LTrack: A LoRa-Based Indoor Tracking System for Mobile Robots
The robot's mobility and intelligence have expanded its application in recent years. Specifically, indoor tracking is a fundamental function of public service robots in nursing homes, hospitals, and warehouses. Existing vision-based tracking requires visual information, which may be unavailable...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 71; no. 4; pp. 4264 - 4276 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2022.3143526 |
Cover
Abstract | The robot's mobility and intelligence have expanded its application in recent years. Specifically, indoor tracking is a fundamental function of public service robots in nursing homes, hospitals, and warehouses. Existing vision-based tracking requires visual information, which may be unavailable and introduce privacy issues in practical deployment. To this end, in this paper, we propose <inline-formula><tex-math notation="LaTeX">\mathsf {LTrack}</tex-math></inline-formula>, a long-range tracking system based on LoRa, an emerging low-power wide-area networking (LPWAN) technology, with a single transceiver pair. Note that commodity LoRa devices cannot estimate the angle of arrival (AoA) of signals due to hardware limitations. We design a virtual circular antenna array in the mobile rotating anchor via a lightweight hardware modification to multiplex the only RF channel in the low-cost LoRa device. The difference of time of flight (TDoF) measured in the circular antenna array is fused with the rotating orientation to estimate the target AoA. We also redesign and optimize the primitive LoRa ranging engine based on systematic analysis. Further, we present a real-time mobile target tracking algorithm based on the Doppler frequency shift to combat the uncertainty introduced by the target movement. We have developed the prototype of <inline-formula><tex-math notation="LaTeX">\mathsf {LTrack}</tex-math></inline-formula>, which consists of a mobile rotating anchor, a LoRa tag, and a commercial robot. The system is evaluated in both LOS and NOLS indoor scenarios. Experiments show that <inline-formula><tex-math notation="LaTeX">\mathsf {LTrack}</tex-math></inline-formula> supports robust tracking with a median error of 0.12 m and 0.45 m in a <inline-formula><tex-math notation="LaTeX">\text{137}\,\text{m}^2</tex-math></inline-formula> lab space and a <inline-formula><tex-math notation="LaTeX">\text{600}\,\text{m}^2</tex-math></inline-formula> corridor, respectively. |
---|---|
AbstractList | The robot’s mobility and intelligence have expanded its application in recent years. Specifically, indoor tracking is a fundamental function of public service robots in nursing homes, hospitals, and warehouses. Existing vision-based tracking requires visual information, which may be unavailable and introduce privacy issues in practical deployment. To this end, in this paper, we propose [Formula Omitted], a long-range tracking system based on LoRa, an emerging low-power wide-area networking (LPWAN) technology, with a single transceiver pair. Note that commodity LoRa devices cannot estimate the angle of arrival (AoA) of signals due to hardware limitations. We design a virtual circular antenna array in the mobile rotating anchor via a lightweight hardware modification to multiplex the only RF channel in the low-cost LoRa device. The difference of time of flight (TDoF) measured in the circular antenna array is fused with the rotating orientation to estimate the target AoA. We also redesign and optimize the primitive LoRa ranging engine based on systematic analysis. Further, we present a real-time mobile target tracking algorithm based on the Doppler frequency shift to combat the uncertainty introduced by the target movement. We have developed the prototype of [Formula Omitted], which consists of a mobile rotating anchor, a LoRa tag, and a commercial robot. The system is evaluated in both LOS and NOLS indoor scenarios. Experiments show that [Formula Omitted] supports robust tracking with a median error of 0.12 m and 0.45 m in a [Formula Omitted] lab space and a [Formula Omitted] corridor, respectively. The robot's mobility and intelligence have expanded its application in recent years. Specifically, indoor tracking is a fundamental function of public service robots in nursing homes, hospitals, and warehouses. Existing vision-based tracking requires visual information, which may be unavailable and introduce privacy issues in practical deployment. To this end, in this paper, we propose <inline-formula><tex-math notation="LaTeX">\mathsf {LTrack}</tex-math></inline-formula>, a long-range tracking system based on LoRa, an emerging low-power wide-area networking (LPWAN) technology, with a single transceiver pair. Note that commodity LoRa devices cannot estimate the angle of arrival (AoA) of signals due to hardware limitations. We design a virtual circular antenna array in the mobile rotating anchor via a lightweight hardware modification to multiplex the only RF channel in the low-cost LoRa device. The difference of time of flight (TDoF) measured in the circular antenna array is fused with the rotating orientation to estimate the target AoA. We also redesign and optimize the primitive LoRa ranging engine based on systematic analysis. Further, we present a real-time mobile target tracking algorithm based on the Doppler frequency shift to combat the uncertainty introduced by the target movement. We have developed the prototype of <inline-formula><tex-math notation="LaTeX">\mathsf {LTrack}</tex-math></inline-formula>, which consists of a mobile rotating anchor, a LoRa tag, and a commercial robot. The system is evaluated in both LOS and NOLS indoor scenarios. Experiments show that <inline-formula><tex-math notation="LaTeX">\mathsf {LTrack}</tex-math></inline-formula> supports robust tracking with a median error of 0.12 m and 0.45 m in a <inline-formula><tex-math notation="LaTeX">\text{137}\,\text{m}^2</tex-math></inline-formula> lab space and a <inline-formula><tex-math notation="LaTeX">\text{600}\,\text{m}^2</tex-math></inline-formula> corridor, respectively. |
Author | Hu, Kang Chen, Jiming Gu, Chaojie |
Author_xml | – sequence: 1 givenname: Kang orcidid: 0000-0003-4814-6642 surname: Hu fullname: Hu, Kang email: hukang@zju.edu.cn organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China – sequence: 2 givenname: Chaojie orcidid: 0000-0003-2153-811X surname: Gu fullname: Gu, Chaojie email: gucj@zju.edu.cn organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China – sequence: 3 givenname: Jiming orcidid: 0000-0003-3155-3145 surname: Chen fullname: Chen, Jiming email: jmchen@ieee.org organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China |
BookMark | eNp9kL1PwzAQxS1UJNrCjsQSiTnFjn1OjMRQKj4qBSGVwGo5yRmltHGx06H_PSlFDAxMp7t7797pNyKD1rVIyDmjE8aouireiklCk2TCmeCQyCMyZIqrWHFQAzKklGWxAgEnZBTCsm-FUGxIbvLCm-rjOppGuVuY-NYErKN5Wzvno-9V075HL7vQ4Tqy_ezJlc0Ko4UrXRdOybE1q4BnP3VMXu_vitljnD8_zGfTPK44pF2cQobWypIKI0VmpExQUujfhgqgErUomTVQC55ALWsjgQNIKGtMLVqFgo_J5eHuxrvPLYZOL93Wt32kTiQoLniq0l5FD6rKuxA8Wr3xzdr4nWZU7yHpHpLeQ9I_kHqL_GOpms50jWs7b5rVf8aLg7FBxN8cJTMh05R_AXFBc-Y |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3485432 crossref_primary_10_32604_cmes_2024_052355 crossref_primary_10_32604_cmc_2024_059746 crossref_primary_10_1109_TVT_2023_3234283 crossref_primary_10_1088_1755_1315_1083_1_012061 crossref_primary_10_1109_TVT_2024_3371157 crossref_primary_10_1145_3631434 crossref_primary_10_1109_TNET_2024_3398814 crossref_primary_10_1109_TVT_2024_3499947 crossref_primary_10_1109_COMST_2024_3417336 crossref_primary_10_1587_transinf_2022EDP7158 crossref_primary_10_21303_2461_4262_2024_003138 crossref_primary_10_1016_j_iot_2023_101016 crossref_primary_10_1109_ACCESS_2023_3308948 crossref_primary_10_1145_3577927 |
Cites_doi | 10.1007/978-3-7908-2604-3_16 10.1145/3458864.3467885 10.1109/TVT.2019.2940272 10.1145/3397326 10.1109/GLOBECOM38437.2019.9013972 10.1109/TMC.2018.2860018 10.1109/MNET.001.1900521 10.1109/TVT.2019.2929360 10.1109/TIM.2018.2884605 10.1109/TVT.2019.2961516 10.1145/2668332.2668345 10.1109/INFOCOM.2017.8057096 10.1145/2639108.2639142 10.1109/TVT.2018.2851783 10.1109/TMC.2019.2950315 10.1109/TVT.2016.2545523 10.1145/2534169.2486029 10.1109/TASE.2018.2861382 10.1049/iet-cta.2016.1405 10.1109/TVT.2021.3053313 10.1109/JIOT.2019.2940600 10.1145/3412382.3458263 10.1145/3143361.3143385 10.1145/2785956.2787487 10.1145/3384419.3430731 10.1109/TMC.2021.3108155 10.1145/3281411.3281428 10.1109/MWC.2019.1800570 10.1145/3461012 10.1109/TVT.2018.2810307 10.1109/TMECH.2018.2820172 10.1109/JIOT.2019.2924244 10.1109/TVT.2020.2964110 10.1109/TVT.2021.3092355 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2022.3143526 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 4276 |
ExternalDocumentID | 10_1109_TVT_2022_3143526 9684677 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China; NSFC grantid: U20A20159 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China; NSFC grantid: 62088101 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c357t-758eff6b04a648a662e6051105c55c4d4b1fa5d4325d6da6535565bde7fef9e43 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:14:59 EDT 2025 Tue Jul 01 01:44:15 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Wed Aug 27 02:40:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-758eff6b04a648a662e6051105c55c4d4b1fa5d4325d6da6535565bde7fef9e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2153-811X 0000-0003-4814-6642 0000-0003-3155-3145 |
PQID | 2659343797 |
PQPubID | 85454 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TVT_2022_3143526 ieee_primary_9684677 proquest_journals_2659343797 crossref_citationtrail_10_1109_TVT_2022_3143526 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref37 ref14 Ayyalasomayajula (ref31) 2020 ref36 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Gu (ref15) 2019 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 Vasisht (ref35) 2016 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref24 doi: 10.1007/978-3-7908-2604-3_16 – ident: ref26 doi: 10.1145/3458864.3467885 – ident: ref14 doi: 10.1109/TVT.2019.2940272 – ident: ref13 doi: 10.1145/3397326 – ident: ref29 doi: 10.1109/GLOBECOM38437.2019.9013972 – ident: ref22 doi: 10.1109/TMC.2018.2860018 – ident: ref2 doi: 10.1109/MNET.001.1900521 – ident: ref10 doi: 10.1109/TVT.2019.2929360 – ident: ref8 doi: 10.1109/TIM.2018.2884605 – start-page: 165 volume-title: Proc. 13th USENIX Symp. Networked Syst. Des. Implementation year: 2016 ident: ref35 article-title: Decimeter-level localization with a single WiFi access point – ident: ref4 doi: 10.1109/TVT.2019.2961516 – ident: ref19 doi: 10.1145/2668332.2668345 – ident: ref30 doi: 10.1109/INFOCOM.2017.8057096 – ident: ref33 doi: 10.1145/2639108.2639142 – ident: ref18 doi: 10.1109/TVT.2018.2851783 – ident: ref36 doi: 10.1109/TMC.2019.2950315 – ident: ref23 doi: 10.1109/TVT.2016.2545523 – ident: ref38 doi: 10.1145/2534169.2486029 – ident: ref20 doi: 10.1109/TASE.2018.2861382 – ident: ref25 doi: 10.1049/iet-cta.2016.1405 – ident: ref37 doi: 10.1109/TVT.2021.3053313 – ident: ref11 doi: 10.1109/JIOT.2019.2940600 – ident: ref16 doi: 10.1145/3412382.3458263 – ident: ref7 doi: 10.1145/3143361.3143385 – ident: ref34 doi: 10.1145/2785956.2787487 – ident: ref12 doi: 10.1145/3384419.3430731 – ident: ref32 doi: 10.1109/TMC.2021.3108155 – start-page: 1115 volume-title: Proc. 17th USENIX Symp. Networked Syst. Des. Implementation year: 2020 ident: ref31 article-title: LocAP: Autonomous millimeter accurate mapping of wifi infrastructure – ident: ref1 article-title: Service robotics market size – ident: ref27 doi: 10.1145/3281411.3281428 – ident: ref3 doi: 10.1109/MWC.2019.1800570 – ident: ref28 doi: 10.1145/3461012 – ident: ref6 doi: 10.1109/TVT.2018.2810307 – ident: ref9 doi: 10.1109/TMECH.2018.2820172 – ident: ref5 doi: 10.1109/JIOT.2019.2924244 – start-page: 413 volume-title: Proc. Int. Conf. Embedded Wireless Syst. Netw. year: 2019 ident: ref15 article-title: LoRA-based localization: Opportunities and challenges – ident: ref17 doi: 10.1109/TVT.2020.2964110 – ident: ref21 doi: 10.1109/TVT.2021.3092355 |
SSID | ssj0014491 |
Score | 2.481014 |
Snippet | The robot's mobility and intelligence have expanded its application in recent years. Specifically, indoor tracking is a fundamental function of public service... The robot’s mobility and intelligence have expanded its application in recent years. Specifically, indoor tracking is a fundamental function of public service... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4264 |
SubjectTerms | Algorithms Angle of arrival Antenna arrays Antennas AoA estimation Distance measurement Engines Estimation Frequency shift Hardware Indoor tracking LoRa Mobile robots Nursing homes Redesign Rotation Service robots Target tracking Tracking systems |
Title | LTrack: A LoRa-Based Indoor Tracking System for Mobile Robots |
URI | https://ieeexplore.ieee.org/document/9684677 https://www.proquest.com/docview/2659343797 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKohCQR5YkEibh-00SAwFURXUMlQt6hbZsb0UJahNF3495ySteAmxRYqdRHe27_vi83cAly4TVhPFpjT6xqFIvhzpMZxXCE0S5BM6Kk69j575YEqfZmxWg-vNWRitdZF8ptv2stjLV1mysr_KOhG30TLcgi0cZuVZrc2OAaVVdTwPX4SwYL0l6UadycsEiaDvIz-lVg7-Swgqaqr8WIiL6NLfg9H6u8qkknl7lct28v5NsvG_H74PuxXMJL1yXBxATaeHsPNJfLABt0OMU8n8hvTIMBsL5w7jmSKPqcqyBSluYTNSKpoThLZklElcQsg4k1m-PIJp_2FyP3CqYgpOErAwd5AXaGO4dKngtCs49zUyGbQPSxhLqKLSM4IpGvhMcSU4QyDCmVQ6NNpEmgbHUE-zVJ8ACSUNBBpadEOFaMqVXAvfC0w31CE1xmtCZ23fOKmUxm3Bi9e4YBxuFKNHYuuRuPJIE642Pd5KlY0_2jasgTftKts2obV2YVxNw2XscxYFVnExPP291xls22eXqTgtqOeLlT5HlJHLi2J4fQB_SspB |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBV0GUpwcWJNLmYTsNEgMgUIGUoWpRt8iO7aWoQSVd-PWckzTiJcQWKbYc3dm-74vP3wGcukxYTRSb0ugbhyL5cqTHcF0hNEmRT-iouPXee-LdIX0YsdECnNd3YbTWRfKZbtnH4ixfZenM_iprR9xGy3ARlhmyik55W6s-M6C0qo_n4VAIDOaHkm7UHjwPkAr6PjJUagXhvwShoqrKj624iC93G9Cbf1mZVjJuzXLZSt-_iTb-99M3Yb0CmuSqnBlbsKAn27D2SX6wAZcxRqp0fEGuSJz1hXONEU2R-4nKsikpXmEzUmqaEwS3pJdJ3ERIP5NZ_rYDw7vbwU3XqcopOGnAwtxBZqCN4dKlgtOO4NzXyGXQPixlLKWKSs8IpmjgM8WV4AyhCGdS6dBoE2ka7MLSJJvoPSChpIFAQ4tOqBBPuZJr4XuB6YQ6pMZ4TWjP7Zuklda4LXnxkhScw40S9EhiPZJUHmnCWd3jtdTZ-KNtwxq4blfZtgmHcxcm1UJ8S3zOosBqLob7v_c6gZXuoBcn8f3T4wGs2nHKxJxDWMqnM32EmCOXx8VU-wBTq82U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LTrack%3A+A+LoRa-Based+Indoor+Tracking+System+for+Mobile+Robots&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Hu%2C+Kang&rft.au=Gu%2C+Chaojie&rft.au=Chen%2C+Jiming&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=4&rft.spage=4264&rft_id=info:doi/10.1109%2FTVT.2022.3143526&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |