Challenges, limitations, and measurement strategies to ensure data quality in deep-sea sensors

In this paper we give an overview of factors and limitations impairing deep-sea sensor data, and we show how automatic tests can give sensors self-validation and self-diagnostic capabilities. This work is intended to lay a basis for sophisticated use of smart sensors in long-term autonomous operatio...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Marine Science Vol. 10
Main Authors Skålvik, Astrid Marie, Saetre, Camilla, Frøysa, Kjell-Eivind, Bjørk, Ranveig N., Tengberg, Anders
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 06.04.2023
Subjects
Online AccessGet full text
ISSN2296-7745
2296-7745
DOI10.3389/fmars.2023.1152236

Cover

Abstract In this paper we give an overview of factors and limitations impairing deep-sea sensor data, and we show how automatic tests can give sensors self-validation and self-diagnostic capabilities. This work is intended to lay a basis for sophisticated use of smart sensors in long-term autonomous operation in remote deep-sea locations. Deep-sea observation relies on data from sensors operating in remote, harsh environments which may affect sensor output if uncorrected. In addition to the environmental impact, sensors are subject to limitations regarding power, communication, and limitations on recalibration. To obtain long-term measurements of larger deep-sea areas, fixed platform sensors on the ocean floor may be deployed for several years. As for any observation systems, data collected by deep-sea observation equipment are of limited use if the quality or accuracy (closeness of agreement between the measurement and the true value) is not known. If data from a faulty sensor are used directly, this may result in an erroneous understanding of deep water conditions, or important changes or conditions may not be detected. Faulty sensor data may significantly weaken the overall quality of the combined data from several sensors or any derived model. This is particularly an issue for wireless sensor networks covering large areas, where the overall measurement performance of the network is highly dependent on the data quality from individual sensors. Existing quality control manuals and initiatives for best practice typically recommend a selection of (near) real-time automated checks. These are mostly limited to basic and straight forward verification of metadata and data format, and data value or transition checks against pre-defined thresholds. Delayed-mode inspection is often recommended before a final data quality stamp is assigned.
AbstractList In this paper we give an overview of factors and limitations impairing deep-sea sensor data, and we show how automatic tests can give sensors self-validation and self-diagnostic capabilities. This work is intended to lay a basis for sophisticated use of smart sensors in long-term autonomous operation in remote deep-sea locations. Deep-sea observation relies on data from sensors operating in remote, harsh environments which may affect sensor output if uncorrected. In addition to the environmental impact, sensors are subject to limitations regarding power, communication, and limitations on recalibration. To obtain long-term measurements of larger deep-sea areas, fixed platform sensors on the ocean floor may be deployed for several years. As for any observation systems, data collected by deep-sea observation equipment are of limited use if the quality or accuracy (closeness of agreement between the measurement and the true value) is not known. If data from a faulty sensor are used directly, this may result in an erroneous understanding of deep water conditions, or important changes or conditions may not be detected. Faulty sensor data may significantly weaken the overall quality of the combined data from several sensors or any derived model. This is particularly an issue for wireless sensor networks covering large areas, where the overall measurement performance of the network is highly dependent on the data quality from individual sensors. Existing quality control manuals and initiatives for best practice typically recommend a selection of (near) real-time automated checks. These are mostly limited to basic and straight forward verification of metadata and data format, and data value or transition checks against pre-defined thresholds. Delayed-mode inspection is often recommended before a final data quality stamp is assigned.
Author Frøysa, Kjell-Eivind
Bjørk, Ranveig N.
Saetre, Camilla
Tengberg, Anders
Skålvik, Astrid Marie
Author_xml – sequence: 1
  givenname: Astrid Marie
  surname: Skålvik
  fullname: Skålvik, Astrid Marie
– sequence: 2
  givenname: Camilla
  surname: Saetre
  fullname: Saetre, Camilla
– sequence: 3
  givenname: Kjell-Eivind
  surname: Frøysa
  fullname: Frøysa, Kjell-Eivind
– sequence: 4
  givenname: Ranveig N.
  surname: Bjørk
  fullname: Bjørk, Ranveig N.
– sequence: 5
  givenname: Anders
  surname: Tengberg
  fullname: Tengberg, Anders
BookMark eNqNkMtqIzEQRcWQgcnrB2alD0g7erbUy2DygkA2yTaiLFV7FNpqjyQT_PdpxyYMswhZVd2qurfgnJCjNCYk5DdnMyltd9mvIJeZYELOONdCyPYHORaiaxtjlD76p_9Fzkt5ZYxxqZhW3TF5mf-BYcC0xHJBh7iKFWoc0yQgBbpCKJuMK0yVlpqh4jJioXWkmHYLGqAC_buBIdYtjYkGxHVTEGiZDsZczsjPHoaC54d6Sp5vrp_md83D4-39_Oqh8VKb2hgNyndc90or6GzotJi0MgF6bhZdkIEDW3DpNQ-tVcwY7JiVftFb4ExreUru97lhhFe3znFCsnUjRPcxGPPSQa7RD-j8ArUVvZeh9wqMtEZ4yVptLYpWIZuy5D5rk9awfZvwfAZy5nbE3QdxtyPuDsQnl927fB5Lydg7f2A5cYvD11bxn_Ub_94BAlqaYg
CitedBy_id crossref_primary_10_3389_fmars_2023_1220429
crossref_primary_10_3390_jmse12122367
crossref_primary_10_1016_j_jgsce_2023_205117
crossref_primary_10_1016_j_rcim_2025_102993
crossref_primary_10_1021_acsomega_4c03030
crossref_primary_10_3390_s24206530
crossref_primary_10_3390_biomimetics9030190
crossref_primary_10_3390_su16208889
Cites_doi 10.1109/TIM.2016.2540942
10.1002/lom3.10177
10.1175/jtech-d-14-00162.1
10.1109/SUTC.2006.1636175
10.3389/fmars.2022.812464
10.1109/jsen.2021.3090990
10.3389/fmars.2019.00706
10.1007/978-1-4939-8844-0
10.1016/j.flowmeasinst.2018.01.001
10.1016/j.dsr.2015.08.005
10.3390/s19071711
10.3390/s22051824
10.1016/j.dsr2.2013.01.019
10.1109/ACCESS.2020.3037117
10.5194/bg-11-1215-2014
10.4319/lom.2006.4.7
10.1109/MED.2012.6265793
10.1016/j.watres.2019.115121
10.3389/fmars.2022.1002153
10.1088/1361-6501/ac4f00
10.1155/2015/896832
10.3389/fmars.2019.00277
10.1080/1755876X.2011.11
10.3389/fmars.2020.00697
10.1175/jtech-d-15-0101.1
10.1109/RAST.2009.5158260
10.1109/jsen.2019.2910317
10.1016/j.sna.2020.111990
10.1007/978-3-319-66493-4_12
10.1016/j.measen.2021.100365
10.1175/jtech-d-13-00032.1
10.3390/s20133751
10.1109/tie.2015.2417501
10.5194/bg-19-437-2022
10.1016/j.marchem.2022.104085
10.25607/OBP-327
10.3390/s17092010
10.3389/fmars.2021.611742
10.1016/j.oceaneng.2018.10.033
10.5194/jsss-7-359-2018
10.1016/j.marchem.2011.02.005
10.1145/1582379.1582631
10.5670/oceanog.2017.240
10.1175/JTECH1704.1
10.1016/S0003-2670(97)81610-8
10.3389/fmars.2017.00429
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3389/fmars.2023.1152236
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2296-7745
ExternalDocumentID oai_doaj_org_article_cbe582fc3dfc4a73872c306588e264e0
10.3389/fmars.2023.1152236
10_3389_fmars_2023_1152236
GroupedDBID 5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFS
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M7P
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
ADTOC
ARCSS
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c357t-75a4c915f454a98d9524c947daf17b9d3d1a0b13c51d684077e9083cbf8a10553
IEDL.DBID DOA
ISSN 2296-7745
IngestDate Tue Oct 14 19:08:31 EDT 2025
Tue Aug 19 09:20:45 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Wed Oct 01 03:30:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-75a4c915f454a98d9524c947daf17b9d3d1a0b13c51d684077e9083cbf8a10553
OpenAccessLink https://doaj.org/article/cbe582fc3dfc4a73872c306588e264e0
ParticipantIDs doaj_primary_oai_doaj_org_article_cbe582fc3dfc4a73872c306588e264e0
unpaywall_primary_10_3389_fmars_2023_1152236
crossref_citationtrail_10_3389_fmars_2023_1152236
crossref_primary_10_3389_fmars_2023_1152236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-06
PublicationDateYYYYMMDD 2023-04-06
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-06
  day: 06
PublicationDecade 2020
PublicationTitle Frontiers in Marine Science
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Freitag (B25) 1999; 115
Bittig (B13) 2018; 4
Li (B39) 2020; 309
Waldmann (B61) 2022; 9
Gilbert (B28) 2008; 62
Thomson (B54) 2014
Friedrich (B26) 2014; 11
Koelling (B37) 2022; 19
Gulmammadov (B30) 2009
Bushnell (B16) 2019; 6
Tracey (B55) 2013; 30
Berntsson (B8) 1997; 355
Blank (B15) 2011
Nicholson (B44) 2017; 15
(B48) 2010
Mitchell (B43) 2007
Wong (B63) 2022
Fascista (B23) 2022; 22
Shangguan (B49) 2022; 240
Blanco (B14) 2013; 98
Venkatesan (B60) 2019; 171
Xu (B65) 2019; 19
(B11) 2012
Chen (B18) 2016; 65
Kamenev (B35) 2022; 9
Zhu (B66) 2021; 21
Van Walree (B59) 2022
B1
(B5) 2016
(B22) 2010
B2
Ando (B6) 2005; 22
Kelly (B36) 2018
Law (B38) 2009
Cullison Gray (B19) 2011; 125
Lo Bue (B40) 2011; 4
Skålvik (B50) 2018
Tengberg (B53) 2013
Woo (B64) 2020; 20
Pearlman (B45) 2019; 6
Gkikopouli (B29) 2012
Peng (B46) 2020; 168
Whitt (B62) 2020; 7
Mieruch (B42) 2021; 8
Johnson (B34) 2015; 32
Tengberg (B52) 2006; 4
(B57) 2020
Bittig (B12) 2015; 32
Delaine (B20) 2019; 19
Jesus (B33) 2017; 17
Schütze (B47) 2018; 7
Altamiranda (B4) 2018; 495
Cardin (B17) 2017
Jansen (B32) 2021
(B10) 2008
Barzegar (B7) 2022; 33
Bigorre (B9) 2018
(B56) 2010
Alory (B3) 2015; 105
Tancev (B51) 2022; 19
Gao (B27) 2015; 62
(B58) 2020
Dziak (B21) 2017; 30
Han (B31) 2020; 8
Felemban (B24) 2015; 11
Martinez (B41) 2006
References_xml – volume-title: Pan-European infrastructure for ocean & marine data management
  year: 2010
  ident: B48
  article-title: Data quality control procedures version 2.0
– volume: 65
  start-page: 1626
  year: 2016
  ident: B18
  article-title: Status self-validation of sensor arrays using Gray forecasting model and bootstrap method
  publication-title: IEEE Trans. Instrumentation Measurement
  doi: 10.1109/TIM.2016.2540942
– start-page: 516
  volume-title: Proceedings of the Eight EuroGOOS International Conference
  year: 2017
  ident: B17
  article-title: Operational oceanography serving sustainable marine development
– volume: 15
  start-page: 495
  year: 2017
  ident: B44
  article-title: Air calibration of an oxygen optode on an underwater glider
  publication-title: Limnol. Oceanography: Methods
  doi: 10.1002/lom3.10177
– volume: 32
  start-page: 1536
  year: 2015
  ident: B12
  article-title: Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference
  publication-title: J. Atmospheric Oceanic Technol.
  doi: 10.1175/jtech-d-14-00162.1
– volume-title: IEEE International conference on sensor networks, ubiquitous, and trustworthy computing
  year: 2006
  ident: B41
  article-title: Deploying a sensor network in an extreme environment
  doi: 10.1109/SUTC.2006.1636175
– volume: 9
  year: 2022
  ident: B35
  article-title: Macrofauna and nematode abundance in the abyssal and hadal zones of interconnected deep-Sea ecosystems in the kuril basin (Sea of Okhotsk) and the kuril-kamchatka trench (Pacific ocean)
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2022.812464
– volume: 21
  start-page: 19247
  year: 2021
  ident: B66
  article-title: Self-detection and self-diagnosis methods for sensors in intelligent integrated sensing system
  publication-title: IEEE Sensors J.
  doi: 10.1109/jsen.2021.3090990
– volume: 6
  year: 2019
  ident: B16
  article-title: Quality assurance of oceanographic observations: Standards and guidance adopted by an international partnership
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00706
– volume-title: Argo quality control manual for CTD and trajectory data
  year: 2022
  ident: B63
– volume-title: Oceanographic analysis with r
  year: 2018
  ident: B36
  doi: 10.1007/978-1-4939-8844-0
– start-page: 201
  year: 2018
  ident: B50
  article-title: Risk-cost-benefit analysis of custody oil metering stations
  publication-title: Flow Measurement Instrumentation
  doi: 10.1016/j.flowmeasinst.2018.01.001
– volume: 105
  start-page: 1
  year: 2015
  ident: B3
  article-title: The French contribution to the voluntary observing ships network of sea surface salinity
  publication-title: Oceanographic Res. Papers
  doi: 10.1016/j.dsr.2015.08.005
– volume-title: International vocabulary of metrology - basic and general concepts and associated terms
  year: 2012
  ident: B11
– volume: 19
  start-page: 1711
  year: 2019
  ident: B65
  article-title: Internet Of things in marine environment monitoring: A review
  publication-title: Sensors
  doi: 10.3390/s19071711
– volume: 22
  start-page: 1824
  year: 2022
  ident: B23
  article-title: Toward integrated Large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives
  publication-title: Sensors
  doi: 10.3390/s22051824
– volume: 98
  start-page: 370
  year: 2013
  ident: B14
  article-title: Macrofouling of deep-sea instrumentation after three years at 3690m depth in the Charlie Gibbs fracture zone, mid-Atlantic ridge, with emphasis on hydroids (Cnidaria: Hydrozoa)
  publication-title: Deep Sea Res. Part II: Topical Stud. Oceanography
  doi: 10.1016/j.dsr2.2013.01.019
– volume-title: Southern ocean time series (SOTS) quality assessment and control report salinity records version 1.0
  year: 2021
  ident: B32
– volume-title: Multi-sensor data fusion an introduction
  year: 2007
  ident: B43
– volume-title: ISO/IEC guide 98-3:2008 uncertainty of measurement — part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
  year: 2008
  ident: B10
– volume: 8
  start-page: 204389
  year: 2020
  ident: B31
  article-title: Sensor drift detection based on discrete wavelet transform and grey models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037117
– start-page: 1
  volume-title: MTS/IEEE oceans
  year: 2013
  ident: B53
  article-title: Multi-parameter observations from coastal waters to the deep sea: focus on quality control and sensor stability
– volume: 11
  start-page: 1215
  year: 2014
  ident: B26
  article-title: Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-1215-2014
– volume: 4
  start-page: 7
  year: 2006
  ident: B52
  article-title: Evaluation of a lifetime-based optode to measure oxygen in aquatic systems
  publication-title: Limnol. Oceanography: Methods
  doi: 10.4319/lom.2006.4.7
– ident: B2
– volume-title: 20th Mediterranean conference on control & automation (MED)
  year: 2012
  ident: B29
  article-title: A survey on underwater wireless sensor networks and applications
  doi: 10.1109/MED.2012.6265793
– volume: 168
  year: 2020
  ident: B46
  article-title: The ocean’s ultimate trashcan: Hadal trenches as major depositories for plastic pollution
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115121
– volume: 9
  year: 2022
  ident: B61
  article-title: A methodology to uncertainty quantification of essential ocean variables
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2022.1002153
– volume: 33
  year: 2022
  ident: B7
  article-title: MEMS technology and applications in geotechnical monitoring: a review
  publication-title: Measurement Sci. Technol.
  doi: 10.1088/1361-6501/ac4f00
– volume: 11
  year: 2015
  ident: B24
  article-title: Underwater sensor network applications: A comprehensive survey
  publication-title: Int. J. Distributed Sensor Networks
  doi: 10.1155/2015/896832
– volume: 6
  year: 2019
  ident: B45
  article-title: Evolving and sustaining ocean best practices and standards for the next decade
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00277
– volume-title: Data analysis methods in physical oceanography
  year: 2014
  ident: B54
– volume: 4
  start-page: 29
  year: 2011
  ident: B40
  article-title: Anomalies of oxygen measurements performed with aanderaa optodes
  publication-title: J. Operational Oceanography
  doi: 10.1080/1755876X.2011.11
– volume: 495
  start-page: 495
  year: 2018
  ident: B4
  article-title: Condition monitoring of subsea sensors. A systems of systems engineering approach
  publication-title: WSEAS Trans. Environ. Dev.
– volume: 7
  year: 2020
  ident: B62
  article-title: Future vision for autonomous ocean observations
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2020.00697
– volume: 32
  start-page: 2160
  year: 2015
  ident: B34
  article-title: Air oxygen calibration of oxygen optodes on a profiling float array
  publication-title: J. Atmospheric Oceanic Technol.
  doi: 10.1175/jtech-d-15-0101.1
– ident: B1
– volume-title: WP2-1 report
  year: 2022
  ident: B59
  article-title: Underwater communications in SFI smart ocean: Requirements, limitations and possibilities
– start-page: 591
  year: 2009
  ident: B30
  article-title: Analysis, modeling and compensation of bias drift in MEMS inertial sensors
  publication-title: 2009 4th International conference on recent advances in space technologies
  doi: 10.1109/RAST.2009.5158260
– volume: 19
  start-page: 5968
  year: 2019
  ident: B20
  article-title: In situ calibration algorithms for environmental sensor networks: A review
  publication-title: IEEE Sensors J.
  doi: 10.1109/jsen.2019.2910317
– volume: 309
  year: 2020
  ident: B39
  article-title: Recent advances in sensor fault diagnosis: A review
  publication-title: Sensors Actuators A.: Phys.
  doi: 10.1016/j.sna.2020.111990
– volume: 115
  start-page: 89
  year: 1999
  ident: B25
  article-title: COARE SEACAT DATA: calibrations and quality control procedures
  publication-title: NOAA Tech. Memo. ERL PMEL
– start-page: 243
  volume-title: Observing the oceans in real time
  year: 2018
  ident: B9
  article-title: Sensor performance and data quality control
  doi: 10.1007/978-3-319-66493-4_12
– volume: 19
  year: 2022
  ident: B51
  article-title: Variational Bayesian calibration of low-cost gas sensor systems in air quality monitoring
  publication-title: Measurement: Sensors
  doi: 10.1016/j.measen.2021.100365
– volume: 30
  start-page: 2465
  year: 2013
  ident: B55
  article-title: Four current meter models compared in strong currents in drake passage
  publication-title: J. Atmospheric Oceanic Technol.
  doi: 10.1175/jtech-d-13-00032.1
– volume-title: European Global ocean observing system
  year: 2010
  ident: B22
  article-title: Recommendations for in-situ data near real time quality control
– volume-title: Manual of petroleum measurement standards chapter 4.5 proving systems: Master-meter provers
  year: 2016
  ident: B5
– start-page: 4974
  volume-title: IEEE International conference on robotics and automation
  year: 2011
  ident: B15
  article-title: Sensor failure detection capabilities in low-level fusion: A comparison between fuzzy voting and kalman filtering
– volume: 20
  year: 2020
  ident: B64
  article-title: Sensor signal and information processing II
  publication-title: Sensors (Basel)
  doi: 10.3390/s20133751
– volume: 62
  start-page: 3757
  year: 2015
  ident: B27
  article-title: A survey of fault diagnosis and fault-tolerant techniques–part I: Fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/tie.2015.2417501
– volume: 19
  start-page: 437
  year: 2022
  ident: B37
  article-title: Oxygen export to the deep ocean following Labrador Sea water formation
  publication-title: Biogeosciences
  doi: 10.5194/bg-19-437-2022
– volume: 240
  year: 2022
  ident: B49
  article-title: An inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2022.104085
– volume: 62
  year: 2008
  ident: B28
  article-title: Performance verification statement for the Aanderaa data instruments 4319 b conductivity sensor
  publication-title: Solomons MD Alliance Coast. Technol.
  doi: 10.25607/OBP-327
– volume-title: Manual for real-time quality control of in-situ temperature and salinity data version 2.1: A guide to quality control and quality assurance of in-situ temperature and salinity observations
  year: 2020
  ident: B58
– volume: 17
  year: 2017
  ident: B33
  article-title: A survey on data quality for dependable monitoring in wireless sensor networks
  publication-title: Sensors (Basel)
  doi: 10.3390/s17092010
– volume: 8
  year: 2021
  ident: B42
  article-title: SalaciaML: A deep learning approach for supporting ocean data quality control
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2021.611742
– volume: 171
  start-page: 151
  year: 2019
  ident: B60
  article-title: Analysis of drift characteristic in conductivity and temperature sensors used in moored buoy system
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.10.033
– volume: 7
  start-page: 359
  year: 2018
  ident: B47
  article-title: Sensors 4.0 – smart sensors and measurement technology enable industry 4.0
  publication-title: J. Sensors Sensor Syst.
  doi: 10.5194/jsss-7-359-2018
– volume: 125
  start-page: 82
  year: 2011
  ident: B19
  article-title: Applications of in situ pH measurements for inorganic carbon calculations
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2011.02.005
– volume-title: Proceedings of the 2009 international conference on wireless communications and mobile computing: Connecting the world wirelessly
  year: 2009
  ident: B38
  article-title: Energy-efficient data acquisition by adaptive sampling for wireless sensor networks
  doi: 10.1145/1582379.1582631
– volume: 30
  start-page: 186
  year: 2017
  ident: B21
  article-title: Ambient sound at Challenger Deep, Mariana Trench
  publication-title: Oceanography
  doi: 10.5670/oceanog.2017.240
– volume: 22
  start-page: 282
  year: 2005
  ident: B6
  article-title: Drift characteristics of a moored conductivity–Temperature–Depth sensor and correction of salinity data
  publication-title: J. Atmospheric Oceanic Technol.
  doi: 10.1175/JTECH1704.1
– start-page: 75352
  volume-title: IOC manuals and guides no. 22, revised edition
  year: 2010
  ident: B56
  article-title: GTSPP real-time quality control manual, first revised edition
– volume-title: QARTOD - prospects for real-time quality control manuals, how to create them, and a vision for advanced implementation
  year: 2020
  ident: B57
– volume: 355
  start-page: 43
  year: 1997
  ident: B8
  article-title: Multivariate experimental methodology applied to the calibration of a Clark type oxygen sensor
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(97)81610-8
– volume: 4
  year: 2018
  ident: B13
  article-title: Oxygen optode sensors: Principle, characterization, calibration, and application in the ocean
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2017.00429
SSID ssj0001340549
Score 2.351824
Snippet In this paper we give an overview of factors and limitations impairing deep-sea sensor data, and we show how automatic tests can give sensors self-validation...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms calibration
data quality
in-situ
self-validation
sensor
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocmipRN_qFlr5wK2bFYlf8ZEiEEKC9sBK9NJo_IiEus2uNlkh-us7k2QXWqkIjo7GSjKeiT87nu9jbE9jFFgnICmlMQl-_WLiSkz3GAC0AUh9oK2Bs3N9MpGnl-qyp8mhWpg7_-9x8WTRu7i-G5PGNyY3YgWhn7BNrRB3D9jm5PzbwXdSj8usRpgoVVcV85-Of808LUH_Fnu6rOZwcw3T6Z1Z5fhFJ09Ut2SEdJjk53jZuLH__Q9V48Me-CXb7sElP-ii4RXbiNVr9vyrj1D1zNRv2I_DlXxKPeJTKm_q9uxGHKrAf91uGfK6WdFI8GbGSRJjETmdKOVdJeYNv6p4iHGeYLrwGg1mi_otmxwfXRyeJL3IQuKFMk1iFEhvU1VKJcHmwaoM29IEKFPjbBAhhX2XCq_SQMQwxkSLsM27MgcS1xTv2KCaVfE940bLkPmgovIgjVegtXXGOYwG6_LcD1m6GoDC929HQhjTAlci5LyidV5Bzit65w3Z53Wfece_ca_1FxrXtSVxZ7cXcISKPhUL76LKs9KLUHoJRuQm84KQWB4RHcb9IRuto-IB9_zwOPMd9oya7eEfvcsGzWIZPyKuadynPqD_APtp8uo
  priority: 102
  providerName: Unpaywall
Title Challenges, limitations, and measurement strategies to ensure data quality in deep-sea sensors
URI https://doi.org/10.3389/fmars.2023.1152236
https://doaj.org/article/cbe582fc3dfc4a73872c306588e264e0
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2296-7745
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340549
  issn: 2296-7745
  databaseCode: BENPR
  dateStart: 20140225
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EDz5AfGJ9sQdvNtoku9ndYy0WEXwcLNSLYfYREGpa2hTpv3c2SWtP6sFjwiSbnZnsPNj9PkIuEvQCpWMIMiZEgKufC3SGv7uzAIkACI31rYGHx-Sux-77vL9E9eX3hFXwwJXiro12XEaZiW1mGIhYish4tnMpHcZyV1brLamWiqmyuxJjIsJUdUoGqzCFZsJC8cqTheMqgUlHicn8HYlKwP5Nsj7NRzD7hMFgKcp0d8h2nR7SdvVZu2TF5Xtk68k4yGts6X3y1pkToEyadOAPKFVdtyaF3NKP76YfnRRzIAhaDKkntRg76veE0uos5Yy-59Q6NwrQ4ekEBYbjyQHpdW9fOndBTZMQmJiLIhAcmFEhzxhnoKRVPMJrJixkodDKxjaElg5jw0ProV2EcAoTL6MzCZ4eMz4kq_kwd0eEioTZyFjuuAEmDIckUVpojfZUWkrTIOFcZampZ-epLAYp1hJezWmp5tSrOa3V3CCXi2dGFYLGj9I33hILSY9-Xd5An0hrn0h_84kGaS7s-Icxj_9jzBOy4d9ZbupJTslqMZ66M8xXCn1euuY5Wes9PrdfvwBOOeok
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocmipRN_qFlr5wK2bFYlf8ZEiEEKC9sBK9NJo_IiEus2uNlkh-us7k2QXWqkIjo7GSjKeiT87nu9jbE9jFFgnICmlMQl-_WLiSkz3GAC0AUh9oK2Bs3N9MpGnl-qyp8mhWpg7_-9x8WTRu7i-G5PGNyY3YgWhn7BNrRB3D9jm5PzbwXdSj8usRpgoVVcV85-Of808LUH_Fnu6rOZwcw3T6Z1Z5fhFJ09Ut2SEdJjk53jZuLH__Q9V48Me-CXb7sElP-ii4RXbiNVr9vyrj1D1zNRv2I_DlXxKPeJTKm_q9uxGHKrAf91uGfK6WdFI8GbGSRJjETmdKOVdJeYNv6p4iHGeYLrwGg1mi_otmxwfXRyeJL3IQuKFMk1iFEhvU1VKJcHmwaoM29IEKFPjbBAhhX2XCq_SQMQwxkSLsM27MgcS1xTv2KCaVfE940bLkPmgovIgjVegtXXGOYwG6_LcD1m6GoDC929HQhjTAlci5LyidV5Bzit65w3Z53Wfece_ca_1FxrXtSVxZ7cXcISKPhUL76LKs9KLUHoJRuQm84KQWB4RHcb9IRuto-IB9_zwOPMd9oya7eEfvcsGzWIZPyKuadynPqD_APtp8uo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges%2C+limitations%2C+and+measurement+strategies+to+ensure+data+quality+in+deep-sea+sensors&rft.jtitle=Frontiers+in+Marine+Science&rft.au=Sk%C3%A5lvik%2C+Astrid+Marie&rft.au=Saetre%2C+Camilla&rft.au=Fr%C3%B8ysa%2C+Kjell-Eivind&rft.au=Bj%C3%B8rk%2C+Ranveig+N.&rft.date=2023-04-06&rft.issn=2296-7745&rft.eissn=2296-7745&rft.volume=10&rft_id=info:doi/10.3389%2Ffmars.2023.1152236&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmars_2023_1152236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-7745&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-7745&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-7745&client=summon