384034
PQPubID 85514
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_6825895979874519a2eb106966ac7296
proquest_journals_2956384034
unpaywall_primary_10_1109_jphot_2024_3370182
ieee_primary_10449367
crossref_primary_10_1109_JPHOT_2024_3370182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE photonics journal
PublicationTitleAbbrev JPHOT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
Ishikura (ref7) 2016
ref11
ref10
ref2
ref1
ref16
ref8
ref9
ref4
ref3
ref6
ref5
Zhou (ref15) 2018; 10964
References_xml – ident: ref1
  doi: 10.1088/2040-8986/aacd65
– ident: ref4
  doi: 10.1109/JSTQE.2009.2035059
– ident: ref5
  doi: 10.1364/OE.21.030350
– ident: ref9
  doi: 10.1364/OE.19.011804
– ident: ref8
  doi: 10.1364/OE.25.008425
– ident: ref16
  doi: 10.35848/1347-4065/abeedd
– ident: ref3
  doi: 10.1117/1.AP.3.2.024003
– ident: ref10
  doi: 10.1038/s41566-018-0246-9
– ident: ref14
  doi: 10.1364/CLEO_AT.2019.JTh2A.42
– ident: ref2
  doi: 10.1109/JQE.1987.1073206
– ident: ref11
  doi: 10.1109/LPT.2021.3055137
– ident: ref12
  doi: 10.1364/AO.26.002788
– ident: ref13
  doi: 10.1016/j.optcom.2021.127775
– volume: 10964
  start-page: 264
  volume-title: Proc. SPIE
  year: 2018
  ident: ref15
  article-title: Silicon Mach-Zehnder modulator using a highly-efficient l-shape PN junction
– ident: ref6
  doi: 10.1364/OE.20.010591
– start-page: 1
  volume-title: Proc. 42nd Eur. Conf. Opt. Commun.
  year: 2016
  ident: ref7
  article-title: Transmission characteristics of 32-Gbaud PDM IQ monolithic silicon modulator operating with 2-VPPD drive voltage
SSID ssj0069159
Score 2.3476238
Snippet Optimizing doping profiles has always been a key approach to enhance the performance of silicon modulators. Nevertheless, the pursuit of innovative profiles...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms algorithm
Algorithms
Communications systems
Design optimization
Doping
doping profile
Doping profiles
electro-optic modulator
Electro-optic modulators
figure of merit
Frequency response
Inverse design
Modulators
Optical losses
Optical waveguides
Particle swarm optimization
Photonics
Silicon
Silicon photonics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA6yF33xLtYbffBN49IkTZpHrwxBJ2yDvYWkSVAZ7dgF8d-btN3Y8MEXX0NpT7_T5HwfnH4HgEulReKwMjCnxEIqlIXacAeZ1ooQFRzNqgbZV9YZ0OdhOlwZ9RV6wmp74Bq4NvMSJhOe9opgzJ4Ihf3pgphn6Sr3xLAy20aZWIip-gxmwlfpxS8ySLSf3zrdvheDmN4QwlGS4bUyVLn1N-NV1pjm5rwYq-8vNRqtFJ2nXbDdsMX4to5yD2zYYh_sNMwxbvbl9ADAt14X3n4YvxiMMyZTGz9UrRlx6eLex8inu4hfShNmdZWTQzB4euzfd2AzCAHmJOUzmAljhXbOWKdoorBOjE5Tw4jVyBEiAqTKBvojUoUEYUmGMocz5qjINHfkCLSKsrDHIGa51Rwx7FLnKEuUopzlxmsy4oTlKY7A1QIXOa79LmSlE5CQFYoyoCgbFCNwF6BbXhm8qqsFn0HZZFD-lcEIHAbgVx5HqX8HHoGzRSZks7GmEns9R7woJTQC18vs_Ar1c_xeztZCPfmPUE_BVrhn3blzBlqzydyee1Iy0xfV9_cDbQ7XIw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Xplore (NTUSG)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BF7iUllI1La1y6I16SWzHjo_0A62QCkiAxM2yY1ulXSWr3ayq8uuxHQexoEq9RZYlj-d5MjPJzDPAJ6VF6bAyqKHEIiqURdpwh5jWihAVGM1igewZm17T05vqJjWrx14Ya20sPrOT8Bj_5ZuuWYVPZd7CKRWE8U3Y5DUbmrXG1y4T3jGPXTGFODq9mJ5f-fwP0wkhvChrvOZ5IkF_ulFlLbjcXrVz9fePms0e-ZmTXTgbJRzKS35PVr2eNHdPyBv_ewsv4UWKOPPj4Yi8gg3b7sFuij7zZNvL14AuLs_R8a3xg4F8Y7G0-bdY3pF3Lr-8nfkj0-Y_OhPu--oW-3B98v3q6xSlyxRQQyreo1oYK7RzxjpFS4V1aXRVGUasLhwhIsCibAihRKUKL2JZF7XDNXNU1Jo78ga22q61byFnjdW8YNhVzlFWKkU5a4zfGXHC8gpncDgqWs4HzgwZc41CyAiLDLDIBEsGXwIWDzMD33Uc8HqTyXwk84lsLXzyIwI9fykU9j7GY86Yanx6wDLYD7p-tNyg5gwORmhlMs6lxD4nJD6xJTSDzw9wPxP11_xn16-J-u4fq7yHnTBtKOg5gK1-sbIffKzS64_xjN4Dd2fjbg
  priority: 102
  providerName: IEEE
Title PSO-Aided Inverse Design of Silicon Modulator
URI https://ieeexplore.ieee.org/document/10449367
https://www.proquest.com/docview/2956384034
https://ieeexplore.ieee.org/ielx7/4563994/4814557/10449367.pdf
https://doaj.org/article/6825895979874519a2eb106966ac7296
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1943-0647
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069159
  issn: 1943-0655
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1943-0647
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069159
  issn: 1943-0655
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAXyqOIlLLKgRskm_iV-Lg8qlUl2pXalcrJsmNbXVglq32owK_HdrxVF05wcyxLtmfGmRl75huAt1Lx0iKps4ZgkxEuTaZ0ZTOmlMRYekSzECB7ziYzcnZNr-OFW8iFMcaE4DOT-2Z4y5-bxY9q5DS9U6ZkRGqPre0TxgnhmFX5UtuHcMCos8UHcDA7n46_hqdk4ssWhApjsU3pLmum4KNvy5vOx1IikmNcFWWN9jRTAPCPFVf2jM9H23Ypf97KxeKeHjo9BLHbQR9-8j3fblTe_PoD3PH_t_gUnkQTNR33MvUMHpj2ORxGczWNP4P1C8imlxfZeK5dp0frWK1N-inEg6SdTS_nCydjbfql075AWLc6gtnp56uPkyxWX8gaTKtNVnNtuLJWGytJKZEqtaJUM2xUYTHmno_SeJuLU1m4ZZZ1UVtUM0t4rSqLX8Kg7VrzClLWGFUVDFlqLWGllKRijXa7w5abiqIE3u0oL5Y9yIYIzknBxdl0cnElPJ9E5FMCHzxz7kZ6gOzQ4Qgp4nkTzHm-NXfeEvd4_iWXyCmlgjnnTjbOn2AJHHni35uuJ3UCJztei3ia1wI5JxI7TxiTBN7f8f-vpQaR2lvq8b8Nfw2P_WcfGHQCg81qa944m2ejhuGuYBjSE4dRyH8DJFv3BA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOZQLLVBESgs5cAMvSfxIfCyPainttlK3Um-WHdtqYZWsdrOq6K-v7ThVF4TELbISeTyfJzNfMjMGeC8Vz20hNaoJNohwaZDSpUVMKYmx9B3NQoLshI0vyNElvYzF6qEWxhgTks_MyF-Gf_m6rVf-U5mzcEI4ZuVjeEIJIbQv1xpevIw71zzUxWT809HZ-HTqGGBBRhiXWV4Va74ntOiPZ6qshZebq2Yuf9_I2eyBpzncgskgY59g8mu06tSovv2jfeN_L2IbnsWYMz3oN8lzeGSaF7AV4880WvfyJaCz81N0cK3doG-_sVia9GtI8Ehbm55fz9ymadKTVvsTv9rFDlwcfpt-GaN4nAKqMS07VHFtuLJWGytJLguVa0WpZtiozGLMPTDS-CCKU5k5EfMqq2xRMUt4pUqLX8FG0zbmNaSsNqrMWGGptYTlUpKS1dqtDFtuSlok8GFQtJj3XTNEYBsZFwEW4WEREZYEPnss7u_0Ha_DgNObiAYkmKOyFXf0h_sG_TmXhfMyDnPGZO0IAktgx-v6wXS9mhPYG6AV0TyXonCsEDtqi0kCH-_h_kvUn_OrtlsTdfcfs7yDzfH05Fgcf5_8eANP_SN9es8ebHSLldl3kUun3ob9egeKMua7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAXyqOI0IJy4AbJJn4lPi6PalWJdqV2pXKy7NgWC6tktQ_18etrO96qCye4OZal2DPjzHzx-BuAD1Lx0iKps4ZgkxEuTaZ0ZTOmlMRYekazkCB7ysZTcnJJL-MPt3AXxhgTks9M7pvhLH9m5tfV0Hl650zJkNSeW9tfGCeEY1blC20fwx6jLhYfwN70dDL6EY6SiS9bECqMxTal21szBR_-WvzsfC4lIjnGVVHWaMczBQL_WHFlJ_h8smkX8uZKzucP_NDxPojtCvr0k9_5Zq3y5vYPcsf_X-JzeBZD1HTU29QLeGTal7Afw9U0fgxWryCbnJ9lo5l2nZ6tY7ky6deQD5J2Nj2fzZ2Nten3TvsCYd3yAKbH3y6-jLNYfSFrMK3WWc214cpabawkpUSq1IpSzbBRhcWYez1K42MuTmXhplnWRW1RzSzhtaosfg2DtmvNG0hZY1RVMGSptYSVUpKKNdqtDltuKooS-LiVvFj0JBsigJOCi5PJ-OxCeD2JqKcEPnvl3I_0BNmhwwlSxP0mmEO-NXdoiXs-_5JL5JxSwRy4k43DEyyBAy_8B6_rRZ3A0VbXIu7mlUAORGKHhDFJ4NO9_v-aajCpnam-_bfhh_DUP_aJQUcwWC835p2LedbqfTTsO6DZ9Q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSO-Aided+Inverse+Design+of+Silicon+Modulator&rft.jtitle=IEEE+photonics+journal&rft.au=Zhu%2C+Zijian&rft.au=Zhao%2C+Yingxuan&rft.au=Sheng%2C+Zhen&rft.au=Gan%2C+Fuwan&rft.date=2024-04-01&rft.issn=1943-0655&rft.eissn=1943-0647&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FJPHOT.2024.3370182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JPHOT_2024_3370182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0655&client=summon