Joint 3D Deployment and Power Allocation for UAV-BS: A Deep Reinforcement Learning Approach
Due to its high mobility and low cost, unmanned aerial vehicle mounted base station (UAV-BS) can be deployed in a fast and cost-efficient manner for providing wireless services in areas where traditional terrestrial infrastructures cannot be laid for technical and economic reasons. In this letter, w...
Saved in:
| Published in | IEEE wireless communications letters Vol. 10; no. 10; pp. 2309 - 2312 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-2337 2162-2345 |
| DOI | 10.1109/LWC.2021.3100388 |
Cover
| Abstract | Due to its high mobility and low cost, unmanned aerial vehicle mounted base station (UAV-BS) can be deployed in a fast and cost-efficient manner for providing wireless services in areas where traditional terrestrial infrastructures cannot be laid for technical and economic reasons. In this letter, we investigate the problem of joint three-dimensional (3D) deployment and power allocation for maximizing the system throughput in a UAV-BS system. To solve this non-convex problem, we propose a deep deterministic policy gradient (DDPG) based algorithm. The proposed algorithm allows the UAV-BS to explore in continuous state and action spaces to learn the optimal 3D hovering location and power allocation. Simulation results show that the proposed algorithm outperforms the traditional deep Q-learning-based method and genetic algorithm. |
|---|---|
| AbstractList | Due to its high mobility and low cost, unmanned aerial vehicle mounted base station (UAV-BS) can be deployed in a fast and cost-efficient manner for providing wireless services in areas where traditional terrestrial infrastructures cannot be laid for technical and economic reasons. In this letter, we investigate the problem of joint three-dimensional (3D) deployment and power allocation for maximizing the system throughput in a UAV-BS system. To solve this non-convex problem, we propose a deep deterministic policy gradient (DDPG) based algorithm. The proposed algorithm allows the UAV-BS to explore in continuous state and action spaces to learn the optimal 3D hovering location and power allocation. Simulation results show that the proposed algorithm outperforms the traditional deep Q-learning-based method and genetic algorithm. |
| Author | Fu, Shu Fan, Qilin Zhang, Meng |
| Author_xml | – sequence: 1 givenname: Meng surname: Zhang fullname: Zhang, Meng email: 201912131041@cqu.edu.cn organization: College of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China – sequence: 2 givenname: Shu orcidid: 0000-0002-7988-9724 surname: Fu fullname: Fu, Shu email: shufu@cqu.edu.cn organization: College of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China – sequence: 3 givenname: Qilin orcidid: 0000-0003-0856-3695 surname: Fan fullname: Fan, Qilin email: fanqilin@cqu.edu.cn organization: School of Big Data and Software Engineering, Chongqing University, Chongqing, China |
| BookMark | eNp9kDtPwzAYRS1UJErpjsRiiTnFj6SO2ULLU5FAQGFgiBzHBlepHZxUqP8e96EODHjxQ_d81zrHoGedVQCcYjTCGPGL_H0yIojgEcUI0TQ9AH2CxyQiNE56-zNlR2DYtnMU1hhhgtM--HhwxnaQTuFUNbVbLVS4CVvBJ_ejPMzq2knRGWehdh7Osrfo6uUSZiGtGvisjA3PUm2oXAlvjf2EWdN4J-TXCTjUom7VcLcPwOzm-nVyF-WPt_eTLI8kTVgXMUEJkowhnFYci1hrxbTUulRlQuOSxAlHHGtKYsEryXhFqEC4KitaCZGkmA7A-XZuqP1eqrYr5m7pbagsSMJ4TDkjaUihbUp617Ze6aLxZiH8qsCoWFssgsVibbHYWQzI-A8iTbex0Xlh6v_Asy1olFL7Hh5zRsNPfgHydH8v |
| CODEN | IWCLAF |
| CitedBy_id | crossref_primary_10_1109_TNSM_2024_3392393 crossref_primary_10_1109_LWC_2022_3177250 crossref_primary_10_1109_LWC_2022_3193958 crossref_primary_10_1016_j_prime_2023_100281 crossref_primary_10_1016_j_cja_2024_09_033 crossref_primary_10_1016_j_comnet_2023_109644 crossref_primary_10_1109_LWC_2023_3325066 crossref_primary_10_1109_LWC_2023_3288273 crossref_primary_10_1016_j_vehcom_2023_100640 crossref_primary_10_1109_TAP_2022_3209229 crossref_primary_10_1109_LWC_2021_3122127 crossref_primary_10_1007_s11227_023_05292_2 crossref_primary_10_1109_TAES_2024_3447636 crossref_primary_10_3390_s23063034 crossref_primary_10_1109_JIOT_2023_3282908 crossref_primary_10_1109_TVT_2024_3405608 crossref_primary_10_1109_TAP_2024_3513540 crossref_primary_10_1016_j_dsp_2022_103489 crossref_primary_10_1109_OJCOMS_2023_3251297 crossref_primary_10_3390_drones7030214 crossref_primary_10_1109_JIOT_2022_3184323 crossref_primary_10_1109_TCOMM_2024_3379417 crossref_primary_10_1016_j_cja_2024_08_049 crossref_primary_10_1007_s00500_022_07317_z crossref_primary_10_1109_OJCOMS_2024_3429198 crossref_primary_10_1016_j_heliyon_2024_e30697 crossref_primary_10_1109_LWC_2022_3167568 |
| Cites_doi | 10.1109/TVT.2020.3043851 10.1109/MWC.2018.1800196 10.1109/JIOT.2020.3015702 10.1109/TCOMM.2019.2939473 10.1109/TVT.2019.2922849 10.1109/MWC.2018.1800160 10.1109/LWC.2014.2342736 10.1109/TWC.2020.3016024 10.1017/CBO9780511804441 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/LWC.2021.3100388 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2162-2345 |
| EndPage | 2312 |
| ExternalDocumentID | 10_1109_LWC_2021_3100388 9497328 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61701054 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central University grantid: 2020CDJQY-A001; 2021CDJQY-013 funderid: 10.13039/501100012226 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 OCL RIA RIE RNS AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c357t-7a320c77018d91a4ffe7fcffbeb534b2459091f324a9dc79d23a01dbd3daa5813 |
| IEDL.DBID | RIE |
| ISSN | 2162-2337 |
| IngestDate | Sun Jun 29 12:24:23 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Wed Oct 01 02:44:33 EDT 2025 Wed Aug 27 02:26:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-7a320c77018d91a4ffe7fcffbeb534b2459091f324a9dc79d23a01dbd3daa5813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7988-9724 0000-0003-0856-3695 |
| PQID | 2579439728 |
| PQPubID | 2040496 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9497328 proquest_journals_2579439728 crossref_citationtrail_10_1109_LWC_2021_3100388 crossref_primary_10_1109_LWC_2021_3100388 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE wireless communications letters |
| PublicationTitleAbbrev | LWC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref7 ref9 ref4 ref3 ref6 ref10 ref5 lillicrap (ref8) 2016 ref2 ref1 mnih (ref11) 2013 |
| References_xml | – ident: ref6 doi: 10.1109/TVT.2020.3043851 – ident: ref2 doi: 10.1109/MWC.2018.1800196 – ident: ref4 doi: 10.1109/JIOT.2020.3015702 – start-page: 1 year: 2016 ident: ref8 article-title: Continuous control with deep reinforcement learning publication-title: Proc 4th Int Conf Learn Represent (ICLR) – ident: ref10 doi: 10.1109/TCOMM.2019.2939473 – ident: ref5 doi: 10.1109/TVT.2019.2922849 – ident: ref1 doi: 10.1109/MWC.2018.1800160 – year: 2013 ident: ref11 publication-title: Playing atari with deep reinforcement learning – ident: ref3 doi: 10.1109/LWC.2014.2342736 – ident: ref9 doi: 10.1109/TWC.2020.3016024 – ident: ref7 doi: 10.1017/CBO9780511804441 |
| SSID | ssj0000601218 |
| Score | 2.4735124 |
| Snippet | Due to its high mobility and low cost, unmanned aerial vehicle mounted base station (UAV-BS) can be deployed in a fast and cost-efficient manner for providing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2309 |
| SubjectTerms | 3D deployment Algorithms Deep learning deep reinforcement learning Genetic algorithms Hovering Machine learning Optimization power allocation Resource management Simulation Three-dimensional displays Throughput Unmanned aerial vehicle Unmanned aerial vehicles Wireless communication |
| Title | Joint 3D Deployment and Power Allocation for UAV-BS: A Deep Reinforcement Learning Approach |
| URI | https://ieeexplore.ieee.org/document/9497328 https://www.proquest.com/docview/2579439728 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2345 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601218 issn: 2162-2337 databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB0BJ3qAAq1YoMgHLkhkN7Hj2OaWLiC0AoRot0XqIXJsByFQFkH2wtfjcbLbqiDELYrskeWxx89j-z2APSFiXipaRQz3JqnkNpIyM5EPhExXCZM8xYfC5xfZ6TgdXfPrBTiYv4VxzoXLZ66Pn-Es307MFFNlA5UGbplFWBQya99qzfMpyCtCQzqPJhmNKGNidioZq8HZ76HfC9Kkj_lsFmRW_q5CQVblVSwOC8zJKpzPmtbeK7nrT5uyb57_Y238aNs_w0qHNEneDo01WHD1Onz6h39wA_6MJrd1Q9gROXIo_IsmiK4tuUTtNJLf40qHniMe2pJx_iv6_uOQ5L60eyBXLpCumpBfJB1P6w3JO5LyLzA-Of45PI06tYXIMC6aSGhGY-N9l0irEp1WlROVqarSlZylJU258tii8gBMK2uEspTpOLGlZVZrLhP2FZbqSe02gWSlYig0Rv3vlHsTnGnEnVKYTGtLezCY9X5hOipyVMS4L8KWJFaF91eB_io6f_Vgf17joaXheKfsBnb_vFzX8z3YmTm46ObpU-EDlkJIRuXW27W2YRltt9f3dmCpeZy6bx6GNOVuGH8vEUvWNA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROFAOlAIVy0fxoZdKZDfxRxL3FqBoobsIAQtIPUSO7VRVV1lUshd-PR4nu1QUVb1Fke1YHmf8PB6_B_ApSUJRSFoGDPcmPBUmSNNYB84RMlVGLBUcLwoPz-P-iJ_dibsFOJjfhbHW-uQz28VHf5ZvJnqKobKe5J5b5g0sCc65aG5rzSMqyCxCfUCPRjENKGPJ7FwylL3B7ZHbDdKoixFt5oVWntchL6zylzf2S8zJOxjOOtdklvzqTuuiqx9f8Db-b-_XYLXFmiRrJsd7WLDVOqz8wUC4Ad_PJj-rmrBjcmxR-hebIKoy5ALV00g2xrUObUccuCWj7CY4vPpCMlfa3pNL62lXtY8wkpap9QfJWpryTRidfL0-6get3kKgmUjqIFGMhtpZL0qNjBQvS5uUuiwLWwjGC8qFdOiidBBMSaMTaShTYWQKw4xSIo3YB1isJpXdAhIXkqHUGHWvuXBNCKYQeaaJjpUytAO92ejnuiUjR02Mce43JaHMnb1ytFfe2qsDn-c17hsijn-U3cDhn5drR74DuzMD5-2f-pA7lyURlNF0-_Va-7Dcvx4O8sHp-bcdeIvfaZL5dmGx_j21ew6U1MVHPxefAHQp2YE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+3D+Deployment+and+Power+Allocation+for+UAV-BS%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+wireless+communications+letters&rft.au=Zhang%2C+Meng&rft.au=Fu%2C+Shu&rft.au=Fan%2C+Qilin&rft.date=2021-10-01&rft.pub=IEEE&rft.issn=2162-2337&rft.volume=10&rft.issue=10&rft.spage=2309&rft.epage=2312&rft_id=info:doi/10.1109%2FLWC.2021.3100388&rft.externalDocID=9497328 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2337&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2337&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2337&client=summon |