Challenges, limitations, and measurement strategies to ensure data quality in deep-sea sensors
In this paper we give an overview of factors and limitations impairing deep-sea sensor data, and we show how automatic tests can give sensors self-validation and self-diagnostic capabilities. This work is intended to lay a basis for sophisticated use of smart sensors in long-term autonomous operatio...
        Saved in:
      
    
          | Published in | Frontiers in Marine Science Vol. 10 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Frontiers Media S.A
    
        06.04.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2296-7745 2296-7745  | 
| DOI | 10.3389/fmars.2023.1152236 | 
Cover
| Abstract | In this paper we give an overview of factors and limitations impairing deep-sea sensor data, and we show how automatic tests can give sensors self-validation and self-diagnostic capabilities. This work is intended to lay a basis for sophisticated use of smart sensors in long-term autonomous operation in remote deep-sea locations. Deep-sea observation relies on data from sensors operating in remote, harsh environments which may affect sensor output if uncorrected. In addition to the environmental impact, sensors are subject to limitations regarding power, communication, and limitations on recalibration. To obtain long-term measurements of larger deep-sea areas, fixed platform sensors on the ocean floor may be deployed for several years. As for any observation systems, data collected by deep-sea observation equipment are of limited use if the quality or accuracy (closeness of agreement between the measurement and the true value) is not known. If data from a faulty sensor are used directly, this may result in an erroneous understanding of deep water conditions, or important changes or conditions may not be detected. Faulty sensor data may significantly weaken the overall quality of the combined data from several sensors or any derived model. This is particularly an issue for wireless sensor networks covering large areas, where the overall measurement performance of the network is highly dependent on the data quality from individual sensors. Existing quality control manuals and initiatives for best practice typically recommend a selection of (near) real-time automated checks. These are mostly limited to basic and straight forward verification of metadata and data format, and data value or transition checks against pre-defined thresholds. Delayed-mode inspection is often recommended before a final data quality stamp is assigned. | 
    
|---|---|
| AbstractList | In this paper we give an overview of factors and limitations impairing deep-sea sensor data, and we show how automatic tests can give sensors self-validation and self-diagnostic capabilities. This work is intended to lay a basis for sophisticated use of smart sensors in long-term autonomous operation in remote deep-sea locations. Deep-sea observation relies on data from sensors operating in remote, harsh environments which may affect sensor output if uncorrected. In addition to the environmental impact, sensors are subject to limitations regarding power, communication, and limitations on recalibration. To obtain long-term measurements of larger deep-sea areas, fixed platform sensors on the ocean floor may be deployed for several years. As for any observation systems, data collected by deep-sea observation equipment are of limited use if the quality or accuracy (closeness of agreement between the measurement and the true value) is not known. If data from a faulty sensor are used directly, this may result in an erroneous understanding of deep water conditions, or important changes or conditions may not be detected. Faulty sensor data may significantly weaken the overall quality of the combined data from several sensors or any derived model. This is particularly an issue for wireless sensor networks covering large areas, where the overall measurement performance of the network is highly dependent on the data quality from individual sensors. Existing quality control manuals and initiatives for best practice typically recommend a selection of (near) real-time automated checks. These are mostly limited to basic and straight forward verification of metadata and data format, and data value or transition checks against pre-defined thresholds. Delayed-mode inspection is often recommended before a final data quality stamp is assigned. | 
    
| Author | Frøysa, Kjell-Eivind Bjørk, Ranveig N. Saetre, Camilla Tengberg, Anders Skålvik, Astrid Marie  | 
    
| Author_xml | – sequence: 1 givenname: Astrid Marie surname: Skålvik fullname: Skålvik, Astrid Marie – sequence: 2 givenname: Camilla surname: Saetre fullname: Saetre, Camilla – sequence: 3 givenname: Kjell-Eivind surname: Frøysa fullname: Frøysa, Kjell-Eivind – sequence: 4 givenname: Ranveig N. surname: Bjørk fullname: Bjørk, Ranveig N. – sequence: 5 givenname: Anders surname: Tengberg fullname: Tengberg, Anders  | 
    
| BookMark | eNqNkMtqIzEQRcWQgcnrB2alD0g7erbUy2DygkA2yTaiLFV7FNpqjyQT_PdpxyYMswhZVd2qurfgnJCjNCYk5DdnMyltd9mvIJeZYELOONdCyPYHORaiaxtjlD76p_9Fzkt5ZYxxqZhW3TF5mf-BYcC0xHJBh7iKFWoc0yQgBbpCKJuMK0yVlpqh4jJioXWkmHYLGqAC_buBIdYtjYkGxHVTEGiZDsZczsjPHoaC54d6Sp5vrp_md83D4-39_Oqh8VKb2hgNyndc90or6GzotJi0MgF6bhZdkIEDW3DpNQ-tVcwY7JiVftFb4ExreUru97lhhFe3znFCsnUjRPcxGPPSQa7RD-j8ArUVvZeh9wqMtEZ4yVptLYpWIZuy5D5rk9awfZvwfAZy5nbE3QdxtyPuDsQnl927fB5Lydg7f2A5cYvD11bxn_Ub_94BAlqaYg | 
    
| CitedBy_id | crossref_primary_10_3389_fmars_2023_1220429 crossref_primary_10_3390_jmse12122367 crossref_primary_10_1016_j_jgsce_2023_205117 crossref_primary_10_1016_j_rcim_2025_102993 crossref_primary_10_1021_acsomega_4c03030 crossref_primary_10_3390_s24206530 crossref_primary_10_3390_biomimetics9030190 crossref_primary_10_3390_su16208889  | 
    
| Cites_doi | 10.1109/TIM.2016.2540942 10.1002/lom3.10177 10.1175/jtech-d-14-00162.1 10.1109/SUTC.2006.1636175 10.3389/fmars.2022.812464 10.1109/jsen.2021.3090990 10.3389/fmars.2019.00706 10.1007/978-1-4939-8844-0 10.1016/j.flowmeasinst.2018.01.001 10.1016/j.dsr.2015.08.005 10.3390/s19071711 10.3390/s22051824 10.1016/j.dsr2.2013.01.019 10.1109/ACCESS.2020.3037117 10.5194/bg-11-1215-2014 10.4319/lom.2006.4.7 10.1109/MED.2012.6265793 10.1016/j.watres.2019.115121 10.3389/fmars.2022.1002153 10.1088/1361-6501/ac4f00 10.1155/2015/896832 10.3389/fmars.2019.00277 10.1080/1755876X.2011.11 10.3389/fmars.2020.00697 10.1175/jtech-d-15-0101.1 10.1109/RAST.2009.5158260 10.1109/jsen.2019.2910317 10.1016/j.sna.2020.111990 10.1007/978-3-319-66493-4_12 10.1016/j.measen.2021.100365 10.1175/jtech-d-13-00032.1 10.3390/s20133751 10.1109/tie.2015.2417501 10.5194/bg-19-437-2022 10.1016/j.marchem.2022.104085 10.25607/OBP-327 10.3390/s17092010 10.3389/fmars.2021.611742 10.1016/j.oceaneng.2018.10.033 10.5194/jsss-7-359-2018 10.1016/j.marchem.2011.02.005 10.1145/1582379.1582631 10.5670/oceanog.2017.240 10.1175/JTECH1704.1 10.1016/S0003-2670(97)81610-8 10.3389/fmars.2017.00429  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.3389/fmars.2023.1152236 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Oceanography | 
    
| EISSN | 2296-7745 | 
    
| ExternalDocumentID | oai_doaj_org_article_cbe582fc3dfc4a73872c306588e264e0 10.3389/fmars.2023.1152236 10_3389_fmars_2023_1152236  | 
    
| GroupedDBID | 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFS ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BCNDV BENPR BHPHI BKSAR BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M7P M~E OK1 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO ADTOC ARCSS IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c357t-75a4c915f454a98d9524c947daf17b9d3d1a0b13c51d684077e9083cbf8a10553 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2296-7745 | 
    
| IngestDate | Tue Oct 14 19:08:31 EDT 2025 Tue Aug 19 09:20:45 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Wed Oct 01 03:30:52 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c357t-75a4c915f454a98d9524c947daf17b9d3d1a0b13c51d684077e9083cbf8a10553 | 
    
| OpenAccessLink | https://doaj.org/article/cbe582fc3dfc4a73872c306588e264e0 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cbe582fc3dfc4a73872c306588e264e0 unpaywall_primary_10_3389_fmars_2023_1152236 crossref_citationtrail_10_3389_fmars_2023_1152236 crossref_primary_10_3389_fmars_2023_1152236  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-04-06 | 
    
| PublicationDateYYYYMMDD | 2023-04-06 | 
    
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-06 day: 06  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Frontiers in Marine Science | 
    
| PublicationYear | 2023 | 
    
| Publisher | Frontiers Media S.A | 
    
| Publisher_xml | – name: Frontiers Media S.A | 
    
| References | Freitag (B25) 1999; 115 Bittig (B13) 2018; 4 Li (B39) 2020; 309 Waldmann (B61) 2022; 9 Gilbert (B28) 2008; 62 Thomson (B54) 2014 Friedrich (B26) 2014; 11 Koelling (B37) 2022; 19 Gulmammadov (B30) 2009 Bushnell (B16) 2019; 6 Tracey (B55) 2013; 30 Berntsson (B8) 1997; 355 Blank (B15) 2011 Nicholson (B44) 2017; 15 (B48) 2010 Mitchell (B43) 2007 Wong (B63) 2022 Fascista (B23) 2022; 22 Shangguan (B49) 2022; 240 Blanco (B14) 2013; 98 Venkatesan (B60) 2019; 171 Xu (B65) 2019; 19 (B11) 2012 Chen (B18) 2016; 65 Kamenev (B35) 2022; 9 Zhu (B66) 2021; 21 Van Walree (B59) 2022 B1 (B5) 2016 (B22) 2010 B2 Ando (B6) 2005; 22 Kelly (B36) 2018 Law (B38) 2009 Cullison Gray (B19) 2011; 125 Lo Bue (B40) 2011; 4 Skålvik (B50) 2018 Tengberg (B53) 2013 Woo (B64) 2020; 20 Pearlman (B45) 2019; 6 Gkikopouli (B29) 2012 Peng (B46) 2020; 168 Whitt (B62) 2020; 7 Mieruch (B42) 2021; 8 Johnson (B34) 2015; 32 Tengberg (B52) 2006; 4 (B57) 2020 Bittig (B12) 2015; 32 Delaine (B20) 2019; 19 Jesus (B33) 2017; 17 Schütze (B47) 2018; 7 Altamiranda (B4) 2018; 495 Cardin (B17) 2017 Jansen (B32) 2021 (B10) 2008 Barzegar (B7) 2022; 33 Bigorre (B9) 2018 (B56) 2010 Alory (B3) 2015; 105 Tancev (B51) 2022; 19 Gao (B27) 2015; 62 (B58) 2020 Dziak (B21) 2017; 30 Han (B31) 2020; 8 Felemban (B24) 2015; 11 Martinez (B41) 2006  | 
    
| References_xml | – volume-title: Pan-European infrastructure for ocean & marine data management year: 2010 ident: B48 article-title: Data quality control procedures version 2.0 – volume: 65 start-page: 1626 year: 2016 ident: B18 article-title: Status self-validation of sensor arrays using Gray forecasting model and bootstrap method publication-title: IEEE Trans. Instrumentation Measurement doi: 10.1109/TIM.2016.2540942 – start-page: 516 volume-title: Proceedings of the Eight EuroGOOS International Conference year: 2017 ident: B17 article-title: Operational oceanography serving sustainable marine development – volume: 15 start-page: 495 year: 2017 ident: B44 article-title: Air calibration of an oxygen optode on an underwater glider publication-title: Limnol. Oceanography: Methods doi: 10.1002/lom3.10177 – volume: 32 start-page: 1536 year: 2015 ident: B12 article-title: Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference publication-title: J. Atmospheric Oceanic Technol. doi: 10.1175/jtech-d-14-00162.1 – volume-title: IEEE International conference on sensor networks, ubiquitous, and trustworthy computing year: 2006 ident: B41 article-title: Deploying a sensor network in an extreme environment doi: 10.1109/SUTC.2006.1636175 – volume: 9 year: 2022 ident: B35 article-title: Macrofauna and nematode abundance in the abyssal and hadal zones of interconnected deep-Sea ecosystems in the kuril basin (Sea of Okhotsk) and the kuril-kamchatka trench (Pacific ocean) publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2022.812464 – volume: 21 start-page: 19247 year: 2021 ident: B66 article-title: Self-detection and self-diagnosis methods for sensors in intelligent integrated sensing system publication-title: IEEE Sensors J. doi: 10.1109/jsen.2021.3090990 – volume: 6 year: 2019 ident: B16 article-title: Quality assurance of oceanographic observations: Standards and guidance adopted by an international partnership publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00706 – volume-title: Argo quality control manual for CTD and trajectory data year: 2022 ident: B63 – volume-title: Oceanographic analysis with r year: 2018 ident: B36 doi: 10.1007/978-1-4939-8844-0 – start-page: 201 year: 2018 ident: B50 article-title: Risk-cost-benefit analysis of custody oil metering stations publication-title: Flow Measurement Instrumentation doi: 10.1016/j.flowmeasinst.2018.01.001 – volume: 105 start-page: 1 year: 2015 ident: B3 article-title: The French contribution to the voluntary observing ships network of sea surface salinity publication-title: Oceanographic Res. Papers doi: 10.1016/j.dsr.2015.08.005 – volume-title: International vocabulary of metrology - basic and general concepts and associated terms year: 2012 ident: B11 – volume: 19 start-page: 1711 year: 2019 ident: B65 article-title: Internet Of things in marine environment monitoring: A review publication-title: Sensors doi: 10.3390/s19071711 – volume: 22 start-page: 1824 year: 2022 ident: B23 article-title: Toward integrated Large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives publication-title: Sensors doi: 10.3390/s22051824 – volume: 98 start-page: 370 year: 2013 ident: B14 article-title: Macrofouling of deep-sea instrumentation after three years at 3690m depth in the Charlie Gibbs fracture zone, mid-Atlantic ridge, with emphasis on hydroids (Cnidaria: Hydrozoa) publication-title: Deep Sea Res. Part II: Topical Stud. Oceanography doi: 10.1016/j.dsr2.2013.01.019 – volume-title: Southern ocean time series (SOTS) quality assessment and control report salinity records version 1.0 year: 2021 ident: B32 – volume-title: Multi-sensor data fusion an introduction year: 2007 ident: B43 – volume-title: ISO/IEC guide 98-3:2008 uncertainty of measurement — part 3: Guide to the expression of uncertainty in measurement (GUM:1995) year: 2008 ident: B10 – volume: 8 start-page: 204389 year: 2020 ident: B31 article-title: Sensor drift detection based on discrete wavelet transform and grey models publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037117 – start-page: 1 volume-title: MTS/IEEE oceans year: 2013 ident: B53 article-title: Multi-parameter observations from coastal waters to the deep sea: focus on quality control and sensor stability – volume: 11 start-page: 1215 year: 2014 ident: B26 article-title: Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon publication-title: Biogeosciences doi: 10.5194/bg-11-1215-2014 – volume: 4 start-page: 7 year: 2006 ident: B52 article-title: Evaluation of a lifetime-based optode to measure oxygen in aquatic systems publication-title: Limnol. Oceanography: Methods doi: 10.4319/lom.2006.4.7 – ident: B2 – volume-title: 20th Mediterranean conference on control & automation (MED) year: 2012 ident: B29 article-title: A survey on underwater wireless sensor networks and applications doi: 10.1109/MED.2012.6265793 – volume: 168 year: 2020 ident: B46 article-title: The ocean’s ultimate trashcan: Hadal trenches as major depositories for plastic pollution publication-title: Water Res. doi: 10.1016/j.watres.2019.115121 – volume: 9 year: 2022 ident: B61 article-title: A methodology to uncertainty quantification of essential ocean variables publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2022.1002153 – volume: 33 year: 2022 ident: B7 article-title: MEMS technology and applications in geotechnical monitoring: a review publication-title: Measurement Sci. Technol. doi: 10.1088/1361-6501/ac4f00 – volume: 11 year: 2015 ident: B24 article-title: Underwater sensor network applications: A comprehensive survey publication-title: Int. J. Distributed Sensor Networks doi: 10.1155/2015/896832 – volume: 6 year: 2019 ident: B45 article-title: Evolving and sustaining ocean best practices and standards for the next decade publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00277 – volume-title: Data analysis methods in physical oceanography year: 2014 ident: B54 – volume: 4 start-page: 29 year: 2011 ident: B40 article-title: Anomalies of oxygen measurements performed with aanderaa optodes publication-title: J. Operational Oceanography doi: 10.1080/1755876X.2011.11 – volume: 495 start-page: 495 year: 2018 ident: B4 article-title: Condition monitoring of subsea sensors. A systems of systems engineering approach publication-title: WSEAS Trans. Environ. Dev. – volume: 7 year: 2020 ident: B62 article-title: Future vision for autonomous ocean observations publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2020.00697 – volume: 32 start-page: 2160 year: 2015 ident: B34 article-title: Air oxygen calibration of oxygen optodes on a profiling float array publication-title: J. Atmospheric Oceanic Technol. doi: 10.1175/jtech-d-15-0101.1 – ident: B1 – volume-title: WP2-1 report year: 2022 ident: B59 article-title: Underwater communications in SFI smart ocean: Requirements, limitations and possibilities – start-page: 591 year: 2009 ident: B30 article-title: Analysis, modeling and compensation of bias drift in MEMS inertial sensors publication-title: 2009 4th International conference on recent advances in space technologies doi: 10.1109/RAST.2009.5158260 – volume: 19 start-page: 5968 year: 2019 ident: B20 article-title: In situ calibration algorithms for environmental sensor networks: A review publication-title: IEEE Sensors J. doi: 10.1109/jsen.2019.2910317 – volume: 309 year: 2020 ident: B39 article-title: Recent advances in sensor fault diagnosis: A review publication-title: Sensors Actuators A.: Phys. doi: 10.1016/j.sna.2020.111990 – volume: 115 start-page: 89 year: 1999 ident: B25 article-title: COARE SEACAT DATA: calibrations and quality control procedures publication-title: NOAA Tech. Memo. ERL PMEL – start-page: 243 volume-title: Observing the oceans in real time year: 2018 ident: B9 article-title: Sensor performance and data quality control doi: 10.1007/978-3-319-66493-4_12 – volume: 19 year: 2022 ident: B51 article-title: Variational Bayesian calibration of low-cost gas sensor systems in air quality monitoring publication-title: Measurement: Sensors doi: 10.1016/j.measen.2021.100365 – volume: 30 start-page: 2465 year: 2013 ident: B55 article-title: Four current meter models compared in strong currents in drake passage publication-title: J. Atmospheric Oceanic Technol. doi: 10.1175/jtech-d-13-00032.1 – volume-title: European Global ocean observing system year: 2010 ident: B22 article-title: Recommendations for in-situ data near real time quality control – volume-title: Manual of petroleum measurement standards chapter 4.5 proving systems: Master-meter provers year: 2016 ident: B5 – start-page: 4974 volume-title: IEEE International conference on robotics and automation year: 2011 ident: B15 article-title: Sensor failure detection capabilities in low-level fusion: A comparison between fuzzy voting and kalman filtering – volume: 20 year: 2020 ident: B64 article-title: Sensor signal and information processing II publication-title: Sensors (Basel) doi: 10.3390/s20133751 – volume: 62 start-page: 3757 year: 2015 ident: B27 article-title: A survey of fault diagnosis and fault-tolerant techniques–part I: Fault diagnosis with model-based and signal-based approaches publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/tie.2015.2417501 – volume: 19 start-page: 437 year: 2022 ident: B37 article-title: Oxygen export to the deep ocean following Labrador Sea water formation publication-title: Biogeosciences doi: 10.5194/bg-19-437-2022 – volume: 240 year: 2022 ident: B49 article-title: An inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions publication-title: Mar. Chem. doi: 10.1016/j.marchem.2022.104085 – volume: 62 year: 2008 ident: B28 article-title: Performance verification statement for the Aanderaa data instruments 4319 b conductivity sensor publication-title: Solomons MD Alliance Coast. Technol. doi: 10.25607/OBP-327 – volume-title: Manual for real-time quality control of in-situ temperature and salinity data version 2.1: A guide to quality control and quality assurance of in-situ temperature and salinity observations year: 2020 ident: B58 – volume: 17 year: 2017 ident: B33 article-title: A survey on data quality for dependable monitoring in wireless sensor networks publication-title: Sensors (Basel) doi: 10.3390/s17092010 – volume: 8 year: 2021 ident: B42 article-title: SalaciaML: A deep learning approach for supporting ocean data quality control publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2021.611742 – volume: 171 start-page: 151 year: 2019 ident: B60 article-title: Analysis of drift characteristic in conductivity and temperature sensors used in moored buoy system publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.10.033 – volume: 7 start-page: 359 year: 2018 ident: B47 article-title: Sensors 4.0 – smart sensors and measurement technology enable industry 4.0 publication-title: J. Sensors Sensor Syst. doi: 10.5194/jsss-7-359-2018 – volume: 125 start-page: 82 year: 2011 ident: B19 article-title: Applications of in situ pH measurements for inorganic carbon calculations publication-title: Mar. Chem. doi: 10.1016/j.marchem.2011.02.005 – volume-title: Proceedings of the 2009 international conference on wireless communications and mobile computing: Connecting the world wirelessly year: 2009 ident: B38 article-title: Energy-efficient data acquisition by adaptive sampling for wireless sensor networks doi: 10.1145/1582379.1582631 – volume: 30 start-page: 186 year: 2017 ident: B21 article-title: Ambient sound at Challenger Deep, Mariana Trench publication-title: Oceanography doi: 10.5670/oceanog.2017.240 – volume: 22 start-page: 282 year: 2005 ident: B6 article-title: Drift characteristics of a moored conductivity–Temperature–Depth sensor and correction of salinity data publication-title: J. Atmospheric Oceanic Technol. doi: 10.1175/JTECH1704.1 – start-page: 75352 volume-title: IOC manuals and guides no. 22, revised edition year: 2010 ident: B56 article-title: GTSPP real-time quality control manual, first revised edition – volume-title: QARTOD - prospects for real-time quality control manuals, how to create them, and a vision for advanced implementation year: 2020 ident: B57 – volume: 355 start-page: 43 year: 1997 ident: B8 article-title: Multivariate experimental methodology applied to the calibration of a Clark type oxygen sensor publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(97)81610-8 – volume: 4 year: 2018 ident: B13 article-title: Oxygen optode sensors: Principle, characterization, calibration, and application in the ocean publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2017.00429  | 
    
| SSID | ssj0001340549 | 
    
| Score | 2.351824 | 
    
| Snippet | In this paper we give an overview of factors and limitations impairing deep-sea sensor data, and we show how automatic tests can give sensors self-validation... | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database  | 
    
| SubjectTerms | calibration data quality in-situ self-validation sensor  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocmipRN_qFlr5wK2bFYlf8ZEiEEKC9sBK9NJo_IiEus2uNlkh-us7k2QXWqkIjo7GSjKeiT87nu9jbE9jFFgnICmlMQl-_WLiSkz3GAC0AUh9oK2Bs3N9MpGnl-qyp8mhWpg7_-9x8WTRu7i-G5PGNyY3YgWhn7BNrRB3D9jm5PzbwXdSj8usRpgoVVcV85-Of808LUH_Fnu6rOZwcw3T6Z1Z5fhFJ09Ut2SEdJjk53jZuLH__Q9V48Me-CXb7sElP-ii4RXbiNVr9vyrj1D1zNRv2I_DlXxKPeJTKm_q9uxGHKrAf91uGfK6WdFI8GbGSRJjETmdKOVdJeYNv6p4iHGeYLrwGg1mi_otmxwfXRyeJL3IQuKFMk1iFEhvU1VKJcHmwaoM29IEKFPjbBAhhX2XCq_SQMQwxkSLsM27MgcS1xTv2KCaVfE940bLkPmgovIgjVegtXXGOYwG6_LcD1m6GoDC929HQhjTAlci5LyidV5Bzit65w3Z53Wfece_ca_1FxrXtSVxZ7cXcISKPhUL76LKs9KLUHoJRuQm84KQWB4RHcb9IRuto-IB9_zwOPMd9oya7eEfvcsGzWIZPyKuadynPqD_APtp8uo priority: 102 providerName: Unpaywall  | 
    
| Title | Challenges, limitations, and measurement strategies to ensure data quality in deep-sea sensors | 
    
| URI | https://doi.org/10.3389/fmars.2023.1152236 https://doaj.org/article/cbe582fc3dfc4a73872c306588e264e0  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2296-7745 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340549 issn: 2296-7745 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-7745 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340549 issn: 2296-7745 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-7745 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340549 issn: 2296-7745 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2296-7745 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340549 issn: 2296-7745 databaseCode: BENPR dateStart: 20140225 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EDz5AfGJ9sQdvNtoku9ndYy0WEXwcLNSLYfYREGpa2hTpv3c2SWtP6sFjwiSbnZnsPNj9PkIuEvQCpWMIMiZEgKufC3SGv7uzAIkACI31rYGHx-Sux-77vL9E9eX3hFXwwJXiro12XEaZiW1mGIhYish4tnMpHcZyV1brLamWiqmyuxJjIsJUdUoGqzCFZsJC8cqTheMqgUlHicn8HYlKwP5Nsj7NRzD7hMFgKcp0d8h2nR7SdvVZu2TF5Xtk68k4yGts6X3y1pkToEyadOAPKFVdtyaF3NKP76YfnRRzIAhaDKkntRg76veE0uos5Yy-59Q6NwrQ4ekEBYbjyQHpdW9fOndBTZMQmJiLIhAcmFEhzxhnoKRVPMJrJixkodDKxjaElg5jw0ProV2EcAoTL6MzCZ4eMz4kq_kwd0eEioTZyFjuuAEmDIckUVpojfZUWkrTIOFcZampZ-epLAYp1hJezWmp5tSrOa3V3CCXi2dGFYLGj9I33hILSY9-Xd5An0hrn0h_84kGaS7s-Icxj_9jzBOy4d9ZbupJTslqMZ66M8xXCn1euuY5Wes9PrdfvwBOOeok | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocmipRN_qFlr5wK2bFYlf8ZEiEEKC9sBK9NJo_IiEus2uNlkh-us7k2QXWqkIjo7GSjKeiT87nu9jbE9jFFgnICmlMQl-_WLiSkz3GAC0AUh9oK2Bs3N9MpGnl-qyp8mhWpg7_-9x8WTRu7i-G5PGNyY3YgWhn7BNrRB3D9jm5PzbwXdSj8usRpgoVVcV85-Of808LUH_Fnu6rOZwcw3T6Z1Z5fhFJ09Ut2SEdJjk53jZuLH__Q9V48Me-CXb7sElP-ii4RXbiNVr9vyrj1D1zNRv2I_DlXxKPeJTKm_q9uxGHKrAf91uGfK6WdFI8GbGSRJjETmdKOVdJeYNv6p4iHGeYLrwGg1mi_otmxwfXRyeJL3IQuKFMk1iFEhvU1VKJcHmwaoM29IEKFPjbBAhhX2XCq_SQMQwxkSLsM27MgcS1xTv2KCaVfE940bLkPmgovIgjVegtXXGOYwG6_LcD1m6GoDC929HQhjTAlci5LyidV5Bzit65w3Z53Wfece_ca_1FxrXtSVxZ7cXcISKPhUL76LKs9KLUHoJRuQm84KQWB4RHcb9IRuto-IB9_zwOPMd9oya7eEfvcsGzWIZPyKuadynPqD_APtp8uo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges%2C+limitations%2C+and+measurement+strategies+to+ensure+data+quality+in+deep-sea+sensors&rft.jtitle=Frontiers+in+Marine+Science&rft.au=Sk%C3%A5lvik%2C+Astrid+Marie&rft.au=Saetre%2C+Camilla&rft.au=Fr%C3%B8ysa%2C+Kjell-Eivind&rft.au=Bj%C3%B8rk%2C+Ranveig+N.&rft.date=2023-04-06&rft.issn=2296-7745&rft.eissn=2296-7745&rft.volume=10&rft_id=info:doi/10.3389%2Ffmars.2023.1152236&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmars_2023_1152236 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-7745&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-7745&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-7745&client=summon |